
e integral 

(25) 

More gen­
td is, as we 
than that of 

mt not nec­
xample, the 
tevertheless 
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The remainder of this chapter is devoted largely to techniques for solving a 
differential equation by first finding the Laplace transform of its solution. It is then 
vital for us to know that this uniquely determines the solution of the differential 
equation; that is, that the function of s we have found has only one inverse Laplace 
transform that could be the desired solution. The following theorem is proved in 
Chapter 6 of Churchill's Operational Mathematics, 3rd ed. (New York: McGraw­
Hill, 1972). 

THEOREM 3 Uniqueness of Inverse Laplace Transforms 

Suppose that the functions f(t) and g(t) satisfy the hypotheses of Theorem 2, 
so that their Laplace transforms F(s) and G(s) both exist. If F(s) = G(s) for 
all s > c (for some c), then f(t) = g(t) wherever on (0, +oo) both f and g are 
continuous. 

Thus two piecewise continuous functions of exponential order with the same 
Laplace transform can differ only at their isolated points of discontinuity. This is 
of no importance in most practical applications, so we may regard inverse Laplace 
transforms as being essentially unique. In particular, two solutions of a differential 
equation must both be continuous, and hence must be the same solution if they have 
the same Laplace transform. 

Historical Remark Laplace transforms have an interesting history. The integral in the 
definition of the Laplace transform probably appeared first in the work of Euler. It is custom­
ary in mathematics to name a technique or theorem for the next person after Euler to discover 
it (else there would be several hundred different examples of "Euler's theorem"). In this case, 
the next person was the French mathematician Pierre Simon de Laplace (1749-1827), who 
employed such integrals in his work on probability theory. The so-called operational methods 
for solving differential equations, which are based on Laplace transforms, were not exploited 
by Laplace. Indeed, they were discovered and popularized by practicing engineers-notably 
the English electrical engineer Oliver Heaviside (1850-1925). These techniques were suc­
cessfully and widely applied before they had been rigorously justified, and around the begin­
ning of the twentieth century their validity was the subject of considerable controversy. One 
reason is that Heaviside blithely assumed the existence of functions whose Laplace trans­
forms contradict the condition that F(s) -+ 0 ass -+ 0, thereby raising questions as to the 
meaning and nature of functions in mathematics. (This is reminiscent of the way Leibniz two 
centuries earlier had obtained correct results in calculus using "infinitely small" real numbers, 
thereby raising questions as to the nature and role of numbers in mathematics.) 

the definition in ( 1) to find directly the Laplace trans­
ofthefunctions described (by formula or graph) in Prob-

1 through 10. 
8.--- j ([,~) (2~,1-)----~ 

(1, I) 

2. f(t) = t 2 

4. f(t) = cost 

6. f(t) = sin2 t 

7.---+= 
-------: 

FIGURE 10.1.6. 

FIGURE 10.1.7. 

9.--¥ (1, I) 

--------: 

FIGURE 10.1.8. 
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10. (O,l!k 

11. f(t) = .Jt + 3t 

13. f(t) = t - 2e 31 

15. f(t) = I +cosh 5t 

17. f(t) = cos2 2t 

19. f(t) = (I + t) 3 

21. f(t) = t cos 2t 

12. f(t) = 3t512 - 4t 3 

14. f(t) = t3/2- e-10t 

16. f(t) = sin 2t +cos 2t 

18. f(t) = sin 3t cos 3t 

20. f(t) = te1 

22. f(t) = sinh2 3t 

Use the transforms in Fig. 10.1.2 to find the inverse Laplace 
transforms of the functions in Problems 23 through 32. 

3 
23. F(s) = 4 s 

I 2 
25. F(s) = --

512 s s 

3 
27. F(s) =­

s-4 

5- 3s 
29. F(s) = s 2 + 

9 

lOs-3 
31. F(s) = 25- s2 

24. F(s) = s-312 

I 
26. F(s) = -

5 s+ 

3s + 1 
28. F(s) = s2 + 4 

9+s 
30.F(s)=

4
_s2 

33. Derive the transform of f (t) = sink t by the method used 
in the text to derive the formula in (16). 

34. Derive the transform of f(t) = sinh k t by the method used 
in the text to derive the formula in (14). 

35. Use the tabulated integral 

J eaxcosbxdx= a
2
e:xb2 (acosbx+bsinbx)+C 

to obtain .C {cos k t} directly from the definition of the 
Laplace transform. 

36. Show that the function f(t) = sin(e12
) is of exponential 

order as t -+ +oo but that its derivative is not. 

37. Given a > 0, let f(t) = 1 if 0 ~ t < a, f(t) = 0 if t ~ a. 
First, sketch the graph of the function f, making clear its 
value at t =a. Then express fin terms of unit step func­
tions to show that .C{f(t)} = s-1(1- e-as). 

38. Given that 0 <a < b, let f(t) = 1 if a ~ t < b, f(t) = 0 
if either t < a or t ~ b. First, sketch the graph of the 
function f, making clear its values at t = a and t = b. 
Then express f in terms of unit step functions to show 
that .C{f(t)} = s-1(e-as- e-bs). 

39. The unit staircase function is defined as follows: 

f(t)=n if n-1~t<n, n=1,2,3, ... 

(a) Sketch the graph off to see why its name is appropri­
ate. (b) Show that 

00 

f(t) = L u(t -n) 
n=O 

for all t ~ 0. (c) Assume that the Laplace transform of the 
infinite series in part (b) can be taken termwise (it can). 
Apply the geometric series to obtain the result 

1 
.C{f(t)} = s(1- e-s) · 

40. (a) The graph of the function f is shown in Fig. 10.1.10. 
Show that f can be written in the form 

00 

f(t) = :E (-l)nu(t- n). 
n=O 

(b) Use the method of Problem 39 to show that 

1 
.C{f(t)} = s(l + e-s) · 

f 

2 3 4 5 6 

FIGURE 10.1.10. The graph of the function 
of Problem 40. 

41. 1l1e graph of the square-wave function g(t) is shown in 
Fig. 1 0.1.11. Express g in terms of the function f of Prob­
lem 40 and hence deduce that 

i- e~s 1 s 
.C{g(t)} = · =-tanh-. 

s(l + e S) s 2 

g 

-1 

FIGURE 10.1.11. The graph of the function 
of Problem 41. 

42. Given constants a and b, define h(t) fort~ 0 by 

!
a if n - 1 :S t < .n and n is odd; 

h(t) = - .. 
b if n - 1 ~ t < n and n IS even. 

Sketch the graph of h and apply one Df the preceding prob· 
!ems to show that 

a+ be-s 
.C {h(t)} = s(1 + e-s) 
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that may not agree with the actual values f(tn-d and f(tn). The value of an in­
tegral on an interval is not affected by changing the values of the integrand at the 
endpoints. However, if the fundamental theorem of calculus is applied to find the 
value of the integral, then the antiderivative function must be continuous on the 
closed interval. We therefore use the "continuous from within the interval" end­
point values above in evaluating (by parts) the integrals on the right in (19). The 
result is 

k t 

L[e-st f(t) 1:_1 = [- f(td) + e-stl f(t[) J + [ -e-stl f(tt) + e-st2 f(t2)] 
n=l 

where 

+ ... + [ -estk-2 f(tt_
2

) + e-stk-1 f(tk-
1

) J 
+ [ -estk-1 J(tt_

1
) + e-stk J(t;;) J 

k--l 

=- f(O+)- L }J(tn) + e-sb j(b-), 

n'=l 

J f Ctn) := f(t:) - f(t;;) 

(20') 

(21) 

denotes the (finite) jump in f(t) at t = tn. Assuming that £{f'(t)} exists, we 
therefore get the generalization 

00 

£{f'(t)} = sF(s)- f(O+)- L e-stn iJ(tn) (22) 
n=l 

of £{f'(t)} = sF(s)- f(O) when we now take the limit in (19) as b--+ +oo. 

l@•luj.]reJI·- Let J(i) ::;-j +ITtll be the ~nitsta~c~se-fu;;-;;ti~n; itsV:aphis sh~wn i; Fig. 10.2.8.--Then 
f(r) /(0) = 1, f'(t) = 0, and h(n) = 1 for each integer n = 1, 2, 3, .... Hence Eq. (22) yields 

6 ....... 

5 -·= 00 

4 ._c 0 = sF(s)- 1- Le-ns, 

3 -= n=l 

2 -= so the Laplace transform of f(t) is 

()(> 

F(s = ~ "\~e-ns = 1 
) ~J (1 -s)· s s - e n=O 

I 2 3 4 5 6 t 

FIGURE 10.2.8. The graph of the 
unit staircase function of Example 7. In the last step we used the formula for the sum of a geometric series, 

with x = e-s < l. 

-- ?E?_~}~l11~- --
Us.e Laplace transforms to solve the initial value problems in 
Problems 1 through 16. 

1. x" + 4x = 0; x(O) = 5, x'(O) = 0 
2. x" + 9x = 0; x(O) = 3, x'(O) = 4 
3. x"- x'- 2x = 0; x(O) = 0, x' (0) = 2 

n=O 
1-x' 

--- -- -·· -- - ---- --- - ---- -- -- --- ---·--- -- -----

4. x" + 8x' + 15x = 0; x(O) = 2, x'(O) = -3 
5. x" + x = sin2t; x(O) = 0 = x'(O) 

6. x" + 4x =cost; x(O) = 0 = x'(O) 

7. x" + x =cos 3t; x(O) = 1, x'(O) = 0 
8. x" + 9x = 1; x(O) = 0 = x'(O) 

• 



inuous on the 
interval" end­
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(20') 

(21) 

t)} exists, we 

(22) 

--+ +oo. 

~- 10.2.8. Then 
Eq. (22) yields 

• 

3 

9. x" + 4x' + 3x = 1; x(O) = 0 = x'(O) 
10. x" + 3x' + 2x = t; x(O) = 0, x'(O) = 2 
11. x' = 2x + y, y' = 6x + 3y; x(O) = 1, y(O) = -2 
12. x' = x + 2y, y' = x + e-t; x(O) = y(O) = 0 
13. x' + 2y' + x = 0, x'- y' + y = 0; x(O) = 0, y(O) = 1 
14. x" + 2x + 4y = 0, y" + x + 2y = 0; x(O) = y~) = 0, 

x'(O) = y'(O) = -1 
15. xf' + x' + y' + 2x - y = 0, y" + x' + y' + 4x - 2y = 0; 

x(O) = y(O) =I, x'(O) = y'(O) = 0 
16. x' = x +z, y' = x + y, z' = -2x -z; x(O) = 1, y(O) = 0, 

z(O) = o 

Apply Theorem 2 to find the inverse Laplace transforms of the 
functions in Problems 17 through 24. 

1 
17. F(s) = -(-­

s s- 3) 

1 
19. F(s) = ( 2 s s + 4) 

1 
21. F(s) = 

2 2 s (s + 1) 
1 

23. F(s) = 
2 2 s (s - 1) 

3 
18. F(s) = -­

s(s + 5) 
2s + 1 

20. F(s) = -s(-s~2_+_9_) 
1 

22. F(s) = s(s2- 9) 

1 
24. F(s) = ----­

s(s + 1)(s + 2) 

25. Apply Theorem 1 to derive£ {sink t} from the formula for 
£{cos k t }. 

26. Apply Theorem 1 to derive £{coshkt} from the formula 
for £{"sinh k t }. 

27. (a) Apply Theorem 1 to show that 

£{tneat} = _n_£{tn-leat}. 
s-a 

(b) Deduce that £{tnea 1 } = n!j(s- a)n+l for n = 1, 2, 

3, .... 

Apply Theorem 1 as in Example 5 to derive the Laplace trans­
forms in Problems 28 through 30. 

s2- k2 
28. £ { t cos k t} = 2 2 2 

(s + k ) 
. 2ks 

29. £{tsmhkt} = (s2 -k2)2 

52+ k2 
30. £{t coshkt} = (s 2 _ k 2 ) 2 

31. Apply the results in Example 5 and Problem 28 to show 
that 

-1 { 1 } 1 . £ 
2 22 

=-
3

(swkt-ktcoskt) . 
(s + k ) 2k 

Apply the extension of Theorem 1 in Eq. (22) to derive the 
Laplace transforms given in Problems 32 through 37. 

32. £{u(t -a)}= s-1e-as fora> 0. 
33. If f(t) = 1 on the interval [a,b] (where 0 <a< b) and 

f(t) = 0 otherwise, then 

e-as _ e-bs 
£{f(t)} = ---

s 

10.2 Transformation of Initial Value Problems 577 

34. If f(t) = ( -1)[t] is the square-wave function whose graph 
is shown in Fig. 10.2.9, then 

1 s 
£{f(t)} = -tanh-. 

s 2 

(Suggestion: Use the geometric series.) 

f(t) 
1 - _, -= ...... 

2 3 4 5 6 t 
-1 ...,.._::, ...-:: .-J 

FIGURE 10.2.9. The graph of the square-wave 
function of Problem 34. 

35. If f (t) is the unit on-off function whose graph is shown in 
Fig. 10.2.10, then 

1 
£{f(t)} = s(1 + e-5 ) 

FIGURE 10.2.10. The graph of the on-off 
function of Problem 35. 

36. If g(t) is the triangular wave function whose graph is 
shown in Fig. 10.2.11, then 

1 s 
£{g(t)} = 2 tanh-. 

s 2 

g(t) 

FIGURE 10.2.11. The graph of the triangular 
wave function of Problem 36. 

37. If f (t) is the sawtooth function whose graph is shown in 
Fig. 10.2.12, then 

1 e-s 
£{f(t)} = 2- (1 -S) s s - e 

(Suggestion: Note that f' (t) = 1 where it is defined.) 

1 2 3 4 5 6 

FIGURE 10.2.12. The graph of the sawtooth 
function of Problem 37. 
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Solution First we observe that 

1 
and £{te1

}""' ---. 
(s- 1)2 

Hence the transformed equation is 

4 
(s 4 + 2s2 + 1)Y(s) = ---

2
. 

(s- 1) 

Thus our problem is to find the inverse transform of 

4 
Y(s)- --~ 

- (s- 1)2(s2 + 1)2 

A B Cs+D Es+F =---+--+ +---
(s- 1)2 s- 1 (s2 + 1)2 s2 + 1 · 

If we multiply by the common denominator (s- 1)2 (s2 + 1f, we get the equation 

A(s2 + 1)2 + B(s- 1)(s2 + 1f + Cs(s -1)2 

(19) 

+ D(s- 1)2 + Es(s- 1)2 (s 2 + 1) + F(s- 1)2 (s2 + 1) = 4. (20) 

Upon substituting s = 1 we find that A = 1. 
Equation (20) is an identity that holds for all values of s. To find the values of the 

remaining coefficients, we substitute in succession the values s = 0, s = -1, s = 2, s = -2, 
and s = 3 in Eq. (20). This yields the system 

-B + D 

-8B- 4C + 4D-
+ F= 

8£ + SF= 

3, 

0, 

25B + 2C + D + 10£ + SF = -21, 

-75B - 18C + 9D - 90£ + 45F = -21, 

200B + 12C + 4D + 120£ + 40F = -96 

(21) 

of five linear equations in B, C, D, E, and F. With the aid of a calculator programmed to 
solve linear systems, we find that B = --2, C = 2, D = 0, E = 2, and F = 1. 

We now substitute in Eq. (19) the coefficients we have found, and thus obtain 

y s ___ 1 ___ 2_ 2s 2s + 1 
( ) - (s- 1)2 s- 1 + (s2 + 1)2 + s2 + 1 · 

Recalling Eq. (16), the translation property, and the familiar transforms of cost and sin t, we 
see finally that the solution of the given initial value problem is 

y(t) = (t - 2)/ + (t + 1) sin t + 2 cost. I 

& P~(.)~!~lll-~---········ ---··T ·---- .... 
Apply the translation theorem to find the Laplace transforms 
of the functions in Problems 1 through 4. 

1. f(t) = r4e:n:t 2. f(t) = t3f2e-4t 

3. f(t) = e-21 sin3nt 4. f(t) = e-112 cos2 (t-in) 

7. F(s) = s2 + 4s + 4 

9. F(s) = 3s + 5 
s2- 6s + 25 

-····· --------s+ 2- · 
8. F(s) = -

2
--­

s + 4s + 5 
2s- 3 

10· F(s) = 9s2 - 12s + 20 

Use partial fractions to find the inverse Laplace transforms vf 
the functions in Problems 11 through 22. 

Apply the translation theorem to find the i~ Laplace trans­
forms of the functions in Problems 5 through 10. 

1 
11. F(s)= s2-4 

Ss- 6 
12. F(s)= ~3 s - s 

3 s- 1 
5. F(s) = 2s- 4 6. F(s) = (s + 1)3 

5- 2s 
l3. F(s) = s2 + 7s + 10 

Ss -4 
14. F(s) = s3 -s2 -2s 



(19) 

(20) 

ues of the 
2, s = -2, 

(21) 

·ammed to 

n 

d sint, we 

• 

z--- -­
: + 5 
-3 
2s + 20 

nsforms of 

-4 

-2.!' 

1 1 
15. F(s) = 3 2 s - 5s 16. F(s) = (s2 + s- 6)2 

s3 1 
17. F(s) = s4- 16 18. F(s) = (s _ 4)4 

1 s2 - 2s 
19. F(s) = s4 + 5s2 + 4 20. F(s) = s4- 8s2 + 16 

2s 3 - s2 
1 F( - s2 + 3 

2 . s) - (s2 + 2s + 2)2 22. F(s) = (4s2- 4s + 5)2 

Use the factorization 

to derive the inverse Laplace transforms listed in Problems 23 
through 26. 

£-1 { 
4 

s
3 

4
} = coshatcosat 

s + 4a 

£-1 { 4 s 4 } = __!__2 sinhatsinat 
s + 4a 2a 

25. £-1 { 
4 s

2 

4 } = _!_(coshat sin at+ sinh at cos at) 
s + 4a 2a 

26. £-1 { 
4 

1 
4

} = ~(coshatsinat-sinhatcosat) 
s + 4a 4a 

Use Laplace transforms to solve the initial value problems in 
Problems 27 through 38. 

27. x" + 6x' + 25x = 0; x(O) = 2,x'(O) = 3 

28. x"- 6x' + 8x = 2; x(O) = x'(O) = 0 

29. x"- 4x = 3t; x(O) = x'(O) = 0 

30. x" + 4x' + 8x = e-1
; x(O) = x'(O) = 0 

31. x(3) + x"- 6x' = 0; x(O) = 0, x'(O) = x"(O) = 1 

32. x(4)- x = 0; x(O) = 1, x'(O) = x"(O) = xC3l(O) = 0 

33. x(4) + x = 0; x(O) = x'(O) = x"(O) = 0, x(3)(0) = 1 

1 0.3 Application 
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34. x(4) + 13x" + 36x = 0; x(O) = x"(O) = 0, x'(O) = 2, 
x(3) (0) = -13 

35. xC4l + 8x" + 16x = 0; x(O) = x'(O) = x"(O) = 0, 
xC3l(O) = 1 

36. x(4) + 2x11 + x = e21 ; x(O) = x' (0) = x" (D) = x(3) (0) = 0 

37. x" + 4x' + 13x = te-1 ; x(O) = 0, x'(O) = 2 

38. x" + 6x' + 18x = cos2t; x(O) = 1, x'(O) = -1 

Resonance 
Problems 39 and 40 illustrate two types of resonance in a 
mass-spring-dashpot system with given external force F(t) 
and with the initial conditions x (0) = x' (0) = 0. 

39. Suppose that m = 1, k = 9, c = 0, and F(t) = 6cos3t. 
Use the inverse transform given in Eq. (16) to derive the 
solution x (t) = t sin 3t. Construct a figure that illustrates 
the resonance that occurs. 

40. Suppose that m = 1, k = 9.04, c = 0.4, and F(t) 
6e-115 cos 3t. Derive the solution 

x(t) = te-115 sin3t. 

Show that the maximum value of the amplitude function 
A(t) = te-115 is A(5) = 5/e. Thus (as indicated in 
Fig. 10.3.5) the oscillations of the mass increase in am­
plitude during the first 5 s before being damped out as 

t ~+co. 

2 
x = + te -tiS 

-2 

FIGURE 10.3.5. The graph of the damped 
oscillation in Problem 40. 

co Go to goo.gl/4ntUK9 to 
download this application's 
computing resources including 
Maple/MathematicaiMATLAB. 

Here we outline a Maple investigation of the behavior of the mass-spring-dashpot 

system 

mx" +ex'+ kx = F(t), x(O) = x'(O) = 0 (1) 

with parameter values 

m := 25; c : = 10; k := 226; 

in response to a variety of possible external forces: 

1. F(t) = 226 

This should give damped oscillations "leveling off" to a constant solution (why?). 

2. F(t) = 901 cos 3t 

I 
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So integration of F(a) from s to +oo gives 

[";; F(u) du = 100 (ioo e-at f(t) dt) du. 

Under the hypotheses of the theorem, the order of integration may be reversed (see 
Churchill's book once again); it follows that 

= e _ f(t) dt 1oo [ -at ]oo 
0 t a=s 

This verifies Eq. (12), and Eq. (13) follows upon first applying ,£- 1 and then multi­
plying by t. • 

~Problems ~- --- ·-·-· ------------------- --

Find the convolution f(t) * g(t) in Problems 1 through 6. 

1. f(t) = t, g(t) = 1 
3. f(t)=g(t)=sint 
5. f(t) = g(t) = eat 
6. f(t) = eat, g(t) = ebt 

2. f(t)=t,g(t)=eat 

4. f(t)=t 2,g(t)=cost 

Apply the convolution theorem to find the inverse Laplace 
transforms of the functions in Problems 7 through 14 . 

1 
7. F(s) = s(s- 3) 

1 
9. F(s) = (s2 + 9)2 

s2 
11. F(s) = (s2 + 4)2 

s 
13. F(s) = (s- 3)(s2 + 1) 

1 
8. F(s) = s(s2 + 4) 

1 
10. F(s) = s2(s2 + k2) 

1 
12. F(s) = - 2-=---­

s(s + 4s + 5) 
s 

14. F(s) = s4 + 5s2 + 4 

In Problems 15 through 22, apply either Theorem 2 or Theo­
rem 3 to find the Laplace transform of f(t). 

f(t)=tsin3t 16. f(t)=t 2 cos2t 
17. f(t) = te2 t cos 3t 18. f(t) = te-t sin2 t 

sin t 1 -cos 2t 
19. f(t) = - 20. f(t) = ---

t t 
e3t - 1 et - e-t 

21. f(t) = -- 22. j(t) = 
t 

Find the inverse transforms of the functions in Problems 23 

through 28. 

s-2 
23. F(s) = ln -­

s+2 
s2 + 1 

25. F(s) = ln (s + l)(s _ 3) 

s2 + 1 
24. F(s) = ln s 2 + 4 

3 
26. F(s) = tan- 1 -­

s+2 

~ ~ ~~--- ~--·- -~-- -- ----- -( ~ --T)~- -~-~- -~~~-- ----~---·---s---
27. F(s) = ln 1 + 2 28. F(s) = ( 2 ) 3 s s + 1 

In Problems 29 through 34, transform the given differential 
equation to find a nontrivial solution such that x (0) = 0. 

29. tx" + (t - 2)x' + x = 0 

30. tx 11 + (3t- 1)x' + 3x = 0 

31. tx"- (4t + 1)x' + 2(2t + 1)x = 0 

32. tx" + 2(t- 1)x'- 2x = 0 

33. tx" - 2x1 + tx = 0 

34. tx" + (4t- 2)x' + (13t- 4)x = 0 

35. Apply the convolution theorem to show that 

(Suggestion: Substitute u = ./i .) 

In Problems 36 through 38, apply the convolution theorem 
to derive the indicated solution x(t) of the given differential 
equation with initial conditions x (0) = x' (0) = 0. 

36. x'' + 4x = f(t); x(t) =~lot f(t- r) sin2r dr 

37. x" + 2x' + x = f(t); x(t) = t re-r f(t- r) dr lo · 
38. x" + 4x' + 13x = f(t); 

x(t)=~ rt f(t-r)e-2rsin3rdr 
3 lo 
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Term wise Inverse Transformation of Series Expand with the aid of the binomial series and then com­
pute the inverse transformation term by term to obtain In Chapter 2 of Churchill's Operational Mathematics, the fol­

lowing theorem is proved. Suppose that f (t) is continuous for 
t ~ 0, that f(t) is of exponential order as t --+ +oo, and that 

00 

'"""' an F(s) = L sn+k+l 
n=O Finally. note that lo(O) = 1 implies that C = 1. 

where 0 ~ k < 1 and the series converges absolutely for s > c. 
Then 

40. Expand the function F(s) = s-112e-l/s in powers of 5-I 

to show that 
oo antn+k 

f(t) = L f(n + k + 1) · 
n=O 

Apply this result in Problems 39 through 41. 

£-1 {-1-e-1/s} = _1_cos2Jt. 
v's J;rt 

39. In Example 5 it was shown that 41. Show that 

c c ( 1 )-
1

/
2 

£{Jo(t)} = ~ =- 1 + 2 v s2 + 1 s s 

a 

FIGURE 10.5.1. The graph of the 
unit step function at t = a. 

Mathematical models of mechanical or electrical systems often involve functions 
with discontinuities corresponding to external forces that are turned abruptly on or 
off. One such simple on--off function is the unit step function that we introduced in 
Section 1 0.1. Recall that the unit step function at t = a is defined by 

, lo if t <a, 
Ua(t) = u(t -a)= . > 

1 If t =a. 
(l) 

The notation Ua (t) indicates succinctly where the unit upward step in value takes 
place (Fig. 10.5.1), whereas u(t -a) connotes the sometimes useful idea of a "time 
delay" a before the step is made. 

In Example 8 of Section 10.1 we saw that if a ~ 0, then 

e-as 
X{u(t- a)}=-. (2) 

s 

Because X{u(t)} = 1/ s, Eq. (2) implies that multiplication of the transform of u(t) 
bye-as corresponds to the translation t --+ t- a in the original independent variable. 
Theorem 1 tells us that this fact, when properly interpreted, is a general property of 
the Laplace transformation. 

THEOREM 1 Translation on the t-Axis 

If X{f(t)} exists for s > c, then 

and 

for s > c +a. 

Note that 

X{u(t- a)f(t- a)}= e-as F(s) 

x-1{e-as F(s)} = u(t- a)f(t- a) 

u(t- a)f(t- a) = lo 
f(t- a) 

if t <a, 

if t ~a. 

(3a) 

(3b) 

(4) 


