Smoothed jackknife empirical likelihood method for ROC curve

Yun Gong, Liang Peng, Yongcheng Qi

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
Department of Mathematics and Statistics, University of Minnesota-Duluth, 1117 University Drive, Duluth, MN 55812, USA

Article history:
Received 25 September 2009
Available online 1 February 2010

AMS subject classifications:
62G15

Keywords:
Confidence interval
Empirical likelihood
Jackknife
ROC curve

Abstract

In this paper we propose a smoothed jackknife empirical likelihood method to construct confidence intervals for the receiver operating characteristic (ROC) curve. By applying the standard empirical likelihood method for a mean to the jackknife sample, the empirical likelihood ratio statistic can be calculated by simply solving a single equation. Therefore, this procedure is easy to implement. Wilks’ theorem for the empirical likelihood ratio statistic is proved and a simulation study is conducted to compare the performance of the proposed method with other methods.

1. Introduction

In diagnostic medicine, it is important to assess the accuracy of a diagnostic test in discriminating diseased patients from non-diseased ones. When the response of a test is continuous, its accuracy is measured by the receiver operating characteristic (ROC) curve; see, e.g., [1,2]. ROC curves can also be used to compare the diagnostic performance of two or more laboratory or diagnostic tests [3].

Let \(F \) and \(G \) be the distribution functions of the diseased and non-diseased populations, respectively. Then the ROC curve can be written as \(R(t) = 1 - F(G^{-1}(1-t)) \) for \(0 < t < 1 \), where \(G^{-1} \) denotes the inverse of \(G \) and is defined by \(G^{-1}(u) = \inf\{x : G(x) \geq u\} \) for \(u \in (0, 1) \).

Throughout we assume that \(X_1, \ldots, X_m \) are independent and identically distributed (i.i.d.) test responses of \(m \) patients from the diseased population with distribution \(F \) and \(Y_1, \ldots, Y_n \) are i.i.d. test responses of \(n \) patients from the non-diseased population with distribution \(G \). A simple estimator of \(R(t) \) is defined as

\[
R_{m,n}(t) = 1 - F_m(G_n^{-1}(1 - t)),
\]

where \(F_m \) and \(G_n \) are the empirical distribution functions of \(F \) and \(G \) given by

\[
F_m(x) = \frac{1}{m} \sum_{j=1}^{m} I(X_j \leq x), \quad G_n(y) = \frac{1}{n} \sum_{i=1}^{n} I(Y_i \leq y).
\]

For the study of the estimator \(R_{m,n}(t) \) and its smooth version, we refer to [4–9]. For some inference problems related to the ROC curve see, e.g., [10,11].

Using the fact that

\[
\sqrt{m + n[R_{m,n}(t) - R(t)]} \xrightarrow{d} N(0, \sigma^2(t)),
\]

© 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmva.2010.01.012
where
\[
\sigma^2(t) = \left(1 + \frac{1}{r}\right) R(t)(1 - R(t)) + (1 + r)t(1 - t) \left\{ \frac{F'(G^-(1 - t))}{G'(G^-(1 - t))} \right\}^2,
\]
and \(r := \lim_{n \to \infty} m/n \in (0, \infty) \), one can construct a confidence interval for \(R(t) \) via estimating the density functions of \(F \) and \(G \) or bootstrap methods. As an alternative way to construct confidence intervals without estimating the asymptotic variance explicitly, Claeskens et al. [12] proposed an empirical likelihood method based on the smoothing estimators of the functions \(F \) and \(G \) via some link variable. Molanes-Lopez, Van Keilegom and Veraverbeke [13] studied the empirical likelihood method based on empirical estimators. Qin and Zhou [14] employed the empirical likelihood method to construct confidence intervals for the area under the ROC curve.

The empirical likelihood, introduced in [15, 16], is a well-known nonparametric method for constructing confidence regions. Like the bootstrap and the jackknife, the empirical likelihood method does not assume a parametric family of distributions for the data. One of the advantages of the empirical likelihood method is that it enables the shape of a region, such as the degree of asymmetry in a confidence interval, to be determined automatically by the sample. We refer to [17] for overviews. Some recent developments of empirical likelihood methods include inferences for: censored median regression model [18, 19], two-sample problems [20–25], time series models [26–31], longitudinal data and single-index models [32–35] and Copula [36]. However, all these applications and extensions of empirical likelihood methods work under linear constraints. In case of nonlinear functionals such as variance, ROC curves and copulas, a common way is to transform nonlinear constraints to linear constraints by introducing some link variables as in [12, 36]. Unfortunately, this method does not always work and the introduced link variables create more linear constraints, which increases the computational burden. Seeking a general method to deal with nonlinear functionals becomes important.

Recently, Jing, Yuan and Zhou [37] proposed a so-called jackknife empirical likelihood method for a \(U \)-statistic. The procedure is as follows. For a \(U \)-statistic, construct a jackknife sample (see, e.g., [38]) first, and then treat this jackknife pseudo-sample as a sample of i.i.d. observations and apply the standard empirical likelihood method for the mean of i.i.d. observations to obtain the empirical likelihood ratio statistic for the \(U \) statistic. Hence, the procedure is easy to implement.

In this paper, we study the possibility of extending the jackknife empirical likelihood method in [37] to construct confidence intervals for the ROC curve so as to avoid adding extra constraints due to the link variable in [12]. It turns out that we have to work with a smooth version of the empirical estimator of the ROC curve. We organize this paper as follows. Section 2 gives the detailed methodology and main results. A simulation study is presented in Section 3. All proofs are put in Section 4.

2. Methodology

Let \(w \) be a symmetric density function with support \([-1, 1]\) and put \(K(x) = \int_{-\infty}^{x} w(y)dy \). Define the smooth version of \(R_{m,n}(t) \) as
\[
\hat{R}_{m,n}(t) = 1 - \frac{1}{m} \sum_{i=1}^{m} K \left(\frac{1 - G_n(X_j)}{h} \right),
\]
where \(h = h(n) > 0 \) is a bandwidth. In fact, this smooth estimator of \(R \) is obtained via replacing \(F_m \) in (1) by its smoothed version and \(G_n \) is still the empirical distribution of \(G \). Thus, this smoothed estimator of the ROC curve \(K \) is different from the one in [12]. The reason why we have to work with a smooth version is given in Remark 1 below. Define
\[
\hat{R}_{m,n,i}(t) = 1 - \frac{1}{m - 1} \sum_{1 \leq j \leq m, j \neq i} K \left(\frac{1 - G_n(X_j)}{h} \right), \quad 1 \leq i \leq m,
\]
\[
\hat{R}_{m,n,i}(t) = 1 - \frac{1}{m} \sum_{j=1}^{m} K \left(\frac{1 - G_n,i-m(X_j)}{h} \right), \quad m < i \leq m + n,
\]
where
\[
G_{n,k}(y) = \frac{1}{n - 1} \sum_{1 \leq l \leq n, l \neq k} I(Y_l \leq y), \quad k = 1, \ldots, n.
\]
The jackknife pseudo-sample is therefore defined as
\[
\hat{V}_i(t) = (m + n)\hat{R}_{m,n}(t) - (m + n - 1)\hat{R}_{m,n,i}(t), \quad i = 1, \ldots, m + n.
\]
Next, we form the empirical likelihood at \(R(t) = \theta \) based on the jackknife pseudo-sample as
\[
L_{m,n}(t, \theta) = \sup \left\{ \prod_{i=1}^{m+n} p_i : p_1 > 0, \ldots, p_{m+n} > 0, \sum_{i=1}^{m+n} p_i = 1, \sum_{i=1}^{m+n} p_i \hat{V}_i(t) = \theta \right\}.
\]
By the standard Lagrange multiplier argument, we obtain that the above maximization is achieved at
\[p_i = \frac{1}{(m + n)(1 + \lambda(\hat{V}(t) - \hat{\theta}))}, \quad i = 1, \ldots, m + n, \]
where \(\lambda = \lambda(t, \hat{\theta}) \) satisfies
\[\frac{1}{m + n} \sum_{i=1}^{m+n} \frac{\hat{V}(t) - \hat{\theta}}{1 + \lambda(\hat{V}(t) - \hat{\theta})} = 0, \]
which gives the log empirical likelihood ratio as
\[l_{m,n}(t, \hat{\theta}) = -2 \log l_{m,n}(t, \hat{\theta}) = 2 \sum_{i=1}^{m+n} \log(1 + \lambda(\hat{V}(t) - \hat{\theta})). \]

In order to show that the above log empirical likelihood ratio converges in distribution to a \(\chi^2 \) limit, one has to show that the jackknife variance estimator
\[v_{m,n}(t) = \frac{1}{m + n} \sum_{i=1}^{m+n} \left(\frac{\hat{V}(t) - \hat{\theta}}{m + n} \sum_{j=1}^{m+n} \hat{V}(t) \right)^2 \]
is a consistent estimator of \((m + n)\text{Var}(\hat{R}_{m,n}(t))\).

Theorem 1. Assume that \(w \) is a symmetric density with support \([-1, 1]\) and the first derivative of \(w \) is bounded. Further assume that the second derivative of \(R(t) \) is continuous at \(t_0 \in (0, 1) \), and \(\lim_{n \to \infty} m/n = r \in (0, \infty) \). If \(h = h(n) \to 0 \), \(nh^2 / \log n \to \infty \) and \(nh^4 \to 0 \) as \(n \to \infty \), then
\[v_{m,n}(t_0) \to \sigma^2(t_0) \quad \text{as} \quad n \to \infty. \]

Remark 1. Although we cannot show that the above jackknife variance estimator based on \(R_{m,n}(t) \) instead of \(\hat{R}_{m,n}(t) \) is inconsistent, our simulation study does confirm this conjecture. This explains why we have to work with a smooth version of the empirical estimator of the ROC curve.

Theorem 2. Under the conditions of **Theorem 1**, we have
\[l_{m,n}(t_0, R(t_0)) \to \chi^2(1) \quad \text{as} \quad n \to \infty. \]

Based on **Theorem 2**, a confidence interval with level \(\gamma \) for \(R(t_0) \) can be constructed as
\[I_{\gamma, m, n} = \{ \hat{\theta} : l_{m, n}(t_0, \hat{\theta}) \leq \chi^2_{1, \gamma} \}, \]
where \(\chi^2_{1, \gamma} \) is the \(\gamma \) quantile of \(\chi^2(1) \).

3. Simulation study

In this section, we compare the coverage accuracy of the proposed jackknife empirical likelihood method with the normal approximation method and the empirical likelihood method in [12], where an extra constraint and smooth distribution estimation for both populations are required.

We consider three cases: (A) \(F \sim N(0, 1), \ G \sim N(1, 0.5) \), (B) \(F \sim N(0, 1), \ G \sim \text{Exp}(1) \) and (C) \(F \sim \text{Exp}(1), \ G \sim \text{Exp}(1) \), where \(\text{Exp}(1) \) denotes the standard exponential distribution function. We generate 10,000 random samples from the above cases with sample sizes \(m = 50, 100, 200 \) and \(n = 50, 100, 200 \). We use the kernel \(w(x) = \frac{15}{16}(1 - t^2)^2(|t| \leq 1) \) for both methods, and we choose \(h = m^{-1/3} \) for the jackknife empirical likelihood method and \(h_1 = m^{-1/3} \) and \(h_2 = n^{-1/3} \) for the empirical likelihood method in [12]. Note that Chen, Peng and Zhao [36] pointed out that the above choices of bandwidth for the method in [12] are valid. For the naive bootstrap method based on \(R_{m,n}(t) \), we employ 1000 bootstrap samples. We compute the coverage probabilities for \(t_0 = 0.05, 0.10, 0.25 \) with confidence levels 0.9 and 0.95. From **Tables 1–3**, we observe that both the proposed jackknife empirical likelihood method and the empirical likelihood method in [12] perform much better than the naive bootstrap method. When \(t = 0.05 \) and 0.10, the proposed jackknife empirical likelihood method performs best in most cases. Both empirical likelihood methods are comparable in case of \(t = 0.25 \). However, the proposed jackknife empirical likelihood method is less computationally intensive since the empirical likelihood method in [12] has more constraints in the optimization procedure. Indeed, we employ the “emplik” R package for the proposed jackknife empirical likelihood method.
Table 1
Coverage probabilities for the ROC curve $R(0.05)$ are reported for the intervals based on the naive bootstrap method for $R_{n,t}(t)$ (NBM), the proposed jackknife empirical likelihood method (JELM) and the empirical likelihood method (ELM) in [12] for levels $\gamma = 0.9, 0.95$ and various sample sizes.

<table>
<thead>
<tr>
<th>(m, n, Case)</th>
<th>NBM $\gamma = 0.9$</th>
<th>JELM $\gamma = 0.9$</th>
<th>ELM $\gamma = 0.9$</th>
<th>NBM $\gamma = 0.95$</th>
<th>JELM $\gamma = 0.95$</th>
<th>ELM $\gamma = 0.95$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(50, 50, A)</td>
<td>0.5383</td>
<td>0.8530</td>
<td>0.6816</td>
<td>0.5510</td>
<td>0.8867</td>
<td>0.7042</td>
</tr>
<tr>
<td>(50, 100, A)</td>
<td>0.5545</td>
<td>0.8356</td>
<td>0.6786</td>
<td>0.5602</td>
<td>0.8838</td>
<td>0.7119</td>
</tr>
<tr>
<td>(50, 200, A)</td>
<td>0.5324</td>
<td>0.8183</td>
<td>0.6442</td>
<td>0.5424</td>
<td>0.8708</td>
<td>0.6855</td>
</tr>
<tr>
<td>(100, 50, A)</td>
<td>0.7517</td>
<td>0.8950</td>
<td>0.8157</td>
<td>0.7667</td>
<td>0.9314</td>
<td>0.8488</td>
</tr>
<tr>
<td>(100, 100, A)</td>
<td>0.7858</td>
<td>0.8903</td>
<td>0.8329</td>
<td>0.8015</td>
<td>0.9311</td>
<td>0.8706</td>
</tr>
<tr>
<td>(100, 200, A)</td>
<td>0.7763</td>
<td>0.8719</td>
<td>0.8058</td>
<td>0.7880</td>
<td>0.9236</td>
<td>0.8509</td>
</tr>
<tr>
<td>(200, 50, A)</td>
<td>0.7331</td>
<td>0.9070</td>
<td>0.8998</td>
<td>0.7489</td>
<td>0.9473</td>
<td>0.9302</td>
</tr>
<tr>
<td>(200, 100, A)</td>
<td>0.8006</td>
<td>0.9147</td>
<td>0.9185</td>
<td>0.8133</td>
<td>0.9552</td>
<td>0.9495</td>
</tr>
<tr>
<td>(200, 200, A)</td>
<td>0.7902</td>
<td>0.9050</td>
<td>0.9144</td>
<td>0.8102</td>
<td>0.9496</td>
<td>0.9493</td>
</tr>
<tr>
<td>(50, 50, B)</td>
<td>0.1631</td>
<td>0.9138</td>
<td>0.9284</td>
<td>0.1645</td>
<td>0.9547</td>
<td>0.9758</td>
</tr>
<tr>
<td>(50, 100, B)</td>
<td>0.1431</td>
<td>0.8326</td>
<td>0.9404</td>
<td>0.1439</td>
<td>0.9351</td>
<td>0.9877</td>
</tr>
<tr>
<td>(50, 200, B)</td>
<td>0.1040</td>
<td>0.6433</td>
<td>0.9520</td>
<td>0.1044</td>
<td>0.8293</td>
<td>0.9897</td>
</tr>
<tr>
<td>(100, 50, B)</td>
<td>0.2456</td>
<td>0.9377</td>
<td>0.9544</td>
<td>0.2496</td>
<td>0.9636</td>
<td>0.9678</td>
</tr>
<tr>
<td>(100, 100, B)</td>
<td>0.2490</td>
<td>0.8952</td>
<td>0.9695</td>
<td>0.2522</td>
<td>0.9623</td>
<td>0.9766</td>
</tr>
<tr>
<td>(100, 200, B)</td>
<td>0.2352</td>
<td>0.7255</td>
<td>0.9600</td>
<td>0.2397</td>
<td>0.8845</td>
<td>0.9873</td>
</tr>
<tr>
<td>(200, 50, B)</td>
<td>0.3531</td>
<td>0.9448</td>
<td>0.9236</td>
<td>0.3611</td>
<td>0.9647</td>
<td>0.9288</td>
</tr>
<tr>
<td>(200, 100, B)</td>
<td>0.3699</td>
<td>0.9364</td>
<td>0.9415</td>
<td>0.3781</td>
<td>0.9759</td>
<td>0.9477</td>
</tr>
<tr>
<td>(200, 200, B)</td>
<td>0.3211</td>
<td>0.8203</td>
<td>0.9626</td>
<td>0.3248</td>
<td>0.9374</td>
<td>0.9669</td>
</tr>
<tr>
<td>(50, 50, C)</td>
<td>0.6505</td>
<td>0.9056</td>
<td>0.8363</td>
<td>0.6727</td>
<td>0.9550</td>
<td>0.8570</td>
</tr>
<tr>
<td>(50, 100, C)</td>
<td>0.7041</td>
<td>0.8686</td>
<td>0.8897</td>
<td>0.7262</td>
<td>0.9379</td>
<td>0.9149</td>
</tr>
<tr>
<td>(50, 200, C)</td>
<td>0.7010</td>
<td>0.8223</td>
<td>0.8944</td>
<td>0.7187</td>
<td>0.9052</td>
<td>0.9269</td>
</tr>
<tr>
<td>(100, 50, C)</td>
<td>0.7359</td>
<td>0.9151</td>
<td>0.9033</td>
<td>0.7572</td>
<td>0.9589</td>
<td>0.8330</td>
</tr>
<tr>
<td>(100, 100, C)</td>
<td>0.8208</td>
<td>0.9058</td>
<td>0.8797</td>
<td>0.8424</td>
<td>0.9532</td>
<td>0.9135</td>
</tr>
<tr>
<td>(100, 200, C)</td>
<td>0.8433</td>
<td>0.8656</td>
<td>0.9141</td>
<td>0.8601</td>
<td>0.9350</td>
<td>0.9507</td>
</tr>
<tr>
<td>(200, 50, C)</td>
<td>0.7518</td>
<td>0.9078</td>
<td>0.7349</td>
<td>0.7916</td>
<td>0.9473</td>
<td>0.8055</td>
</tr>
<tr>
<td>(200, 100, C)</td>
<td>0.8244</td>
<td>0.9135</td>
<td>0.8184</td>
<td>0.8681</td>
<td>0.9585</td>
<td>0.8845</td>
</tr>
<tr>
<td>(200, 200, C)</td>
<td>0.8562</td>
<td>0.8973</td>
<td>0.8950</td>
<td>0.8940</td>
<td>0.9508</td>
<td>0.9409</td>
</tr>
</tbody>
</table>

Next we examine the interval lengths of the proposed jackknife empirical likelihood method and the naive bootstrap method based on $K_{m,n}(t)$ since the computation for the other empirical likelihood interval is quite intensive. Note that $l_{m,n}(t, \theta) \geq 0$ is a convex function of θ and $l_{m,n}(t, \frac{1}{m+n} \sum_{i=1}^{m+n} V(t)) = 0$. So by increasing and decreasing θ from...
Table 3
Coverage probabilities for the ROC curve \(R(0.25) \) are reported for intervals based on the naive bootstrap method for \(R_{m,n}(t) \) (NBM), the proposed jackknife empirical likelihood method (JELM) and the empirical likelihood method (ELM) in [12] for levels \(\gamma = 0.9, 0.95 \) and various sample sizes.

<table>
<thead>
<tr>
<th>(m, n, Case)</th>
<th>NBM (\gamma = 0.9)</th>
<th>JELM (\gamma = 0.9)</th>
<th>ELM (\gamma = 0.9)</th>
<th>NBM (\gamma = 0.95)</th>
<th>JELM (\gamma = 0.95)</th>
<th>ELM (\gamma = 0.95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(50, 50, A)</td>
<td>0.8320</td>
<td>0.9047</td>
<td>0.9172</td>
<td>0.8503</td>
<td>0.9417</td>
<td>0.9587</td>
</tr>
<tr>
<td>(50, 100, A)</td>
<td>0.8424</td>
<td>0.8984</td>
<td>0.9070</td>
<td>0.8588</td>
<td>0.9398</td>
<td>0.9479</td>
</tr>
<tr>
<td>(200, 100, A)</td>
<td>0.8369</td>
<td>0.8901</td>
<td>0.9069</td>
<td>0.8564</td>
<td>0.9402</td>
<td>0.9434</td>
</tr>
<tr>
<td>(100, 50, A)</td>
<td>0.8369</td>
<td>0.8878</td>
<td>0.9018</td>
<td>0.8662</td>
<td>0.9407</td>
<td>0.9518</td>
</tr>
<tr>
<td>(100, 100, A)</td>
<td>0.8657</td>
<td>0.9013</td>
<td>0.9039</td>
<td>0.8957</td>
<td>0.9481</td>
<td>0.9516</td>
</tr>
<tr>
<td>(200, 200, A)</td>
<td>0.8760</td>
<td>0.9041</td>
<td>0.9008</td>
<td>0.9028</td>
<td>0.9512</td>
<td>0.9501</td>
</tr>
<tr>
<td>(200, 50, A)</td>
<td>0.8305</td>
<td>0.8820</td>
<td>0.9032</td>
<td>0.8786</td>
<td>0.9348</td>
<td>0.9508</td>
</tr>
<tr>
<td>(200, 100, A)</td>
<td>0.8577</td>
<td>0.8963</td>
<td>0.9045</td>
<td>0.9045</td>
<td>0.9453</td>
<td>0.9517</td>
</tr>
<tr>
<td>(200, 200, A)</td>
<td>0.8826</td>
<td>0.8880</td>
<td>0.9003</td>
<td>0.9137</td>
<td>0.9505</td>
<td>0.9507</td>
</tr>
<tr>
<td>(50, 50, B)</td>
<td>0.6958</td>
<td>0.8895</td>
<td>0.9002</td>
<td>0.7142</td>
<td>0.9354</td>
<td>0.9568</td>
</tr>
<tr>
<td>(50, 100, B)</td>
<td>0.7424</td>
<td>0.9022</td>
<td>0.9089</td>
<td>0.7601</td>
<td>0.9473</td>
<td>0.9582</td>
</tr>
<tr>
<td>(50, 200, B)</td>
<td>0.7647</td>
<td>0.9087</td>
<td>0.9002</td>
<td>0.7804</td>
<td>0.9509</td>
<td>0.9545</td>
</tr>
<tr>
<td>(100, 100, B)</td>
<td>0.7505</td>
<td>0.8739</td>
<td>0.8924</td>
<td>0.7862</td>
<td>0.9285</td>
<td>0.9399</td>
</tr>
<tr>
<td>(100, 100, C)</td>
<td>0.8129</td>
<td>0.8982</td>
<td>0.9085</td>
<td>0.8578</td>
<td>0.9473</td>
<td>0.9558</td>
</tr>
<tr>
<td>(100, 100, C)</td>
<td>0.8269</td>
<td>0.9056</td>
<td>0.9067</td>
<td>0.8782</td>
<td>0.9512</td>
<td>0.9539</td>
</tr>
<tr>
<td>(100, 200, B)</td>
<td>0.7512</td>
<td>0.8526</td>
<td>0.8791</td>
<td>0.8014</td>
<td>0.9057</td>
<td>0.9265</td>
</tr>
<tr>
<td>(100, 200, B)</td>
<td>0.8115</td>
<td>0.8794</td>
<td>0.9018</td>
<td>0.8576</td>
<td>0.9287</td>
<td>0.9449</td>
</tr>
<tr>
<td>(100, 200, B)</td>
<td>0.8438</td>
<td>0.9007</td>
<td>0.9098</td>
<td>0.8927</td>
<td>0.9495</td>
<td>0.9537</td>
</tr>
<tr>
<td>(50, 50, C)</td>
<td>0.8040</td>
<td>0.8878</td>
<td>0.8970</td>
<td>0.8599</td>
<td>0.9368</td>
<td>0.9434</td>
</tr>
<tr>
<td>(50, 100, C)</td>
<td>0.8417</td>
<td>0.9006</td>
<td>0.9060</td>
<td>0.8907</td>
<td>0.9465</td>
<td>0.9515</td>
</tr>
<tr>
<td>(50, 200, C)</td>
<td>0.8576</td>
<td>0.9083</td>
<td>0.9035</td>
<td>0.9108</td>
<td>0.9553</td>
<td>0.9537</td>
</tr>
<tr>
<td>(100, 50, C)</td>
<td>0.8137</td>
<td>0.8705</td>
<td>0.8785</td>
<td>0.8651</td>
<td>0.9260</td>
<td>0.9239</td>
</tr>
<tr>
<td>(100, 100, C)</td>
<td>0.8549</td>
<td>0.8915</td>
<td>0.9049</td>
<td>0.9109</td>
<td>0.9462</td>
<td>0.9507</td>
</tr>
<tr>
<td>(100, 200, C)</td>
<td>0.8708</td>
<td>0.9019</td>
<td>0.9083</td>
<td>0.9286</td>
<td>0.9507</td>
<td>0.9531</td>
</tr>
<tr>
<td>(200, 50, C)</td>
<td>0.7992</td>
<td>0.8638</td>
<td>0.8729</td>
<td>0.8554</td>
<td>0.9154</td>
<td>0.9197</td>
</tr>
<tr>
<td>(200, 100, C)</td>
<td>0.8371</td>
<td>0.8837</td>
<td>0.8957</td>
<td>0.8949</td>
<td>0.9339</td>
<td>0.9413</td>
</tr>
<tr>
<td>(200, 200, C)</td>
<td>0.8540</td>
<td>0.8916</td>
<td>0.9029</td>
<td>0.9155</td>
<td>0.9414</td>
<td>0.9496</td>
</tr>
</tbody>
</table>

\[
\frac{1}{m} \sum_{i=1}^{m} \tilde{V}_i(t) \text{ with a step 0.001 till } l_{n,m}(t, \theta) > \chi^2_{1, \gamma}, \text{ we can easily obtain the upper and lower endpoints of the jackknife empirical likelihood interval } I_p(t, m, n). \text{ In Table 4, we report the interval lengths for the jackknife empirical likelihood method and the naive bootstrap method. We observe that the jackknife empirical likelihood method results in a shorter interval than the naive bootstrap method for almost all of cases except case C with } \gamma = 0.95. \]

4. Proofs

We need the following lemmas to prove Theorems 1 and 2.

Lemma 1. Assume conditions in Theorem 1 hold. Then there exists an interval \((a, b) \subset (0, 1)\) such that \(t_0 \in (a, b)\) and

\[
\sqrt{m + n} \{\tilde{R}_{m,n}(t) - R(t)\} \xrightarrow{D} \sqrt{1 + \frac{1}{r}B_1(1 - R(t)) + \sqrt{1 + rR(t)}B_2(t)} \quad (4)
\]

in \(D((a, b))\), where \(B_1(t)\) and \(B_2(t)\) are two independent Brownian bridges.

Proof. Since \(R'\) is continuous at \(t_0 \in (0, 1)\), there exists a subset \((a, b)\) containing \(t_0\) such that \(R'\) and \(R''\) are bounded in \((a, b)\). It is known that

\[
\sqrt{m} \{F_n(x) - F(x)\} \xrightarrow{D} W_1(x) \quad \text{and} \quad \sqrt{n} \{G_n(y) - G(y)\} \xrightarrow{D} W_2(y)
\]

in \(D((-\infty, \infty))\), where \(W_1\) and \(W_2\) are two independent Wiener processes with zero means and covariances

\[
\begin{align*}
EW_1(x_1)W_2(x_2) &= F(x_1 \wedge x_2) - F(x_1)F(x_2) \\
EW_2(y_1)W_2(y_2) &= G(y_1 \wedge y_2) - G(y_1)G(y_2).
\end{align*}
\]

Write

\[
1 - \frac{1}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G(X_j)}{h} \right) - R(t) = F(G^- (1 - t)) - \int_{-\infty}^{\infty} \sum_{j=1}^{m} K \left(\frac{1 - t - G(X_j)}{h} \right) dF_m(x)
\]

\[
= F(G^- (1 - t)) - \int_{-\infty}^{\infty} F_m(x)w \left(\frac{1 - t - G(x)}{h} \right) h^{-1} dG(x)
\]

\[
= F(G^- (1 - t)) - \int_{-\infty}^{t} F_m(G^- (1 - t - xh))w(x) dx
\]
Table 4
Interval lengths are reported for the ROC curve $R(t)$ based on the naive bootstrap method for $R_{m,n}(t)$ (NBM) and the proposed jackknife empirical likelihood method (JELM) for levels $\gamma = 0.9, 0.95$ and various sample sizes.

<table>
<thead>
<tr>
<th>(m, n, Case)</th>
<th>NBM</th>
<th>JELM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\gamma = 0.9$</td>
<td>$\gamma = 0.9$</td>
</tr>
<tr>
<td></td>
<td>$t = 0.1$</td>
<td>$t = 0.1$</td>
</tr>
<tr>
<td>(50, 50, A)</td>
<td>0.0879</td>
<td>0.0582</td>
</tr>
<tr>
<td>(50, 100, A)</td>
<td>0.0746</td>
<td>0.0573</td>
</tr>
<tr>
<td>(50, 200, A)</td>
<td>0.0700</td>
<td>0.0579</td>
</tr>
<tr>
<td>(100, 50, A)</td>
<td>0.0711</td>
<td>0.0448</td>
</tr>
<tr>
<td>(100, 100, A)</td>
<td>0.0623</td>
<td>0.0466</td>
</tr>
<tr>
<td>(100, 200, A)</td>
<td>0.0571</td>
<td>0.0447</td>
</tr>
<tr>
<td>(200, 50, A)</td>
<td>0.0599</td>
<td>0.0387</td>
</tr>
<tr>
<td>(200, 100, A)</td>
<td>0.0495</td>
<td>0.0374</td>
</tr>
<tr>
<td>(200, 200, A)</td>
<td>0.0441</td>
<td>0.0344</td>
</tr>
<tr>
<td>(50, 50, B)</td>
<td>0.0766</td>
<td>0.0415</td>
</tr>
<tr>
<td>(50, 100, B)</td>
<td>0.0540</td>
<td>0.0427</td>
</tr>
<tr>
<td>(50, 200, B)</td>
<td>0.0439</td>
<td>0.0449</td>
</tr>
<tr>
<td>(100, 50, B)</td>
<td>0.0702</td>
<td>0.0320</td>
</tr>
<tr>
<td>(100, 100, B)</td>
<td>0.0495</td>
<td>0.0317</td>
</tr>
<tr>
<td>(100, 200, B)</td>
<td>0.0395</td>
<td>0.0335</td>
</tr>
<tr>
<td>(200, 50, B)</td>
<td>0.0637</td>
<td>0.0268</td>
</tr>
<tr>
<td>(200, 100, B)</td>
<td>0.0444</td>
<td>0.0247</td>
</tr>
<tr>
<td>(200, 200, B)</td>
<td>0.0340</td>
<td>0.0255</td>
</tr>
<tr>
<td>(50, 50, C)</td>
<td>0.2139</td>
<td>0.1381</td>
</tr>
<tr>
<td>(50, 100, C)</td>
<td>0.1804</td>
<td>0.1259</td>
</tr>
<tr>
<td>(50, 200, C)</td>
<td>0.1583</td>
<td>0.1132</td>
</tr>
<tr>
<td>(100, 50, C)</td>
<td>0.1863</td>
<td>0.1245</td>
</tr>
<tr>
<td>(100, 100, C)</td>
<td>0.1480</td>
<td>0.1065</td>
</tr>
<tr>
<td>(100, 200, C)</td>
<td>0.1276</td>
<td>0.0916</td>
</tr>
<tr>
<td>(200, 50, C)</td>
<td>0.1686</td>
<td>0.1138</td>
</tr>
<tr>
<td>(200, 100, C)</td>
<td>0.1294</td>
<td>0.0977</td>
</tr>
<tr>
<td>(200, 200, C)</td>
<td>0.1026</td>
<td>0.0776</td>
</tr>
</tbody>
</table>

where t^* is between t and $t + xh$. If follows from conditions in Lemma 1 and (7) that

$$\int_{-1}^{1} \{F(G^-(1-t-xh)) - F(G^-(-1-t))\}w(x)\,dx = \frac{1}{2}h^2 \int_{-1}^{1} R''(t^*)x^2w(x)\,dx,$$

uniformly in $t \in (a, b)$. Using the conditions on h, (5) and the continuity of W_1, we have

$$\int_{-1}^{1} \{F(G^-(1-t-xh)) - F(G^-(-1-t))\}w(x)\,dx = \frac{1}{2}h^2 \int_{-1}^{1} R''(t^*)x^2w(x)\,dx.$$

$$= F(G^-(1-t)) - F_m(G^-(1-t)) - \int_{-1}^{1} \{F(G^-(1-t-xh)) - F(G^-(1-t))\}w(x)\,dx$$

$$- \int_{-1}^{1} \{F_m(G^-(1-t-xh)) - F(G^-(1-t-xh)) - F_m(G^-(1-t)) + F(G^-(1-t))\}w(x)\,dx$$

(6)

$$\int_{-1}^{1} [F(G^-(1-t-xh)) - F(G^-(1-t))w(x)\,dx = -\int_{-1}^{1} R(t)\,dhw(x)\,dx - \frac{1}{2} \int_{-1}^{1} R''(t)(x)^2w(x)\,dx$$

$$= -\frac{1}{2}h^2 \int_{-1}^{1} R''(t^*)x^2w(x)\,dx,$$

(7)
Hence
\[
\sqrt{m} \left\{ 1 - \frac{1}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G(X_j)}{h} \right) - R(t) \right\} \overset{d}{\to} W_1(G^-(1-t)) \tag{9}
\]
in \(D((a, b))\).

Write
\[
\frac{1}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) - \frac{1}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G(X_j)}{h} \right) = \frac{1}{m} \sum_{j=1}^{m} G(X_j) - G_n(X_j) w \left(\frac{1 - t - G(X_j)}{h} \right)
\]
\[
+ \frac{1}{2m} \sum_{j=1}^{m} \left(\frac{G(X_j) - G_n(X_j)}{h} \right)^2 w' \left(\frac{1 - t - G(X_j) + \xi_{n,j}}{h} \right),
\tag{10}
\]
where \(\xi_{n,j}\) is between 0 and \(G(X_j) - G_n(X_j)\). It follows from Theorem A of Silverman [39] that
\[
\sup_{t \in (a, b)} \left| \frac{1}{mh} \sum_{j=1}^{m} w' \left(\frac{1 - t - G(X_j)}{h} \right) - R'(t) \int_{-1}^{1} |w'(x)| \, dx \right| = o_p(1),
\tag{11}
\]
where \(R'(1-x)\) is the density of \(G(X_1)\). By (5), (10) and (11), we have
\[
\sqrt{n} \left\{ \frac{1}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) - \frac{1}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G(X_j)}{h} \right) \right\}
\]
\[
= - \int_{-\infty}^{\infty} W_2(x) h^{-1} w \left(\frac{1 - t - G(x)}{h} \right) \, dF(x) + O_p(n^{-1/2}h^{-1})
\]
\[
= \int_{-1}^{1} W_2(G^-(1 - tx)) h^{-1} w(x) \, dF(G^-(1 - tx)) + O_p(n^{-1/2}h^{-1})
\]
\[
= -R'(t)W_2(G^-(1-t)) + o_p(1)
\tag{12}
\]
uniformly in \(t \in (a, b)\). Hence the lemma follows from (9) and (12) with \(B_1(1-R(t)) = W_1(G^-(1-t))\) and \(B_2(t) = W_2(G^-(1-t))\). This completes the proof of the lemma. \(\Box\)

Lemma 2. Under conditions of Theorem 1, we have
\[
\sqrt{m+n} \left\{ \frac{1}{m+n} \sum_{i=1}^{m+n} \tilde{V}_i(t) - R(t) \right\} \overset{d}{\to} N(0, \sigma^2(t))
\]
as \(n \to \infty\) for \(t = t_0\).

Proof. Throughout we assume \(t = t_0\). It follows from the definition of \(\tilde{V}_i(t)\) that
\[
\frac{1}{m+n} \sum_{i=1}^{m+n} \tilde{V}_i(t) = \frac{1}{m+n} \left\{ m+n - \frac{m+n}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right. \\
+ \frac{m+n}{m} \sum_{j=1}^{m} \sum_{k=1}^{m} \left\{ K \left(\frac{1 - t - G_{n,k}(X_j)}{h} \right) - K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right\} \right\}.
\tag{13}
\]
Write
\[
\sum_{j=1}^{m} \sum_{k=1}^{m} \left\{ K \left(\frac{1 - t - G_{n,k}(X_j)}{h} \right) - K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right\}
\]
\[
= \sum_{k=1}^{m} \sum_{j=1}^{m} \frac{G_n(X_j) - G_{n,k}(X_j)}{h} w \left(\frac{1 - t - G_n(X_j)}{h} \right) + \sum_{k=1}^{m} \sum_{j=1}^{m} \frac{1}{2} \left\{ \frac{G_n(X_j) - G_{n,k}(X_j)}{h} \right\}^2 w' \left(\frac{1 - t - \xi_{n,k,j}}{h} \right)
\]
\[
= \sum_{j=1}^{m} \sum_{k=1}^{m} \frac{1}{2} \left\{ \frac{G_n(X_j) - G_{n,k}(X_j)}{h} \right\}^2 w' \left(\frac{1 - t - \xi_{n,k,j}}{h} \right),
\tag{14}
\]
where \(\xi_{n,k,j} \) is a random variable between \(G_{n,k}(X_j) \) and \(G_n(X_j) \). Since
\[
G_n(X_j) - G_{n,k}(X_j) = \frac{1}{n-1} \{ G_n(X_j) - I(Y_k \leq X_j) \} = O_p \left(\frac{1}{n-1} \right)
\]
uniformly in \(1 \leq k \leq n \) and \(1 \leq j \leq m \), we can write
\[
\xi_{n,k,j} = G_n(X_j) + O_p \left(\frac{1}{n-1} \right) = G(X_j) + O_p \left(n^{-\frac{1}{2}} \right).
\]
(15)

It follows from (14), (15) and (11) that
\[
\sum_{k=1}^{n} \sum_{j=1}^{m} \left\{ K \left(\frac{1 - t - G_{n,k}(X_j)}{h} \right) - K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right\} = O_p \left\{ \frac{mn}{(n-1)^2h} \right\}.
\]
(16)

By (13), (16) and Lemma 1, we have
\[
\sqrt{m+n} \left\{ \frac{1}{m+n} \sum_{i=1}^{m+n} \hat{V}_i(t) - R(t) \right\} = \sqrt{m+n} \left\{ 1 - \frac{1}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) + O_p \left\{ \frac{(m+n-1)n}{(m+n)(n-1)^2h} \right\} - R(t) \right\}
\]
\[
= \sqrt{m+n} \left\{ \hat{K}_{m,n}(t) - R(t) + O_p \left\{ \frac{(m+n-1)n}{(m+n)(n-1)^2h} \right\} \right\}
\]
\[
\xrightarrow{d} N(0, \sigma^2(t)),
\]
i.e., Lemma 2 holds. □

Lemma 3. Under conditions of Theorem 1, we have
\[
\frac{1}{m+n} \sum_{i=1}^{m+n} [\hat{V}_i(t) - R(t)]^2 \xrightarrow{p} \sigma^2(t)
\]
as \(n \to \infty \) for \(t = t_0 \).

Proof. Throughout we assume \(t = t_0 \). For \(1 \leq i \leq m \), we can write that
\[
\hat{V}_i(t) = 1 + \frac{n}{(m-1)m} \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) - \frac{m+n-1}{m-1} K \left(\frac{1 - t - G_n(X_i)}{h} \right)
\]
and
\[
\hat{V}_i^2(t) = \left\{ 1 - \frac{m+n-1}{m-1} K \left(\frac{1 - t - G_n(X_i)}{h} \right) \right\}^2 + \left\{ \frac{n}{(m-1)m} \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right\}^2
\]
\[
+ 2 \left\{ \frac{n}{(m-1)m} \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right\} \left\{ 1 - \frac{m+n-1}{m-1} K \left(\frac{1 - t - G_n(X_i)}{h} \right) \right\},
\]
which imply that
\[
\sum_{i=1}^{m} \hat{V}_i^2(t) = m - \frac{2(m+n-1)}{m-1} \sum_{i=1}^{m} K \left(\frac{1 - t - G_n(X_i)}{h} \right) + \frac{(m+n-1)^2}{(m-1)^2} \sum_{i=1}^{m} K^2 \left(\frac{1 - t - G_n(X_i)}{h} \right)
\]
\[
+ \frac{mn^2}{(m-1)^2m^2} \left\{ \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right\}^2
\]
\[
+ \frac{2n}{(m-1)m} \left\{ \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right\} \left\{ m - \frac{m+n-1}{m-1} \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right\}.
\]
(17)
Since K^2 is a distribution function, it follows from Lemma 1 that
\begin{equation}
\frac{1}{m} \sum_{i=1}^{m} K^2 \left(\frac{1 - t - G_n(X_i)}{h} \right) \overset{P}{\to} F(G^-(1 - t)).
\end{equation}

Hence, by (17), (18) and Lemma 1,
\begin{align}
\frac{1}{m + n} \sum_{i=1}^{m+n} \hat{V}_i^2(t) &\overset{P}{\to} \frac{r}{1 + r} - 2 F(G^-(1 - t)) + \left(1 + \frac{1}{r} \right) F(G^-(1 - t)) \\
&\quad + \frac{1}{r(1 + r)} F^2(G^-(1 - t)) + \frac{2}{1 + r} F(G^-(1 - t)) - \frac{2}{r} F^2(G^-(1 - t)) \\
&= \frac{r}{1 + r} + \frac{1 + 2 r - r^2}{r(1 + r)} F(G^-(1 - t)) - \frac{1 + 2 r}{r(1 + r)} F^2(G^-(1 - t)) \\
&= \frac{r + 1}{r} R(t) - \frac{1 + 2 r}{r(1 + r)} R^2(t).
\end{align}

Next, for $m < i \leq m + n$, we can write that
\begin{equation}
\hat{V}_i(t) = 1 - \frac{1}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) + \frac{m + n - 1}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G_{n,i-m}(X_j)}{h} \right) - K \left(\frac{1 - t - G_n(X_i)}{h} \right)
\end{equation}
and
\begin{align}
\hat{V}_i^2(t) &= \left(1 - \frac{1}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right)^2 \\
&\quad + \left\{ \frac{m + n - 1}{m} \sum_{j=1}^{m} \left[K \left(\frac{1 - t - G_{n,i-m}(X_j)}{h} \right) - K \left(\frac{1 - t - G_n(X_i)}{h} \right) \right] \right\}^2 \\
&\quad + 2 \left\{ \frac{1}{m} \sum_{j=1}^{m} K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right\} \left[\frac{m + n - 1}{m} \sum_{j=1}^{m} \left[K \left(\frac{1 - t - G_{n,i-m}(X_j)}{h} \right) - K \left(\frac{1 - t - G_n(X_i)}{h} \right) \right] \right\}.
\end{align}

It follows from (11) that
\begin{align}
A_k &:= \left\{ \sum_{j=1}^{m} \left[K \left(\frac{1 - t - G_{n,k}(X_j)}{h} \right) - K \left(\frac{1 - t - G_n(X_j)}{h} \right) \right] \right\}^2 \\
&= \sum_{j=1}^{m} \frac{G_n(X_j) - G_{n,k}(X_j)}{h} \left(\frac{1 - t - G_n(X_j)}{h} \right) + \sum_{j=1}^{m} \left\{ \frac{G_n(X_j) - G_{n,k}(X_j)}{h} \right\}^2 \left(1 - \frac{\xi_{n,k,j}}{h} \right) \\
&= \left\{ \sum_{j=1}^{m} \frac{G_n(X_j) - G_{n,k}(X_j)}{h} \left(\frac{1 - t - G_n(X_j)}{h} \right) \right\}^2 + O_p(n^{-1} h^{-1})
\end{align}
which implies that
\begin{align}
\frac{1}{m + n} \sum_{k=1}^{n} A_k &= \frac{1}{m + n} \sum_{k=1}^{n} \left\{ \sum_{i=1}^{m} \frac{G_n(X_i) - G_{n,k}(X_i)}{h} \frac{G_n(X_j) - G_{n,k}(X_j)}{h} \right\} \\
&\quad \times \left(\frac{1 - t - G_n(X_i)}{h} \right) \left(\frac{1 - t - G_n(X_j)}{h} \right) + O_p(n^{-1} h^{-1}) \\
&= \frac{1}{m + n} \left(\frac{n}{(n - 1)^2 h^2} \sum_{j=1}^{m} \sum_{j=1}^{m} \left[G_n(X_i \wedge X_j) - G_n(X_i)G_n(X_j) \right] \right) \\
&\quad + O_p(n^{-1} h^{-1}).
\end{align}
\[
\times w \left(\frac{1 - t - G_n(X_i)}{h} \right) \times w \left(\frac{1 - t - G_n(X_j)}{h} \right) + O_p(n^{-1}h^{-1})
\]
\[
= \frac{1}{m + n} \sum_{i=1}^{m+n} \left\{ G(X_i \wedge X_j) - G(X_i)G(X_j) \right\} \times w \left(\frac{1 - t - G_n(X_i)}{h} \right) \times w \left(\frac{1 - t - G_n(X_j)}{h} \right) \{1 + o_p(1)\} + O_p(n^{-1}h^{-1})
\]
\[
\xrightarrow{p} \frac{r^2}{1 + r} (1 - t)(1 - t)^2 \{R(t)^2\}.
\]
By (20), (21), (16) and Lemma 1, we have
\[
\frac{1}{m + n} \sum_{i=m+1}^{m+n} \hat{\nu}_i^2(t) \xrightarrow{p} \frac{1}{1 + r} R^2(t) + (r + 1)t(1 - t)\{R(t)^2\}.
\]
Hence, it follows from (19), (22) and Lemma 2 that
\[
\frac{1}{m + n} \sum_{i=1}^{m+n} (\hat{\nu}_i(t) - R(t))^2 = \frac{1}{m + n} \sum_{i=1}^{m+n} \hat{\nu}_i^2(t) + R^2(t) - \frac{2}{m + n} R(t) \sum_{i=1}^{m+n} \hat{\nu}_i(t) \xrightarrow{p} \sigma^2(t).
\]
This completes the proof of Lemma 3. □

Proof of Theorem 1. It follows immediately from Lemmas 2 and 3. □

Proof of Theorem 2. Throughout let \(\theta = R(t_0) \). Define \(g(\lambda) = \frac{1}{m+n} \sum_{i=1}^{m+n} \hat{\nu}_i(t_0) - \theta \). It is easy to check that
\[
0 = |g(\lambda)| \geq \left| \frac{1}{m + n} \sum_{i=1}^{m+n} (\hat{\nu}_i(t_0) - \theta) - \lambda \sum_{i=1}^{m+n} (\hat{\nu}_i(t_0) - \theta)^2 \right| \left| 1 + \lambda(\hat{\nu}_i(t_0) - \theta) \right|
\]
\[
\geq \left| \frac{\lambda}{m + n} \sum_{i=1}^{m+n} (\hat{\nu}_i(t_0) - \theta)^2 \right| - \frac{1}{m + n} \sum_{i=1}^{m+n} (\hat{\nu}_i(t_0) - \theta)
\]
\[
\geq \frac{|\lambda| S_{m+n}}{1 + |\lambda| Z_{m+n}} - \frac{1}{m + n} \sum_{i=1}^{m+n} (\hat{\nu}_i(t_0) - \theta),
\]
where \(S_{m+n} = \frac{1}{m+n} \sum_{i=1}^{m+n} (\hat{\nu}_i(t_0) - \theta)^2 \) and \(Z_{m+n} = \max_{1 \leq i \leq m+n} |\hat{\nu}_i(t_0) - \theta| \). Using similar arguments in proving Lemma 2, we can show that \(Z_{m+n} \) is bounded in probability. Hence, by Lemma 2, Lemma 3 and the fact that \(Z_{m+n} \) is bounded in probability, we have
\[
|\lambda| = O_p \left\{ (m + n)^{-\frac{1}{2}} \right\}.
\]
Put \(\gamma_1 = \lambda(\hat{\nu}_i(t_0) - \theta) \). Then, we have that
\[
\max_{1 \leq i \leq m+n} |\gamma_1| = o_p(1).
\]
Using (23), (24) and Taylor expansion, we have
\[
0 = g(\lambda) = \frac{1}{m + n} \sum_{i=1}^{m+n} (\hat{\nu}_i(t_0) - \theta) \left(1 - \gamma_1 + \frac{\gamma_1^2}{1 + \gamma_1} \right)
\]
\[
= \frac{1}{m + n} \sum_{i=1}^{m+n} (\hat{\nu}_i(t_0) - \theta) - S_{m+n} \lambda + \frac{1}{m + n} \sum_{i=1}^{m+n} (\hat{\nu}_i(t_0) - \theta) \gamma_1^2
\]
\[
= \frac{1}{m + n} \sum_{i=1}^{m+n} (\hat{\nu}_i(t_0) - \theta) - S_{m+n} \lambda + O_p \left(\frac{1}{m + n} \right).
\]
which implies that
\[\lambda = S_{m+n}^{-1} \frac{1}{m+n} \sum_{i=1}^{m+n} (\hat{V}(t) - \theta) + \beta_n, \]
(25)
where \(\beta_n = O_p\left(\frac{1}{m+n}\right) \). Hence, it follows from (23), (25), Lemmas 1 and 2 that
\[l_{m,n}(t_0, \theta) = 2 \sum_{i=1}^{m+n} \gamma_i - \sum_{i=1}^{m+n} \gamma_i^2 + 2 \sum_{i=1}^{m+n} \eta_i \]
\[= 2(m+n) \lambda + \frac{1}{m+n} \sum_{i=1}^{m+n} \left(\hat{V}(t_0) - \theta\right) - (m+n) S_{m+n} \lambda^2 + 2 \sum_{i=1}^{m+n} \eta_i \]
\[= \frac{(m+n) \left\{ \frac{1}{m+n} \sum_{i=1}^{m+n} (\hat{V}(t_0) - \theta) \right\}^2}{S_{m+n}} - (m+n) S_{m+n} \beta_n^2 + 2 \sum_{i=1}^{m+n} \eta_i \]
\[= \frac{(m+n) \left\{ \frac{1}{m+n} \sum_{i=1}^{m+n} (\hat{V}(t_0) - \theta) \right\}^2}{S_{m+n}} + o_p(1) \]
\[\overset{d}{\rightarrow} \chi_1^2. \]

i.e., Theorem 2 holds. \(\Box \)

Acknowledgments

We thank two reviewers for their helpful comments. Peng’s research was supported by NSA grant H98230-10-1-0170 and Qi’s research was supported by NSA grant H98230-10-1-0161.

References

