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FIGURE 4.1.8. The line L spanned 
by the vector u. 
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FIGURE 4.1.9. The plane· P 
spanned by the vectors u and v. 

Now we want to show that the proper subspaces ofR3 are what we customarily 
call lines and planes through the origin. Let V be a subspace of R3 that is neither 
{0} nor R 3 itself. There are two cases to consider, depending on whether or not v 
contail!s two linearly independent vectors. 

CASE 1: Suppose that V does not contain two linearly independent vectors. If u 
is a fixed nonzero vector in V, then, by condition (ii) above, every scalar multiple 
en is also in V. Conversely, if v is any other vector in V, then u and v are linearly 
dependent, so it follows that v = en for some scalar c. Thus the subspace V is the 
set of all scalar multiples of the fixed nonzero vector u and is therefore what we call 
a line through the origin in R 3 . (See Fig. 4.1.8 .) 

CASE 2: Suppose that V contains two linearly independent vectors u and v. It 

then follows from conditions (i) and (ii) that V contains every linear combination 
au+ bv of u and v. (See Problem 38.) Conversely, let w be any other vector in 
V. If u, v, w were linearly independent, then, by Theorem 4, V would be all of R3 . 
Therefore, u, v, ware linearly dependent, so it follows that there exist scalars a and 
b such that w =au+ bv. (See Problem 40.) Thus the subspace Vis the set of all 
linear combinations au+ bv of the two linearly independent vectors u and v and is 
therefore what we call a plane through the origin in R3 . (See Fig. 4.1.9.) 

Subspaces of the coordinate plane R2 are defined similarly-they are the 
nonempty subsets ofR2 that are closed under addition and multiplication by scalars. 
In Problem 39 we ask you to show that every proper subspace of R2 is a line through 
the origin. 

••r.#!lili:Jifl!l.ll!lj,"',!~.]JI!t¥nt•TL""e t v be the set of all vectors (x, y ) in R2 such that y = X. Given u and v in V, we may 
write u = (u, u) and v = (v , v ) . Then u + v = (u + v, u + v) and cu = (cu , cu) are in V. It 
follows that V is a subspace of R 2 . I 

••r.¥"':<~· jll!l,"j.~j a~-r..w.- Let Vbe the set of all vectors (x , y ) in R 2 such that X + y -:: 1. Thus v is the straight line 
that passes through the unit points on the x~ andy-axes. Then u = (1 , 0) and v = (0, 1) are 
in V, but the vector u + v = ( 1, 1) is not. It follows that V is not a subspace of R 2 . I 

Example 6 illustrates the fact that lines that do not pass through the origin 
are not subs paces of R2 . Because every subspace must contain the zero vector (per 
Problem 37), only lines and planes that pass through the origin are subspaces of R3. 

p11 Problt:ms __ _ 
In Problems 1-4, find Ia- bl, 2a + b, and 3a- 4b. 

1. a= (2, 5, -4), b = (1 , - 2, -3) 

2. a= (- 1, 0, 2), b = (3 , 4, -5) 

3. a = 2i - 3j + 5k, b = 5i + 3j - 7k 

4. a = 2i- j, b = j - 3k 

In Problems 5-8, determine whether the given vectors u and v 
are linearly dependent or linearly independent. 

5. u = (0, 2), v = (0, 3) 

6. u = (0, 2), v = (3 , 0) 

7. u = (2 , 2), v = (2 , -2) 

8. u = (2, -2), v = (- 2, 2) 

In Problems 9- 14, express was a linear combination ofu and 
I V. 

9. u = (1 , -2), v = (-1 , 3), w = (1,0) 
10. u = (3,4) , v = (2, 3), w = (0, -1) 
11. u = (5, 7) , v = (2, 3), w = (1 , 1) 
12. u = (4, 1), v = (-2, -1), w = (2, -2) 
13. u = (7, 5), v = (3 , 4) , w = (5, -2) 
14. u = (5, -2) , v = (-6, 4) , w = (5, 6) 

In Problems 15-18, apply Theorem 4 (that is, calculate a de· 
terminant) to determine whether the given vectors u, v, and w 
are linearly dependent or independent. 

15. u = (3, -1 , 2), v = (5, 4, -6), w = (8, 3, -4) 
16. u = (5, -2 , 4) , v = (2, -3, 5), w = (4, 5, -7) 
17. u = ( 1, -1 , 2) , v = (3 , 0, 1), w = (1 , -2, 2) 
18. u = ( 1, 1, 0) , v = (4 , 3, 1), w = (3, -2, -4) 

In Problems 19-24, use the method of Example 3 to determine 
whether the given vectors u, v, and ware linearly independent 
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dependent. If they are linearly dependent, find scalars a, b, 
c not all zero such that au + bv + cw = 0. 

In Problems 33-36, show that the given set V is not a subspace 
ofR3 . 

u = (2, 0, 1), v = (-3, 1, -1), w = (0, -2 , -1) 
u = (5, 5, 4), v = (2, 3, 1), w = (4, 1, 5) 

33. Vis the_ set of all (x , y, z) such that y = 1. 

34. Vis the set of all (x , y, z) such that x + y + z = 3. 
u = (1, 1, -2), v = (-2, -1 , 6), w = (3, 7, 2)' 
u = (1 , 1, 0) , v = (5 , 1, 3), w = (0, 1, 2) 

35. Vis the set of all (x, y, z) such that z ~ 0. 

36. Vis the set of all (x, y, z) such that xyz = 1. u = (2, 0, 3), v = (5, 4, -2), w = (2, -1, 1) 

u = (1,4,5), v = (4,2,5), w = (-3,3,-1) 37. Show that every subspace V of R 3 contains the zero vector 
0. 

ln Problems 25-28, express the vector t as a linear combina­
tion of the vectors u, v, and w. 

38. Suppose that Vis a subspace ofR3 . Show that Vis closed 
under the operation of taking linear combinations of pairs 
of vectors. That is, show that if u and v are in V and a and 
b are scalars, then au + bv is in V. 

t = (2, -7, 9), u = (1, -2, 2), v = (3, 0, 1), w = (1, -1, 2) 
26. t = (5, 30, -21), u = (5, 2, -2), v = (1 , 5, -3), 

w = (5,-3, 4) 39. Suppose that V is a proper subspace of R2 and that u is a 
nonzero vector in V. Show that V is the set of all scalar 
multiples of u and therefore that V is a line through the 
origin. 

27. t = (0, 0, 19), u = (1, 4, 3), v = (-1 , -2, 2), w = (4, 4, 1) 
t = (7, 7, 7), u = (2 , 5, 3), v = (4, 1,-1), w = (1 , 1,5) 

Problems 29-32, show that the given set V is closed under 
::nn.~lfum and under multiplication by scalars and is therefore 

40. Suppose that u, v, and ware vectors in R3 such that u and 
v are linearly independent but u, v, and ware linearly de­
pendent. Show that there exist scalars a and b such that 
w = au+bv. 

subspace ofR3. 

V is the set of all (x, y, z) such that x = 0. 
Vis the set of all (x , y, z) such that x + y + z = 0. 
Vis the set of all (.i , y 1 z) such that 2x = 3y. 

41. Let V1 and V2 be subspaces of R 3 . Their intersectio~ 
V = V1 n V2 is the set of all vectors that lie both in V1 

and in V2 . Show that V is a subspace of R 3 . Vis the set of all (x , y , z) such that z = 2x + 3y. 

The VectorS 

X 

FIGURE 4.2.1. Two points 
P(x, , xz) and Q(x3, x4) in R2 . 

e Rn and Sub aces 

In Section 4.1 we defined 3-dimensional space R3 to be the set of all triples (x, y, z) 
of real numbers. This definition provides a mathematical model of the physical 
space in which we live, because geometric intuition and experience require that the 
location of every p9int be specified uniquely by three coordinates. 

In science fiction, the fourth dimension often plays a rather exotic role. But 
there are common and ordinary situations where it is convenient to use four (or even 
more) coordinates rather than just two or three. For example, suppose we want to 
describe the motion of two points P and Q that are moving in the plane R2 under 
the action of some given physical law. (See Fig. 4.2.1.) In order to tell where P and 
Q are at a given instant, we need to give two coordinates for P and two coordinates 
for Q. So let us write P(x1 , x2 ) and Q(x3 , x4) to indicate these four coordinates. 
Then the two points P and Q detennine a quadruple or 4-tuple (x1, x2, x 3 , x4) of 
real numbers, and any such 4-tuple determines a possible pair of locations of P and 
Q. In this way the set of all pairs of points P and Q in the plane corresponds to 
the set of all 4-tuples of real numbers. By analogy with our definition of R3 , we 
may define 4-dimensional space R4 to be the set of all such 4-tuples (x1, x2, x 3 , x4). 
Then we can specify a pair of points P and Q in R2 by specifying a single point 
(x1, x2, x 3 , x4) in R4 , and this viewpoint may simplify our analysis of the motions 
of the original points P and Q. For instance, it may tum out that their coordinates 
satisfy some single equation such as 

3x, - 4x2 + 2x3 - Sx4 = 0 

that is better understood in terms of a single point in R4 than in terms of the separate 
points P and Q in R2 . Finally, note that in this example the four¢. dimension is quite 
tangible-it refers simply to the second coordinate x4 of the point Q. 
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The reduced echelon form of the coefficient matrix of this system is 

0 -3 
1 . -4 
0 0 

-2] 3 . 
0 

Hence Xt and x2 are the leading variables and x3 and x4 are free variables. Back substitution 
yields the general solution 

X3 = S, X4 = t, X2 = 4s- 3t, Xt = 3S + 2t 

in terms of arbitrary parameters s and t. Thus a typical solution vector of the system in (5) 
has the form 

~ x1 ] ~3s + 2t ] ~3] ~ 2] 

X ~ l ~: ~ l ''; 3t ~ ' d +I l -~ 
It follows that the solution space of the system in (5) can be described as the set of all linear 
combinations of the form 

x = su +tv, (6) 

where u = (3, 4 , 1, 0) and v = (2, -3, 0, 1) . Thus we have found two particular solution 
vec;tors u and v of our system that completely determine its solution space [by the formula in 

~~ - . 
lfJ Problems 
In Problems 1-14, a subset W of some n-space Rn is defined 
by means of a given condition imposed on the typical vector 
(x 1, x2, ... , Xn)- Apply Theorem 1 to determine whether or 
not W is a subspace ofRn . 

1. W is the set of all vectors in R3 such that x 3 = 0. 
2. w is the set of all vectors in R3 such that Xt = 5x2. 
3. W is the set of all vectors in R3 such that x 2 = 1. 
4. W is the set of all vectors in R 3 such that; 1 + x2 + x3 = 1. , 
5. W is the set of all vectors in R4 sqch that Xt + 2x2 + 

3x3 + 4x4 = 0. 
6. W is the set of all vectors in R4 such that x1 = 3x3 and 

x2 = 4x4. 
7. W is the set of all vectors in R2 such that lxtl = lx21· 
8. W is the set of all vectors in R 2 such that (xt) 2 + (x2) 2 = 

0. 
9. W is the set of all vectors in R2 such that (xt) 2 + (x2)2 = 

1. 

W is the set of all vectors in R 2 such that lx tl + lx2l = 1. 
W is the set of all vectors in R4 such that x1 + x2 = 
X3 + X4. 
w is the set of all vectors in R 4 such that XtX2 = X3X4 . 
W is the set of all vectors in R 4 such that x1x2x3x4 = 0. 
W is the set of all those vectors in R 4 whose components 
are all nonzero. 

In Problems 15-18, apply the method of Example 5 to find two 
solution vectors u and v such that the solution space is the set 
of all linear combinations of the form su + tv. 

15. Xt - 4X2 + X3 - 4X4 = 0 
x1 + 2x2 + X3 + 8x4 = 0 

' Xt + X2 + X3 + 6X4 = 0 

16. Xt - 4x2 - 3x3 - 7x4 = 0 
2Xt - X2 + X3 + 7X4 = 0 

Xt + 2x 2 + 3x3 + 11x4 = 0 
17. x1 + 3x2 + 8x3 - X4 = 0 

x1 - 3x2 - lOx3 + Sxs = 0 
x1 + 4x2 + llx3 - 2x4 = 0 

18. x1 + 3x2 + 2x3 + Sx4 - xs = 0 
2xt + 7x2 + 4x3 + llx4 + 2xs = 0 
2xt + 6x2 + Sx3 + 12x4 - 7xs = 0 

In Problems 19-22, reduce the given system to echelon form to 
find a single solution vector u such that the solution space is 
the set of all scalar multiples ofu. 

19. x1 - 3x2 - Sx3 - 6x4 = 0 
2xt + x2 + 4x3 - 4x4 = 0 

X 1 + 3X2 + 7 X3 + X4 = 0 

20. x1 + Sx2 + X3 - 8x4 = 0 
2x 1 + Sx2 - Sx4 = 0 
2xt + 7x2 + X3 - 9x4 = 0 

21. Xt + 7x2 + 2x3 - 3x4 = 0 
2Xt + 7X2 + X3- 4X4 = 0 
3x 1 + Sx2 - X3 - Sx4 = 0 

22. Xt + 3x2 + 3x3 + 3x4 ::= 0 
2xt + 7 x2 + Sx3 - X4 = 0 
2xt + 7x2 + 4x3 - 4x4 = 0 

23. Show that every subspace W of a vector space V contains 
the zero vector 0 . 

24. Apply the properties of a vector space V to show each of 
the following. 

(a) Ou = 0 for every u in V. 
(b) cO = 0 for every scalar c. 
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(c) ( - l)u = -u for every u in V. 

Do not assume that the vectors in V are n-tuples of real 
numbers. 

25. Show that the nonempty subset W of a vector space V is 
a subspace of V if and only if for every pair of vectors u 
and v in W and every pair of scalars a and b, au+ bv is 
also in W. 

26. Prove: If u is a (fixed) vector in the vector space V, then 
the set W of all scalar multiples cu of u is a subspace of 
v. 

27. Let u and v be (fixed) vectors in the vector space V. Show 
that the set W of all linear combinations au+ bv of u and 
v is a subspace of V. 

28. Suppose that A is ann x n matrix and that k is a (constant) 
scalar. Show that the set of all vectors x such that Ax = kx 
is a subspace of Rn . 

Linear Combinations and 

29. Let A be ann x n matrix, b be a nonzero vector, and x0 
be a solution vector of the system Ax = b . Show that x is 
a· solution of the nonhomogeneous system Ax == b if and 
only if y = x- xo is a solution of the homogeneous system 
Ay =0. 

30. Let U and V be subspaces of the vector space W. Their 
intersection U n V is the set of all vectors that are both 
in U and in V. Show that U n V is a subspace of W. If 
U and V are two planes through the origin in.R 3 , what is 
un v? , 

31. Let U and V be subspaces of the vector space W. Their 
· sum U + V is the set of all vectors w of tlie form 

w = u + v, 

where u is in U and v is in V. Show that U + V is a sub­
space of W. If U and V are lines through the origin in R3 , 
what is U + V? 

endence of Vectors 
In Example 5 of Section 4.2 we solved the homogeneous linear system 

x 1 + 3xz - 15x3 + 7x4 = 0 

x1 + 4xz- 19x3 + 10x4 = 0 

2xl + 5xz- 26x3 + 11x4 = 0. 

(1 ) 

We found that its solution space W consists of all those vectors x in R4 that have 
the form 

x = s (3, 4, 1, 0) + t(2, -3, 0, 1). (2) 

We therefore can visualize W as the plane in R4 determined by the ve~tors v1 = 
(3 , 4, 1, 0) and v2 = (2 , -3 , 0, 1) . The fact that every solution vector is a combi­
nation [as in (2)] of the particular solution vectors v1 and v2 gives us a tangible 
understanding of the solution space W of the system in (1). 

More generally, we know from Theorem 2 in Section 4.2 that the solution set 
V of any m x n homogeneous linear system Ax = 0 is a subspace of Rn . In order 
to understand such a vector space V better, we would like to find a minimal set of 
vectors v1, Vz , ... , vk in V such that every vector in Vis a sum of scalar multiples 
of these particular vectors. 

The vector w is called a linear combination of the vectors v 1, v 2 , . . . , vk pro­
vided that there exist scalars c 1 , c2 , ... , ck such that 

(3) 

Given a vector w in Rn, the problem of determining whether or not w is a linear 
combination of the vectors v 1, v2 , ... , vk amounts to solving a linear system to see 
whether we can find scalars c1 , c2 , ... , ck so that (3) holds. 

l#:t·i,!.]tqll To determine whether the vector w = (2 , - 6, 3) in R3 is a linear combination of the vectors 
v1 = (1 , - 2, -1) and Vz = (3 , - 5, 4) , we write the equation c1 v1 + czvz =win matrix form: 
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THEOREM 3 Independence of Fewer Than n Vectors in Rn 

Consider k vectors vI, v2, ... , vk in Rn, with k < n. Let 

be the n x k matrix having them as its column vectors. Then the vectors 
vI , V2 , ... , vk are linearly independent if and only if some k x k sub matrix of 
A has nonzero determinant. 

Rather than including a complete proof, we will simply illustrate the "if 
part of Theorem 3 in the case n = 5, k = 3. Let VI= (ai,a2,a3,a4,as), v2 = 

(bi, b2 , b3, b4, bs), and V3 = (ci, c2, c3, c4 , cs) be three vectors in Rs such that th 
5 x 3 matrix 

[

a I bi ci l a2 b2 c2 
A= a3 b3 C3 

a4 b4 C4 

as bs cs 

has a 3 x 3 submatrix with nonzero determinant. Suppose, for instance, that 

a I bi ci 
a3 b3 c3 "I 0. 
as bs cs 

Then Theorem 2 implies that the three vectors ui = (ai,a3,as), u2 = (bi,b3,b5) 

and u 3 = (ci, c3, cs) in R 3 are linearly independent. Now suppose that ci VI+ c2v2 1 
c3v3 = 0. Then by deleting the second and fourth components of each vector in thi 
equation, we find that ci ui + c2u2 + c3u 3 = 0. But the fact that ui, u2, u3 afl 
linearly independent implies that ci = c2 = c3 = 0, and it now follows that VI , v2 

v3 are linearly independent. 

Problems 
In Problems 1-8, determine whether the given vectors 
VI , v2, ... , vk are linearly independent or linearly dependent. 
Do this essentially by inspection-that is, without solving a 
linear system of equations. 

1. VI = (4, - 2, 6, - 4), V2 = (6, - 3, 9, - 6) 
2. VI = (3, 9, -3, 6), V2 = (2, 6, -2, 4) 
3. VI = (3, 4), V2 = (6, -1), V3 = (7, 5) 
4. VI = (4, - 2, 2), V2 = (5, 4, -3), V3 = (4, 6, 5), 

V4 = (-7,9,3) 
5. VI = (1, 0, 0), V2 = (0, -2, 0), V3 = (0, 0, 3) 
6. VI = (1, 0, 0), V2 = (1, 1, 0), V3 = (1, 1, 1) 
7. VI = (2, 1, 0, 0), V2 = (3, 0, 1, 0), V3 = (4, 0, 0, 1) 
8. VI = (1, 0, 3, 0), V2 = (0, 2, 0, 4), V3 = (1, 2, 3, 4) 

In Problems 9- 16, express the indicated vector was a linear 
combination of the given vectors VI , v2, ... , vk if this is possi­
ble. 1f not, show that it is impossible. 

9. W = (1 , 0, - 7); VI = (5,3,4), V2 = (3,2,5) 
10. W = (3, - 1, - 2); VI = ( - 3, 1, - 2), V2 = (6, - 2, 3) 

11. W = (1, 0, 0, -1); VI = (7, -6, 4, 5), V2 = (3, -3, 2, 3) 
12. W = (4,-4,3, 3); VI = (7,3,-1 , 9), 

V2 = (-2, -2, 1, -3) 

13. W = (5, 2, - 2); VI = (1, 5, -3), v2 = (5, -3, 4) 
14. W = (2, - 3, 2, - 3); VI = (1 , 0, 0, 3), V2 = (0, 1, - 2, 0) 

V3 = (0, -1, 1, 1) 

15. W = (4,5,6); VI= (2,-1, 4), V2 = (3,0, 1), 
V3 = (1,2,-1) 

16. W = (7, 7, 9, 11); VI = (2, 0, 3, 1), V2 = (4, 1, 3, 2), 
V3 = (1, 3, - 1, 3) 

In Problems 17- 22, three vectors VI , v2, and V3 are given. 
If they are linearly independent, show this; otherwise find G 

nontrivial linear combination of them that is equal to the zerc 
vector. 

17. VI = (1 , 0, 1), V2 = (2, - 3, 4), V3 = (3, 5, 2) 
18. VI = (2, 0,-3), V2 = (4, - 5,-6), V3 = (- 2, 1,3) 
19. VI = (2, 0,3, 0), V2 = (5, 4, - 2, 1), V3 = (2, - 1, 1, - 1) 
20. VI = (1, 1, - 1, 1), v2 = (2, 1, 1, 1), V3 = (3, 1, 4, 1) 
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21. VI == (3 , 0, 1, 2), Vz = (1 , .,-1 , 0, 1), V3 = (1 , 2, 1', 0) 

22. VI == (3, 9, 0, 5) , Vz = (3, 0, 9, -7), V3 = (4 , 7, 5, 0) 

In Problems 23-26, the vectors {vi} are known to be linearly 
independent. Apply the definition of linear independence to 
show that the vectors {ui} are also linearly independent. 

23. UI == VI + Vz, Uz = VI - Vz 
24. UI == VI + vz, uz = 2vi + 3vz 

UI =VI, Uz =VI+ 2Vz, U3 =VI+ 2Vz + 3V3 
26. U! == Vz + V3, Uz =VI + V3, U3 ==VI + Vz 
21. Prove: If the (finite) set S of vectors contains the zero 

vector, then S is linearly dependent. 
28. Prove: If the set S of vectors is linearly dependent and 

the (finite) set T contains S , then Tis also linearly depen­
dent. You may assume that S ={vi . Vz, . . . , vk} and that 
T =={vi . Vz , . .. , Vm} with m > k . 

29. Show that if the (finite) set S of vectors is linearly inde­
pendent, then any subset T of S is also linearly indepen­
dent. 

30. Suppose that the subspace U of the vector space V con­
tains the vectors VI , v2 , ... , vk . Show that U contains the 
subspace spanned by these vectors. 
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31. LetS and T be sets of vectors in a vector space such that S 
is a subset of span(T). Show that span(S) is also a subset 
of span(T). 

32. Let VI, Vz , . .. , vk be linearly independent vectors in the 
set S of vectors. Prove: If no set of more thank vectors in 
S is linearly independent, then every vector in S is a linear 
combination of VI , Vz , . .. , vk . 

In Problems 33-35, let VI, vz, ... , vk be vectors in Rn and let 

be the n x k matrix with these vectors as its column vectors. 

33. Prove: If some k x k submatrix of A is the k x k identity 
matrix, then VI , v2 , . . . , vk are linearly independent. 

34. Suppose that k = n, that the vectors VI , v2 , . . . , vk are lin­
early independent, and that B is a nonsingular n x n ma­
trix. Prove that the column vectors of the matrix AB are 
linearly independent. 

35. Suppose that k < n, that the vectors VI , Vz , ... , vk are lin­
early independent, and that B is a nonsingular k x k ma­
trix. Use Theorem 3 to show that the column vectors of 
AB are linearly independent. 

An especially useful way of describing the solution space of a homogeneous linear 
system is to list explicitly a set S of solution vectors such that every solution vector 
is a unique linear combination of these particular ones. The following definition 
specifies the properties of such a set S of "basic" solution vectors, and the concept 
is equally important for vector spaces other than solution spaces. 

DEFINITION Basis 

A finite set S of vectors in a vector space V is called a basis for V provided that 
(a) the vectors inS are linearly independent, and 

(b) the vectors in S span V. 

In short, a basis for the vector space V is a linearly independent spanning set 
of vectors in V. Thus, if S = {vI , v2 , .. . , v n} is a basis for V, then any vector w in 
V can be expressed as a linear combination 

(1) 

of the vectors in S, and we saw in Section 4.3 that the linear independence of S 
implies that the coefficients c i , c2 , .. . , Cn in (1) are unique. That is, w cannot be 
expressed differently as a linear combination of the basis vectors VI, Vz, . .. , Vn. 

The standard basis for Rn consists of the unit vectors 

e1 = (1, 0, 0, . .. , 0), ez = (0, 1, 0, . . . , 0) , ... , en = (0, 0, 0, ... , 1). 

If x = (xi , xz , . . . , Xn) is a vector in Rn , then 
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With t = 1 and r = s = 0, 

we obtain V3 = ( -3, 0, -4, 0, 1). 

Thus the solution space of the system in (14) is a 3-dimensional subspace of Rs with basis 
{VL,V2,VJ}. · • 

----·------
Problems 1-8, determine whether or net the given vectors 

in Rn form a basis for Rn . 

1. VL = (4, 7), V2 = (5, 6) 
2. VL = (3, - 1,2), V2 = (6, - 2,4), V3 = (5,3, - 1) 
3. VL = (1, 7, -3), V2 = (2, 1, 4), V3 = (6, 5, 1), 

V4 = (0, 7, 13) 
4. VL = (3,-7, 5,2), V2 = (1,-1,3,4), V3 = (7, 11,3, 13) 
5. VL = (0, 7, -3), V2 = (0, 5, 4), V3 = (0, 5, 10) 
6. VL = (0, 0, 1), V2 = (0, 1, 2), V3 = (1, 2, 3) 
7. VL = (0, 0, 1), V2 = (7, 4, 11), V3 = (5, 3, 13) 
8. VL = (2, 0, 0, 0), Vz = (0, 3, 0, 0), VJ = (0, 0, 7, 6), 

V4 = (0, 0 , 4, 5) 

Problems 9-11, find a basis for the indicated subspace of 

9. The plane with equation x- 2y + 5z = 0. 
The plane with equation y = z. 
The line of intersection of the planes described in Prob­
lems 9 and 10. 

Problems 12-14, find a basis for the indicated subspace of 

The set of all vectors of the form (a , b, c , d) for which, 
a = b+c + d. 
The set of all vectors of the form (a,b,c , d) such that 
a = 3c and b = 4d. 
The set of all vectors of the form (a , b,c,d) for which 
a + 2b = c + 3d = 0. 

Problems 15- 26, find a basis for the solution space of the 
homogeneous linear system. 

X L - 2x2 + 3x3 = 0 
2xL- 3x2 - x3 = 0 

XL + 3x2 + 4x3 = 0 
3xL + 8x2 + 7x3 = 0 

XL - 3x2 + 2x3 - 4x4 = 0 
2xL - 5x2 + 7x3 - 3x4 = 0 

XL + 3x2 + 4x3 + 5x4 = 0 
2xL + 6x2 + 9x3 + 5x4 = 0 

XL - 3x2 - 9x3 - 5x4 = 0 
2xL + x2 - 4x3 + 11x4 = 0 

XL + 3x2 + 3x3 + 13x4 = 0 

XL - 3x2 - 10x3 + 5x4 = 0 
XL + 4x2 + 11x3 - 2x4 = 0 
XL + 3x2 + 8x3 - X4 = 0 

----·----------------------
21. XL - .4x2 - 3x3 - 7x4 = 0 

2xL - x2 + x3 + 7x4 = 0 
XL + 2x2 + 3x3 + llx4 = 0 

22. XL - 2x2 - 3x3 - 16x4 = 0 
2xL - 4x2 + X3 + 17x4 = 0 

XL - 2x2 + 3x3 + 26x4 = 0 

23. XL + 5x2 + Bx3 + 14x4 = 0 
2x1 + 5x2 + 11x3 + 12x4 = 0 
2xL + 7x2 + 17x3 + 19x4 = 0 

24. XL + 3x2 - 4x3 - 8x4 + 6xs = 0 
x1 + 2x3 + X4 + 3xs = 0 

2xL + 7x2 - l0x3 - 19x4 + 13xs = 0 

25. XL + 2x2 + 7x3 - 9x4 + 31xs = 0 
2xL + 4x2 + 7x3 - llx4 + 34xs = 0 
3xL + 6x2 + 5x3 - llx4 + 29xs = 0 

26. 3xL + x2- 3x3 + 11x4 + 10xs = 0 
5xl + 8x2 + 2x3 - 2x4 + 7xs = 0 
2x1 + 5x2 X4 + 14xs = 0 

Problems 27 through 36 further explore independent sets, 
spanning sets, and bases. 

27. Suppose that Sis a set of n linearly independent vectors in 
the n-dimensional vector space V. Prove that S is a basis 
for V. 

28. Suppose that S is a set of n vectors that span the n­
dimensional vector space V. Prove that S is a basis for 
v. 

29. Let {vL, v2, . .. , vk} be a basis for the proper subspace W 
of the vector space V, and suppose that the vector v of 
Vis not in W. Show that the vectors vi·, v2, .. . , vk , v are 
linearly independent. 

30. Use the result of Problem 29 to prove that every linearly 
independent set of vectors in a finite-dimensional vector 
space V is contained in a basis for V. 

31. Suppose that the vectors VL, v2, .. . , vk> vk+l span the 
vector space V and that vk+L is a linear combination of 
VL , v2, ... , vk. Show that the vectors VL, v2, ... , vk span 
v. 

32. Use the result of Problem 31 to prove that every spanning 
set for a finite-dimensional vector space V contains a basis 
for V. 

33. Let S be a linearly independent set of vectors in the finite­
dimensional vector space V. Then S is called a maximal 
linearly independent set provided that if any other vector 
is adjoined to S , then the resulting set is linearly depen­
dent. Prove that every maximal linear.ly independent set 
in V is a basis for V. 
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34. Let S be a firiite set of vectors that span the vector space 
V. Then S is called a minimal spanning set provided that 
no proper subset of S spans V. Prove that every minimal 
spanning set in V is a basis for V. 

35. Let S be a finite set of vectors that span the vector space 
V. Then S is called a uniquely spanning set provided that 

Row and Column ces 

each vector in V can be expressed in one and only one way 
as a linear combination of the vectors in S. Prove that ev. 
ery uniquely spanning set in V is a basis for V. 

36. Apply the definition of linear independence to show di. 
rectly that the column vectors of the matrix in (12) are 
linearly independent. 

In numerous examples we have observed the phenomenon of "disappearing equa 
tions" that sometimes occurs when we solve a linear system using the method 0 

Gaussian elimination. The appearance in this process of a trivial equation 0 == ( 
means that one of the original equations was redundant. For instance, in the systen 

x- 2y + 2z = 0 
x + 4y + 3z = o 

2x + 2y + Sz = 0, 

the third equation provides no additional information about a solution (x, y, z) be 
cause it is merely the sum of the first two equations. 

Given a homogeneous linear system, it is natural to ask how many of the eqm 
tions are "irredundant," and which ones they are. We will see that an answer to th 
question leads to a natural and simple relation between the number of irredundat 
equations, the number of unknowns, and the number of linearly independent soh 
tions. 

Row Space and Row Rank 
The individual equations of the homogeneous linear system Ax = 0 correspond 
the "row matrices" 

[au a12 a1n] 

[ a21 a22 a2n ] 

of the m x n matrix A = [ aij ]. The row vectors of A are the m vectors 

r1 = (au,a12 , . .. , a1n) 

r 2 = (a2l ,a22····, a 2n) 

in Rn. Recalling from Section 3.4 the convection that n-tuples denote colun 
vector elements of Rn, we see that the row vectors of A are the transposes of its r 
matrices; that is, 

[
ail ] a ·2 

r i = ; = [ ail ai2 

aw 


