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Differentiation yields 
y'(x) = -c1e-x +cze-x -czxe-x , 

so the initial conditions yield the equations 

y(O) = CJ = 5, 

y'(O) = -c1 + Cz = -3, 

which imply that c 1 = 5 and c2 = 2. Thus the desired particular solution of the initial 
problem is 

y(x) =se-x + 2xe-x. 

X 

FIGURE 5.1.10. Solutions 
y(x) = CJe-x + 2xe-x of 

This particular solution, together with several others of the form y(x) = c1 e-x + 
illustrated in Fig. 5.1.10. 

y" + 2y1 + y = 0 with different 
values of c 1 . 

The characteristic equation in (18) may have either real or complex roots. 
case of complex roots will be discussed in Section 5.3 . 

Problems 
In Problems 1 through 16, a homogeneous second-order lin­
ear differential equation, two functions Y1 and yz, and a pair 
of initial conditions are given. First verify that y 1 and yz are 
solutions of the differential equation. Then find a particular 
solution of t}Je form y = c 1 y 1 + czyz that satisfies the given 
initial conditions. Primes denote derivatives with respect to x. 

1. y"- y = 0; Yl = ex, Y2 = e-x; y(O) = 0, y' (0) = 5 

2. y"-9y = 0; Y1 = e3x, Y2 = e-3x; y(O) = - 1, y'(O) = 15 

3. y" +4y = 0; Y1 = cos2x, yz = sin2x; y(O) = 3, y'(O) = 8 

4. y" + 25y = 0; Y1 = cosSx, yz = sinSx; y(O) = 10, 
y'(O) = -10 

5. y"-3y' +2y = 0; Y1 =ex , Yz = e2x; y(O) = 1, y'(O) = 0 

6. y" + y'- 6y = 0; Y 1 = e2x, yz = e-3x; y(O) = 7, 
y'(O) = - 1 

7. y" + y' = 0; Y I = 1, Y2 =e-x; y(O) = -2, y'(O) = 8 

8. y" - 3y' = ·0; Y1 = 1, Y2 = e3x; y(O) = 4, y' (O) = -2 

9. y" + 2y' + y = 0; Y1 =e-x, yz = xe-x; y(O) = 2, 
y'(O) = -1 

10. y" - lOy' + 25y = 0; Y1 = e5x, yz = xe5x; y(O) = 3, 
y'(O) = 13 

11. y" -2y' +2y = 0; Y I = ex cosx , Yz =ex sinx; y(O) = 0, 
y'(O) = 5 

12. y" + 6y' + 13y = 0; Y1 = e-3x cos 2x , yz = e-3x sin 2x; 
y(O) = 2, y'(O) = 0 

13. x 2 y"- 2xy' + 2y = 0; Y 1 = x, yz = x 2 ; y( 1) = 3, 
y'(1) = 1 

14. x 2 y" + 2xy1
- 6y = 0; Y1 = x 2 , yz = x-3 ; y(2) = 10, 

y'(2) = 15 

15. x 2 y" -xy' + y = 0; y 1 = x, yz = x ln x; y(1) = 7, 
y'(1)=2 

6. x 2 y" + xy' + y = 0; Yl = cos(lnx), yz = sin(lnx); 
y(1) = 2, y'(1) = 3 

'he following three problems illustrate the fact that the super­
osition principle does not generally hold for nonlinear equa­
ons . 

17. Show that y = 1/ x i a solution of y' + y2 = 0, but 
if c f 0 and c f 1, then y = cjx is not a solution. 

18. Show that y = x 3 is a solution of y y" = 6x4 , but that 
c2 f I, then y = cx 3 is not a solution. 

19. Show that Yl = 1 and yz = .jX are solutions of yy" 
(y') 2 = 0, but that their sum y = Yl + yz is not a 

Determine whether the pairs of functions in Problems 
through 26 are linearly independent or linearly dependent 
the real line. 

20. f(x) = rr, g(x) = cos2 x + sin2 x 

21. f(x) = x3, g(x) = x 2 1xl 
22. f(x) = I+ x, g(x) = l + lxl 
23. f(x) = xex, g(x) = lxlex 

24. f(x) = sin2 x, g(x) = l - cos 2x 
25. f(x) =ex sinx, g(x) =ex cosx 

26. f(x) = 2cosx + 3sinx, g(x) = 3cosx- 2sinx 
27. Let y P be a particular olution of the nonhomogeneous 

equation y" + py' + qy = f(x) and Jet Yc be a solu­
tion of its associated homogeneous equation. Show that 
y = Yc + y p is a solution of the given nonhomogeneous 
equation. 

28. With Yp = 1 and Yc = c 1 cos x + cz sin x in the notation 
of Problem 27, find a sol tion of y" + y = 1 satisfying the 
initial conditions y(O) = - 1 = y'(O) . 

Problems 29 through 32 explore the propeties of the Wron­
skian. 

29. Show that y 1 = x2 and y2 = x 3 are two different solu­
tions of x 2 y"- 4xy' + 6y = 0, both satisfying the initial 
conditions y (0) = 0 = y' (0) . Explain why these facts do 
not contradict Theorem 2 (with respect to the guaranteed 
uniqueness) . 

30. (a) Show that Yl = x 3 and yz = lx 3
1 are linearly inde­

pendent solutions on the real line of the equation x 2 y" -
3xy' + 3y = 0. (b) Verify that W(y 1 , yz) is identically 
zero. Why do these facts not contradict Theorem 3? 
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31. Show that Yl = sin x 2 and Y2 = cos x2 are linearly in­
dependent functions, but that their Wronskian vanishes at 
x = 0. Why does thi s imply that there is no differential 
equation of the form y 11 + p(x)y' + q(x)y = 0, with both 
p and q continuous everywhere, having both Yl and Y2 as 
solutions? 

32. Let Yl and Y2 be two solutions of A(x)y11 + B(x)y' + 
C(x)y = 0 on an open interval I where A, B , and C 
are continuous and A(x) is never zero. (a) Let W = 
W(y J, Y2). Show that 

dW II II 
A(x)~ = (yJ)(Ay2)- (y2)(Ay 1 ). 

Then substitute forAy~ and Ay{ from the original differ­
ential equation to show that 

dW 
A(x)~ = - B(x)W(x). 

(b) Solve this first-order equation to deduce Abel's for­
mula 

W(x) = K exp ( - j B(x) dx), 
A(x) 

where K is a constant. (c) Why does Abel's formula 
imply that the Wronskian W(y!, Y2) is either zero every­
where or nonzero everywhere (as stated in Theorem 3)? 

Apply Theorems 5 and 6 to find general solutions of the dif­
ferential equations given in Problems 33 through 42. Primes 
denote derivatives with respect to x. 

y"- 3y' + 2y = 0 
y" + Sy' = 0 
2y"- y'- y = 0 
4y" + 4y' + y = 0 
6y" - 7y' - 20y = 0 

34. y" + 2y'- 15y = 0 
36. 2y11 + 3y' = 0 
38. 4y 11 + 8y' + 3y = 0 
40. 9y"- 12y' + 4y = 0 
42. 35y11

- y'- 12y = 0 

of Problems 43 through 48 gives a general solution 
of a homogeneous second-order differential equation 

+by' + cy = 0 with constant coefficients. Find such an 

43. y(x) = CJ + c2e- l0x 

44. y(x) = CJe iOx + C2e- 10x 

45. y(x) = CJe- JOx + C2Xe- 10x 

46. y(x) = CJe JOx + C2e 100x 

47. y(x) = CJ t C2X 

48. y(x) = ex (c1ex../2 + c2e-x../2) 

Problems 49 and 50 deal with the solution curves of y" + 3y' + 
2y = 0 sho¥~-n in Figs. 5.1 .6 and 5.1.7. 

49. Find the highest point on the solution curve wi th y(O) = l 
and y' (0) = 6 in Fig. 5.1.6. 

50. Figure 5. 1.7 suggests that the solution curves shown all 
meet at a common point in the third quadrant. Assum­
ing that this is indeed the case, find the coordinates of that 
point. 

51. A second-order Euler equation is one of the form 

ax2y 11 + bxy' + cy = 0 (22) 

where a, b, c are constants. (a) Show that if x > 0, then the 
substitution v = In x transforms Eq. (22) into the constant­
coefficient linear equation 

d 2y dy 
a dv 2 + (b- a) dv + cy = 0 (23) 

with independent variable v. (b) If the roots r 1 and r2 of 
the characteristic equation of Eq. (23) are real and distinct, 
conclude that a general solution of the Euler equation in 
(22) is y(x) = c1x ' 1 + c2x ' 2. 

Make the substitution v = In x of Problem 51 to find general 
solutions (for x > 0) of the Euler equations in Problems 52-56. 

52. x 2y" + xy'- y = 0 
54. 4x 2y" + 8xy'- 3y = 0 

56. x 2y"- 3xy' + 4y = 0 

53. x 2y 11 + 2xy'- 12y = 0 

55. x 2y 11 + xy' = 0 

Second-Order Solution Families 

This application deals with the plotting by computer of families of solutions such as 
those illustrated in Figs. 5 .1.6 and 5 .1.7. Show first that the general solution of the 
differential equation 

y" + 3y' + 2y = 0 (1) 

is 

(2) 

This is equivalent to the graphing calculator result shown in Figure 5.1.11 , and to 
the WolframJAlpha output generated by the simple query 

y'' + 3y' + 2y = 0 
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Solution The general solution of Eq. (17) is 

y(x) = CJ cos 2x + c2 sin 2x + 3x. 

Now 

y' (x) = -2c1 sin 2x + 2c2 cos 2x + 3. 
Hence the initial conditions give 

y(O) = C j = 5, 

y' (0) = 2c2 + 3 = 7. 

We find that c1 = 5 and c2 = 2. Thus the desired solution is 

Problems 
In Problems 1 through 6, show directly that the given functions 
are linearly dependent on the real line. That is, find a non­
trivial linear combination of the given functions that vanishes 
identically. 

1. f(x) = 2x, g(x) = 3x2, h(x) = 5x- 8x2 

2. f(x) = 5, g(x) = 2- 3x2, h(x) = 10 + 15x 2 
3. f(x) = 0, g(x) = sinx, h(x) =ex 

4. f(x) = 17, g(x) = 2sin2 x, h(x) = 3cos2 x 

5. f(x) = 17, g(x) = cos2 x, h(x) = cos2x 
6. f(x) =eX, g(x) = coshx, h(x) = sinhx 

In Problems 7 through 12, use the Wronskian to prove that the 
given functions are linearly independent on the indicated in­
terval. 

7. f(x) = I , g(x) = x, h(x) = x 2; the real line 
8. f(x) =ex, g(x) = e2x, h(x) = e3x; the real line 

9. f(x) =ex, g(x) = cosx, h(x) = sinx; the real line 
10. f(x) =ex, g(x) = x-2, h(x) = x-2 lnx; x > 0 

11. f(x) = x, g(x) = xex, h(x) = x 2ex; the real line 

12. f(x) = x, g(x) = cos(lnx), h(x) = sin(lnx); x > 0 

In Problems 13 through 20, a third-order homogeneous linear 
equation and three linearly independent solutions are given. 
Find a particular solution satisfying the given initial condi­
tions. 

13. yC
3
l + 2y"- y'- 2y = 0; y(O) = I, y'(O) = 2, y"(O) = 0; 

YI =ex, Y2 =e-x, Y3 = e-2x 

14. yC
3
)- 6y" + lly'- 6y = 0; y(O) = 0, y' (O) = 0, y" (O) = 3; 

YI = ex, Y2 = e2x, Y3 = e3x 

15. yC
3
)- 3y

11 + 3y'- y = 0; y(O) = 2, y'(O) = 0, y"(O) = 0; 
Yl = ex, Y2 = xex, Y3 = x 2ex 

16. yC
3
l- 5y

11 
+By'- 4y = 0; y(O) = I, y' (0) = 4, y" (0) = 0; 

YI = ex, Y2 = e2x, Y3 = xe2x 

17. y(3) + 9y
1 

= 0; y(O) = 3, y'(O) = - 1, y 11 (0) = 2; Y I = 1, 
Y2 =cos 3x, Y3 =sin 3x 

18. y(3)- 3y" + 4y'- 2y = 0; y(O) = 1, y' (O) = 0, y" (0) = 0; 
Y I = ex, Y2 = ex cosx, Y3 = ex sinx. 

y(x) = 5 cos 2x + 2sin 2x + 3x. 

19. x3y(
3
) - -3x2y" + 6xy'- 6y = 0; y(l) = 6, y'(l) = 

y"( l) = 22; YI = x, Y2 = x 2, Y3 = x 3 

20. x
3 yC3

l + 6x
2 
y" + 4xy"' - 4y = 0; y (l) = I, y' (!) = 

y"(l) = - 11 ; Y I = x, Y2 = x-2, Y3 = x-2 lnx 

In Problems 21 through 24, a nonhomogeneous azncerf,nmu; 
equation, a complementary solution Yc. and a particular 
lution y P are given. Find a solution satisfying the given 
conditions. 

21. y" + y = 3x; y(O) = 2, y'(O) = -2; 
Yc = CJ cosx + c2 sinx; Yp = 3x 

22. y"- 4y = 12; y(O) = 0, y'(O) = 10; 
Yc = c1e2x + c2e-2x; Yp = -3 

23. y"- 2y'- 3y = 6; y(O) = 3, y'(O) = II; 
Yc = CJe-x + c2e3x; Yp = -2 

24. y"- 2y' + 2y = 2x; y(O) = 4, y'(O) = 8; 
Yc = c1ex cosx + c2ex sinx; Yp = x +I 

25. Let Ly = y" + py' + qy . Suppose that y 1 and Y2 are two 
functions such that 

Ly 1 = f(x) and Ly2 = g(x). 

Show that their sum y = Y I + Y2 satisfies the nonhomo­
geneous equation Ly = f(x) + g(x). 

26. (a) Find by inspection particular solutions of the two non­
homogeneous equations 

y" + 2y = 4 and y" + 2y = 6x . 

(b) Use the method of Problem 25 to find a particular so­
lution of the differential equation y" + 2y = 6x + 4. 

27. Prove directly that the functions 

fi(x) = I , h(x) = x, and h(x) = x 2 

are linearly independent on the whole real line. (Sugges­
tion: Assume that CJ + c2x + c3x2 = 0. Differentiate this 
equation twice, and onclude from the equations you get 
that CJ = C2 = C3 = 0.) 
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I 

y' (1) = 14, 

c). 

= 6x. 

28. Generalize the method of Problem 27 to prove directly that 
the functions 

fo(x)=l, ft(x)=x , h(x)=x2, . .. , fn(x)=xn 

are linearly independent on the real line. 
29. Use the result of Problem 28 and the definition of linear 

independence to prove directly that, for any constant r, the 
functions 

are linearly independent on the whole real line. 
30. Verify that Yl = x and Y2 = x2 are linearly independent 

solutions on the entire real line of the equation 

x 2y"- 2xy' + 2y = 0, 

but that W(x , x2) vanishes at x = 0. Why do these obser­
vations not contradict part (b) of Theorem 3? 
This problem indicates why we can impose only n initial 
conditions on a solution of an nth-order linear differential 
equation. (a) Given the equation 

y" + py' + qy = 0, 

explain why the value of y" (a) is determined by the values 
of y(a) and y'(a) . (b) Prove that the equation 

y" -2y' -Sy = 0 

has a solution satisfying the conditions 

y(O) = 1, y'(O) = 0, and y"(O) = C 

if and only if C = 5. 

Prove that an nth-order homogeneous linear differential 
equation satisfying the hypotheses of Theorem 2 has n lin­
early independent solutions Yl , Y2, . .. , Yn. (Suggestion: 

Yi be the unique solution such that 

and yi(k)(a)=O ifk::j=i-1.) 

that the three numbers r1, r2, and r3 are dis­
Show that the three functions exp(r1x), exp(r2x), 

exp(r3x) are linearly independent by showing that 
Wronskian 

W = exp[(r1 + r2 + r3)x]· r1 r2 

as known that the Vandermonde determinant 

V= 

n-1 rl n- 1 
rn 
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is nonzero if the numbers r1 , r2 , ... , rn are distinct. Prove 
by the method of Problem 33 that the functions 

fi(x)=exp(rix) , 1 ~i~n 

are linearly independent. 

35. According to Problem 32 of Section 5.1, the Wronskian 
W(y 1 , y2) of two solutions of the second-order equation 

y'' +PI (x)y' + P2(x)y = 0 

is given by Abel's formula 

W(x) = Kexp (- J Pt(x)dx) 

for some constant K . It can be shown that the Wronskian 
of n solutions Yt, y2, ... , Yn of the nth-order equation 

y(n) +PI (x)yCn-l) + · · · + Pn-1 (x)y' + Pn(x)y = 0 

satisfies the same identity. Prove this for the case n = 3 
as follows: (a) The derivative of a determinant of func­
tions is the sum of the determinants obtained by separately 
differentiating the rows of the original determinant. Con­
clude at 

Yl 

W' = y~ 
(3) 

Y1 

Y2 Y3 

(b) Su stitute for y~3), y~3), and y~3) from the equation 

yCJ) +Ply''+ P2/ + P3Y = 0, 

and then show that W' = - p 1 W. Integration now gives 
Abel 's formula. 

36. Suppose that one solution y 1 (x) of the homogeneous 
second-order linear differential equation 

y" + p(x)y' + q(x)y = 0 (18) 

is known (on an interval I where p and q are continuous 
functions). The method of reduction of order consists 
of substituting Y2(x) = v(x)yl (x) in (18) and attempting 
to determine the function v(x) so that Y2(x) is a second 
linearly independent solution of (18). After substituting 
y = v(x)y l (x) in Eq. (18), use the fact that Yl (x) is a 
solution to deduce that 

Yl v" + (2y~ + PYt)v' = 0. (19) 

If Yl (x) is known, then (19) is a separable equation that 
is readily solved for the derivative v'(x) of v(x). Integra­
tion of v' (x) then gives the desired (nonconstant) function 
v(x). 
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37. Before applying Eq. (19) with a given homogeneous 
second-order linear differential equation and a known so­
lution YI (x), the equation must first be written in the form 
of (18) with leading coefficient 1 in order to correctly 
determine the coefficient function p(x) . Frequently it is 
more convenient to simply substitute y = v(x)y i (x) in 
the given differential equation and then proceed directly 
to find v(x). Thus, starting with the readily verified solu­
tion YI (x) = x 3 of the equation 

x 2y"- Sxy' + 9y = 0 (x > 0) , 

substitute y = vx 3 and deduce that xv 11 + v' = 0. Thence 
solve for v(x) = C ln x, and thereby obtain (with C = 1) 
the second solution y2 (x) = x 3 lnx . 

In each of Problems 38 through 42, a differential equation and 
one solution YI are given. Use the method of reduction of or­
der as in Problem 37 to find a second linearly independent 
solution Y2· 

38. x 2y" + xy'- 9y = 0 (x > 0) ; YI(x) = x 3 

39. 4y"- 4y' + y = 0; y 1 (x) = ex/2 

40. x 2y"- x(x + 2)y' + (x + 2)y = 0 (x > 0); y 1 
41. (x+1)y 11 -(x+2)y'+y=0 (x >-1); y1 (x) 
42. (1- x 2)y" + 2x y'- 2y = 0 (- 1 < x < 1); y1 (x) 
43. First note that y 1 (x) = x is one solution of 

equation of order 1, 

(1 - x 2)y11
- 2xy' + 2y = 0. 

Then use the method of reduction of order to derive 
second solution 

x 1 +x 
Y2 (x) = I - - In -- (for -1 < x < 1 ). 

2 1- x 

44. First verify by substitution that y 1 (x) = x- 112 cosx is 
solution (for x > 0) of Bessel's equation of order ! , 

x 2y" + xy' + (x 2 - t)Y = 0. 

Then derive by reduction of order the second 
Y2(x) = x- 112 sin x. 

5.2 Application Plo Third-Order Solution Families 

Co Go to goo.gl/rj9zB2 to 
download this application 's 
computing resources including 
Maple/Mathematica!MATLAB . 

This application deals with the plotting by computer of families of solutions 
as those illustrated in Figs. 5.2.2 through 5.2.4. We know from Example 6 that 
general solution of 

yC3
) + 3y 11 + 4y' + 12y = 0 

is 

For Fig. 5.2.2, use thy method of Example 6 to show that the particular solution 
ofEq. (1) satisfying the initial conditions y(O) =a, y'(O) = 0, and y"(O) = 0 is given 
by 

The MATLAB loop 

a 
y(x) =- (4e - 3

x + 9cos2x + 6sin2x). 
13 (3) 

X = -1.5 : 0 . 02 : 
for a -3 1 

5 % x-vector from x = -1.5 to x = 5 
3 % for a = -3 to 3 with da = 1 do 

end 

c1 4*a/13; 
c2 9*a/13; 
c3 6*a/13; 
y = C1*eXp(-3*X) + C2*COS(2*X) + C3*Sin(2*X); 
plot(x,y) 

was used to generate Fig. 5.2.2. 
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Problems 
Find the general solutions of the differential equations in Prob­
lems I through 20. 

1. y"- 4y = 0 

3. y" + 3y'- lOy = 0 

5. y" + 6y' + 9y = 0 
7. 4y"- 12y' + 9y = 0 

9. y" + Sy' + 25y = 0 
11. yC4) - syC3) + 16y11 = 0 

12. yC4)- 3yC3) + 3y11
- y' = 0 

2. 2y11
- 3y' = 0 

4. 2y11
- 7y' + 3y = 0 

6. y" + 5y' + 5y = 0 

8. y"- 6y' + 13y = 0 

10. 5yC4) + 3yC3) = o 

13. 9y(3) + l2y11 + 4y' = 0 14. yC4) + 3y11
- 4y = 0 

15. y C4)- Sy" + l6y = 0 16. yC4) + l 8y" +S ly = 0 

17. 6yC4) + lly" + 4y = 0 18. yC4) = l6y 

19. yC3) + y"- y'- y = 0 

20. yC4) + 2yC3) + 3y 11 + 2y' + y = 0 (Suggestion: Expand 
(r 2 +r+l)2.) 

Solve the initial value problems given in Problems 2I through 
26. 

21. y"- 4y' + 3y = 0; y(O) = 7, y'(O) = 11 

22. 9y" + 6y' + 4y = 0; y(O) = 3, y'(O) = 4 

23. y"- 6y' + 25y = 0; y(O) = 3, y'(O) = 1 

24. 2yC3)- 3y"- 2y' = 0; y(O) = 1, y'(O) = -1 , y"(O) = 3 

25. 3y{3) + 2y" = 0; y(O) = -1, y'(O) = 0, y"(O) = 1 

26. yC3) + lOy"+ 25y' = 0; y(O) = 3, y'(O) = 4, y"(O) = 5 

Find general solutions of the equations in Problems 27 through 
32. First find a small integral root of the characteristic equa­
tion by inspection; then factor by division. 

27. yC3) + 3y"- 4y = 0 

28. 2y(3) - y"- 5y'- 2y = 0 

29. yC3) + 27y = 0 

30. yC4) - yC3) + y 11
- 3y'- 6y = 0 

31. yC3) + 3y11 + 4y'- 8y = 0 

32. yC4) + yC3) - 3y" - 5y'- 2y = 0 

In Problems 33 through 36, one solution of the differential 
equation is given. Find the general solution. 

33. yC3) + 3y"- 54y = 0; y = e3x 

34. 3y{3) - 2y11 + 12y1
- 8y = 0; y = e2xf3 

35. 6yC4) + 5yC3) + 25y" + 20y' + 4y = O; y = cos 2x 

36. 9y{3) + 11y11 + 4y'- 14y = 0; y = e-x sin x 

37. Find a function y(x) such that yC4)(x) = y(3)(x) for all x 
and y(O) = 18, y'(O) = 12, y"(O) = 13, and yC3)(0) = 7. 

38. Solve the initial value problem 

yC3) - 5y 11 + 100y'- 500y = 0; 

y(O) = 0, y'(O) = 10, y"(O) = 250 

given that YI (x) = e5x is one particular solution of the 
differential equation. 

In Problems 39 through 42, find a linear 
constant-coefficient equation with the given general 

39. y(x) = (A+ Bx + Cx2)e2x 
40. y(x) = Ae2x + B cos 2x + C sin 2x 
41. y(x) = A cos 2x + B sin2x + C cosh 2x + D sinh 2x 
42. y(x) =(A+ Bx + Cx2 ) cos2x + (D +Ex+ Fx2) 

Problems 43 through 47 pertain to the solution of 
equations with complex coefficients. 

43. (a) Use Euler's formula to show that every complex 
ber can be written in the form rei 9, where r ~ 0 
-TC < e ~ TC. (b) Express the numbers 4, -2, 3i, 1 
and -1 + i ..J3 in the form rei 9 . (c) The two square 
of rei 9 are ±..(iei912. Find the square roots of the 
bers 2- 2i ..J3 and -2 + 2i ..J3. 

44. Use the quadratic formula to solve the following 
tions. Note in each case that the roots are not 
conjugates. 

(a) x 2 + ix + 2 = 0 (b) x 2 - 2ix + 3 = 0 

45. Find a general solution of y"- 2iy' + 3y = 0. 
46. Find a general solution of y" - iy1 + 6y = 0. 
47. Find a general solution of y" = (-2 + 2i ..J3) y. 
48. Solve the initial value problem 

yC3) = y; y(O) = 1, y'(O) = y"(O) = 0. 

(Suggestion: Impose the given initial conditions on 
general solution 

y(x) = Aex + B eax + Cef3x, 

where ex and f3 are the complex conjugate roots of r3 - l = 
0, to discover that 

y(x) = ~ ( ex + 2e-x f2 cos x~) 
is a solution .) 

49. Solve the initial value problem 

yC4) = y(3) + y" + y' + 2y ; 

y(O) = y'() = y 11 (0) = 0,2y(3)(0) = 30. 

50. The differential equation 

y" + (sgnx)y = 0 

has the discontinuous coefficient function 

sgnx = {
+1 

-1 

if X> 0, 

ifx < 0. 

(25) 

Show that Eq. (25) evertheless has two linearly indepen­
dent solutions Yl (x) and Y2(x) defined for all x such that 

• Each satisfies Eq. (25) at each point x =/= 0; 
• Each has a continuous derivative at x = 0; 
• Yt (0) = y~ (0) = 1 and Y2(0) = y~ (0) = 0. 

(Suggestion: 
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(Suggestion: Each Yi (x) will be defined by one formula 
for x < 0 and by another for x ~ 0.) The graphs of these 
two solutions are shown in Fig. 5.3.2 . 

substitution transforms the third-order Euler equation 

ax 3 y'" + bx2 y" + cxy' + dy = 0 

(where a, b, c, d are constants) into the constant­
coefficient equation 

d 3 y d 2 y dy 
a-+ (b- 3a)- + (c- b + 2a)- + dy = 0. 

dv 3 dv 2 dv 

Make the substitution v = ln x of Problem 51 to find general 
solutions (for x > 0) of the Euler equations in Problems 52 
through 58. 

FIGURE 5.3.2. Graphs of Yl (x) and Y2(x) 
in Problem 50. 

Sl. According to Problem 51 in Section 5.1, the substitution 
v = In x (x > 0) transforms the second-order Euler equa­
tion ax2 y" + bxy' + cy = 0 to a constant-coefficient ho­
mogeneous linear equation. Show similarly that this same 

52. x 2 y" + xy' + 9y = 0 

53. x 2 y" + 7xy' + 25y = 0 
54. x 3 y 111 + 6x2 y" + 4xy' = 0 
55. x 3 y'"- x 2 y" + xy' = 0 

56. x 3 y 111 + 3x2 y" + xy' = 0 
57. x 3 y 111

- 3x2 y" + xy' = 0 
58. x 3 y 111 + 6x2 y" + 7xy' + y = 0 

~~~~!!~~~~~~~~t~eJS~o~l~u~t~i~o~n~sofLinear_E_q~u_a_ti_·o_n_s ____________ _ 
To meet the needs of applications such as those of this section, polynomial-solving 
utilities are now a common feature of calculator and computer systems and can be 
used to solve a characteristic equation numerically even when no simple factoriza­
tion is evident or even possible. For instance, suppose that we want to solve the 
homogeneous linear differential equation 

yC3)- 3y" + y = 0 (1) 

with characteristic equation 

(2) 

A typical graphing calculator has a sol ve command that can be used to find the 
approximate roots of a polynomial equation. As indicated in Figs. 5.3.3 and 5.3.4, 
we find that the roots ofEq. (2) are given by r ~ -0.5321,0.6527, and 2.8794. Some 
analogous computer algebra system commands are 

HORMAL fLOAT AUTO REAL RAOIAH MP ll 

solve(R3-3R2+1.R. -1) 
-0.5320888862 

~~'i~~·(R3·.:.·3·R·2~1:·R:·11··········· ·· ···· 

0.6527036447 
~~'i~~·(R:i.:.·3·R·2~1:·R:·31 .... ....... .. ... . 
........ ................. ..... ~,.~?.?.~~~~~~. 

FIGURE 5.3.3. Solving the equation 
,3- 3r2 + 1 = 0 with a TI-84 Plus 
CE calculator that requires an estimate 
of each root. 

F1·,l~ r2• olt3~l~ r~. ,l, rs ole r&· ,l Tools Al,•b'o Cole Dth•' P''"'ID Cl•on U• 

• so 1 ve( r 3 - 3 · r 2 + 1 = 8, r) 
r = 2 . 8794 or r = • 6527 or~ 

solve(rA3-3rA2+1-8 1 r) 
MAIN RAD AUTO ~E 1130 

FIGURE 5.3.4. Solving the 
characteristic equation with a TI-89 
calculator having a more sophisticated 
solve facility. 
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Problems 
1. Determine the period and frequency of the simple har­

monic motion of a 4-kg mass on the end of a spring with 
spring constant 16 N/m. 

2. Determine the period and frequency of the simple har­
monic motion of a body of mass 0.75 kg on the end of 
a spring with spring constant 48 N/m. 

3. A mass of 3 kg is attached to the end of a spring that is 
stretched 20 em by a force of 15 N.lt is set in motion with 
initial position xo = 0 and initial velocity vo = -10 m/ s. 
Find the amplitude, period, and frequency of the resulting 
motion. 

4. A body with mass 250 g is attached to the end of a spring 
that is stretched 25 em by a force of 9 N. At timet = 0 the 
body is pulled 1 m to the right, stretching the spring, and 
set in motion with an initial velocity of 5 m/s to the left. 
(a) Find x(t) in the form C cos(wot- a). (b) Find the 
amplitude and period of motion of the body. 

Simple Pendulum 
In Problems 5 through 8, assume that the differential equation 
of a simple pendulum of length L is L()" + g(J = 0, where 
g = GM/ R2 is the gravitational acceleration at the location 
of the pendulum (at distance Rfrom the center of the earth; M 
denotes the mass of the earth). 

5. Two pendulums are of lengths L 1 and Lz and-when lo­
cated at the respective distances R 1 and R2 from the cen­
ter of the earth-have periods Pl and pz. Show that 

Pl R1../Ll 

P2 Rz.JL2." 

A certain pendulum keeps perfect time in Paris, where the 
radius of the earth is R = 3956 (mi). But this clock loses 
2 min 40 s per day at a location on the equator. Use the 
result of Problem 5 to find the amount of the equatorial 
bulge of the earth. 
A pendulum of length 100.10 in., located at a point at 
sea level where the radius of the earth is R = 3960 (mi), 
has the same period as does a pendulum of length 100.00 

FIGURE 5.4.12. The buoy of Problem 10. 
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in . atop a nearby mountain. Use the result of Problem 5 to 
find the height of the mountain . 

8. Most grandfather clocks have pendulums with adjustable 
lengths. One such clock loses 10 min per day when the 
length of its pendulum is 30 in. With what length pendu­
lum will this clock keep perfect time? 

9. Derive Eq. (5) describing the motion of a mass attached to 
th . bottom of a vertically suspended spring. (Suggestion: 
First denote by x(t) the displacement of the mass below 
the unstretched position of the spring; set up the differ­
ential equation for x . Then substitute y = x - so in this 
differential equation.) 

10. Floating buoy Consider a floating cylindrical buoy with 
radius r, height h, and uniform density p ~ 0.5 (recall that 
the density of water is 1 g/ cm3 ). The buoy is initially 
suspended at rest with its bottom at the top surface of the 
water and is released at time t = 0. Thereafter it is acted 
on by two forces: a downward gravitational force equal to 
its weight mg = pnr 2 hg and (by Archimedes' principle 
of buoyancy) an upward force equal to the weight n r 2 xg 
of water displaced, where x = x(t) is the depth of the bot­
tom of the buoy beneath the surface at timet (Fig. 5.4.12). 
Assume that friction is negligible. Conclude that the buoy 
undergoes simple harmonic motion around its equilibrium 
position Xe = ph with period p = 2n J ph/g . Compute 
p and the amplitude of the motion if p = 0.5 g/ cm3 , 

h = 200 em, and g = 980 cmj s2 . 

11. Floating buoy A cylindrical buoy weighing 100 lb (thus 
of mass m = 3.125 slugs in ft-lb-s (fps) units) floats in 
water with its axis vertical (as in Problem 10). When de­
pressed slightly and released, it oscillates up and down 
four times every 10 s. Find the radius of the buoy. 

12. Hole through the earth Assume that the earth is a solid 
sphere of uniform density, with mass M and radius R = 
3960 (mi). For a particle of mass m within the earth at dis­
tance r from the center of the earth, the gravitational force 
attrac ·ng m toward the center is Fr = -GMrm/r 2 , where 
Mr is the mass of the part of the earth within a sphere of 
radius r (Fig. 5.4.13). (a) Show that Fr = -GMmrjR3 . 

FIGURE 5.4.13. A mass m falling down a hole 
through the center of the earth (Problem 12). 
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(b) Now suppose that a small hole is drilled straight 
through the center of the earth, thus connecting two an­
tipodal points on its surface. Let a particle of mass m 

be dropped at time t = 0 into this hole with initial speed 
zero, and let r(t) be its distance from the center of the 
earth at time t, where we take r < 0 when the mass is 
"below" the center of the earth. Conclude from New­
ton's second law and part (a) that r"(t) = -k2 r(t) , where 
k2 = GM/R3 = g/R. (c) Take g = 32.2 ft/s2 , and con­
clude from part (b) that the particle undergoes simple har­
monic motion back and forth between the ends of the hole, 
with a period of about 84 min . (d) Look up (or derive) the 

· period of a satellite that just skims the surface of the earth; 
compare with the result in part (c). How do you explain 
the coincidence? Or is it a coincidence? (e) With what 
speed (in miles per hour) does the particle pass through 
the center of the earth? (f) Look up (or derive) the or­
bital velocity of a satellite that just skims the surface of 
the earth; compare with the result in part (e). How do you 
explain the coincidence? Or is it a coincidence? 

13. Suppose that the mass in a mass-spring-dashpot system 
with m = I 0, c = 9, and k = 2 is set in motion with 
x(O) = 0 and x' (0) = 5. (a) Find the position func­
tion x(t) and show that its graph looks as indicated in 
Fig. 5.4.14. (b) Find how far the mass moves to the 
right before starting back toward the origin. 

14. Suppose that the mass in a mass-spring-dashpot system 
with m = 25, c = 10, and k = 226 is set in motion with 
x (0) = 20 and x' (0) = 41. (a) Find the position func­
tion x(t) and show that its graph looks as indicated in 
Fig. 5.4.15. (b) Find the pseudoperiod of the oscilla­
tions and the equations of the "envelope curves" that are 
dashed in the figure. 

Free Damped Motion 

The remaining problems in this section deal with free damped 
motion. In Problems 15 through 21, a mass m is attached 
to both a spring (with given spring constant k) and a dash­
pot (with given damping constant c). The mass is set in mo­
tion with initial position xo and initial velocity vo. Find the 
position Junction x(t) and determine whether the motion is 

5 

4 

3 

2 
>< 

0 

- 1 

-20 5 10 15 20 

FIGURE 5.4.14. The position function x(t) 
of Problem 13. 

overdamped, critically damped, or underdamped. If 
derdamped, write the position function in the form 
C1e-pt cos(w1t- aJ). Also, find the undamped 
function u(t) = Co cos(wot - ao) that would result if 
on the spring were set in motion with the same initial 
and velocity, but w"th the dashpot disconnected (soc 
nally, construct a fig ure that illustrates the effect of 
by comparing the graphs of x(t) and u(t) . 

15. m = ! , c = 3, k = 4; xo = 2, vo = 0 
16. m = 3, c = 30, k = 63 ; xo = 2, vo = 2 

17. m = 1, c = 8, k = 16; xo = 5, vo = -10 

18. m = 2, c = 12, k =50; xo = 0, vo = -8 
19. m = 4, c = 20, k = 169; xo = 4, vo = 16 
20. m = 2, c = 16, k = 40; x0 = 5, v0 = 4 

21. m = I, c = 10, k = 125; xo = 6, vo =50 
22. Vertical damped motion A 12-lb weight (mass m 

0.375 slugs in fps units) is attached both to a 
suspended spring that it stretches 6 in. and to a 
that provides 3 lb of resistance for every foot per 
of velocity. (a) If the weight is pulled down 1 ft 
its static equilibrium position and then released from 
at timet = 0, find its position function x(t) . (b) Find 
frequency, time-varying amplitude, and phase angle of 
motion. 

23. Car suspension This problem deals with a highly 
plified model of a car of weight 3200 lb (mass m = 1 
slugs in fps units). Assume that the suspension 
acts like a single spring and its shock absorbers like a 
gle dashpot, so that its vertical vibrations satisfy Eq. 
with appropriat values of the coefficients. (a) Find 
stiffness coefficient k of the spring if the car um•~··-v­
free vibrations at 80 cycles per minute (cycles/min) 
its shock absorbers are disconnected. (b) With the 
absorbers connected, the car is set into vibration by 
ing it over a bump, and the resulting damped vibrations 
have a frequency of 78 cycles/ min. After how long 
the time-varying amplitude be 1% of its initial value? 

Problems 24 through 34 deal with a mass-spring-dashpot sys­
tem having position function x(t) satisfying Eq. (4). We write 

20 

10 ' 

>< 0 

- 10 
/ 

/ 

-20 

0 5 10 15 20 

FIGURE 5.4.l5. The position function x(t) 
of Problem 14. 
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xo == x (0) and vo == x' (0) and recall that p == cj(2m ), w5 == 
k j m, and Wf == w5- p2. The system is critically damped, 
overdamped, or underdamped, as specified in each problem. 

24. (Critically damped) Show in this case that 

x(t) == (xo + vot + pxot)e-P1
. 

25. (Critically damped) Deduce from Problem 24 that the 
mass passes through x == 0 at some instant t > 0 if and 
only if xo and vo + pxo have opposite signs. 

26. (Critically damped) Deduce from Problem 24 that x (t) has 
a local maximum or minimum at some instant t > 0 if and 
only if vo and vo + pxo have the same sign. 

21. (Overdamped) Show in this case that 

x(t) == _.!.._ [Cvo- r2xo)er11 - (vo- r1xo)er2 1 ] , 
2y 

where 'I , r2 == - p ± J p2 - wcr and y = (ri - r2)/2 > 0. 
28. (Overdamped) If xo = 0, deduce from Problem 27 that 

x(t) = vo e-pl sinh yt. 
y 

~9. (Overdamped) Prove that in this case the mass can pass 
through its equilibrium position x = 0 at most once. 
(Underdamped) Show that in this case 

- 1 ( vo + pxo . ) 
x(t) = e p XoCOSWII + WI SillWit . 

(Underdamped) If the damping constant c is small in com­
parison with ...JSmk, apply the binomial series to show that 

WI~ wo ( l- S~k). 
(Underdamped) Show that the local maxima and minima 
of 

x(t) = Ce-pl COS(WII- a) 

p 
tan(wit -a)==--. 

WI 

Conclude that t2 - II = 2n/wi if two consecutive maxima 
occur at times ti and t2 . 

(Underdamped) Let XI and x2 be two consecutive local 
maximum values of x(t). Deduce from the result of Prob-

32 that 
XI 2np 

In-=--
X2 WI 

constant!:::.. == 2n p/w i is called the logarithmic deere­
of the oscillation. Note also that c = mw1 1:::../n be­
P = cj(2m). 

The result of Problem 33 provides an accurate method 
the viscosity of a fluid, which is an important 

in fluid dynamics but is not easy to measure directly. 
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According to Stokes's drag law, a spherical body of radius a 
moving at a (relatively slow) speed through a fluid of viscosity 
J-L experiences a resistive force FR == 6nJ-Lav. Thus if a spheri­
cal mass on a spring is immersed in the fluid and set in motion, 
this drag resistance damps its oscillations with damping con­
stant c = 6naJ-L. The frequency WI and logarithmic decrement 
!:::.. of the oscillations can be measured by direct observation. 
The final formu la in Problem 33 then gives c and hence the 
viscosity of the fluid. 

34. (Underdamped) A body weighing 100 lb (mass m = 3.125 
slugs in fps units) is oscillating attached to a spring and 
a dashpot. Its first two maximum displacements of 6.73 
in. and 1.46 in. are observed to occur at times 0.34 s and 
1.17 s, respectively. Compute the damping constant (in 
pound-seconds per foot) and spring constant (in pounds 
per foot). 

Differential Equations and Determinism 
Given a mass m, a dashpot constant c, and a spring constant 
k, Theorem 2 of Section 5.1 implies that the equation 

mx" +ex' + kx = 0 (26) 

has a unique solution for t ~ 0 satisfying given initial condi­
tions x(O) = xo, x'(O) = vo. Thus the future motion of an ideal 
mass-spring-dashpot system is completely determined by the 
differential equation and the initial conditions. Of course in 
a real physical system it is impossible to measure the param­
eters m, c, and k precisely. Problems 35 through 38 explore 
the resulting uncertainty in predicting the future behavior of a 
physical system. 

35. Suppose that m = 1, c = 2, and k = 1 in Eq. (26). Show 
that the solution with x (0) == 0 and x' (0) == 1 is 

XI (t) = te-1. 

36. Suppose that m = 1 and c = 2 but k = 1 - w -zn. Show 
that the solution of Eq. (26) with x (0) = 0 and x' (0) = 1 
is 

Xz(t) = JOne-l sinh \0-nt. 

37. Suppose that m = 1 and c = 2 but that k = 1 + w-2n. 
Show that the solution of Eq. (26) with x(O) = 0 and 
x'(O) = 1 is 

38. Whereas the graphs of XI (t) and xz(t) resemble those 
shown in Figs. 5.4.7 and 5.4.8, the graph of x3 (t) exhibits 
damped oscillations like those illustrated in Fig. 5.4.9, but 
with a very long pseudoperiod. Nevertheless, show that 
for eac fixed t > 0 it is true that 

lim xz(t) = lim X3 (t) =XI (t). 
n~oo n-+oo 

Conclude that on a given finite time interval the three solu­
tions are in "practical" agreement if n is sufficiently large. 
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Problems 
[n Problems 1 through 20, find a particular solution y P of the 
given equation. In all these problems, primes denote deriva­
tives with respect to x. 

1. y" + 16y = e3x 

3. y"- y'- 6y = 2 sin 3x 

5. y" + y' + y = sin2 x 

7. y"- 4y = sinh x 

2. y"- y'- 2y = 3x + 4 
4. 4y" + 4y' + y = 3xex 

6. 2y" + 4y' + 7y = x 2 

8. y" - 4 y = cosh 2x 

9. y" + 2y'- 3y = 1 + xex 

10. y" + 9y = 2cos3x + 3sin3x 
n. / 3) + 4y1 = 3x- 1 12. 
13. y" + 2y' + 5y =ex sinx 14. 
15. yes> + 5/4> - y = 17 16. 
17. y" + y = sin x + xcosx 
18. yC4) - 5y" + 4y = ex - xe2x 

19. / 5) + 2y(3) + 2y" = 3x2 - 1 

20. / 3) - y = ex + 7 

yC3) + y' = 2- sin x 

/ 4) - 2y" + y = xex 

y" + 9y = 2x2 e3x + 5 

In Problems 21 through 30, set up the appropriate form of a 
particular solution y P • but do not determine the values of the 
coefficients. 

21. y" -2y' + 2y =ex sin x 
22. y(S) - / 3) = ex + 2x2 - 5 

23. y" + 4y = 3x cos 2x 
24. yC3) - y"- 12y' = x- 2xe-3x 

25. y" + 3y' + 2y = x(e-x- e-2x) 

26. y"- 6y' + 13y = xe 3x sin 2x 

27. yC4) + 5y" + 4y = sin x +cos 2x 

28. yC4) + 9y" = (x2 + 1) sin 3x 
29. (D- 1)3 (D 2 - 4)y = xex + e2x + e-2x 

yC4>- 2y" + y = x2 cosx 

the initial value problems in Problems 31 through 40. 

y" + 4y = 2x ; y(O) = I, y'(O) = 2 

y" + 3y' + 2y =ex; y(O) = 0, y'(O) = 3 
y" + 9y = sin2x; y(O) = 1, y'(O) = 0 

y" + y = cosx; y(O) = 1, y'(O) = -1 

)'
11 

- 2 y1 + 2 y = X + 1; y (0) = 3, y 1 (0) = 0 

yC4)- 4y" = x 2 ; y(O) = y'(O) = 1, y"(O) = yC3l(O) = -1 

y(3)- 2y11 + y' = 1 + xex; y(O) = y'(O) = 0, y"(O) = 1 

Y11 + 2y' + 2y =sin 3x; y(O) = 2, y'(O) = 0 
yC3) + y" = x +e-x; y(O) = 1, y'(O) = 0, y"(O) = 1 
yC4l- y = 5; y(O) = y'(O) = y"(O) = yC3l(O) = 0 

Find a particular solution of the equation 

yC4l - yC3) - y''- y'- 2y = 8x5. 

Find the solution of the initial value problem consisting 
of th~ .differential equation of Problem 41 and the initial 

y (0) = y' (0) = y'' (0) = / 3) (0) = 0. 

43. (a) Write 

cos 3x + i sin 3x = e3ix = (cos x + i sin x) 3 

by Euler's formula, expand, and equate real and imag­
inary parts to derive the identities 

cos3 x = ~ cosx +! cos3x , 

sin3 x = ~ sinx-! sin3x. 

(b) Use the result of part (a) to find a general solution of 

y" +4y = cos3 x. 

Use trigonometric identities to find general solutions of the 
equations in Problems 44 through 46. 

44. y" + y' + y = sin x sin 3x 
45. y" + 9y = sin4 x 
46. y" + y = x cos3 x 

In Problems 47 through 56, use the method of variation of pa­
rameters to find a particular solution of the given differential 
equation. 

47. y" + 3y' + 2y = 4ex 48. y 11
- 2y'- Sy = 3e-2x 

49. y"- 4y' + 4y = 2e2x 50. y" - 4y = sinh 2x 
51. y" + 4y = cos 3x 52. y" + 9y = sin 3x 
53. y" + 9y = 2sec3x 54. y" + y = csc2 x 
55. y" + 4y = sin2 x 56. y"- 4y = xex 
57. You can verify by substitution that Yc = c1x + c2x-1 is a 

complementary function for the nonhomogeneous second­
order equation 

x 2 y" + xy'- y = 72x5 . 

But before applying the method of variation of parame­
ters, you must first divide this equation by its leading co­
efficient x2 to rewrite it in the standard form 

1 1 
y" + - y' - - y = 72x 3 

x x2 

Thus f(x) = 72x 3 in Eq. (22). Now proceed to solve the 
equations in (3 1) and thereby derive the particular solution 
Yp = 3x5 . 

In Problems 58 through 62, a nonhomogeneous second-order 
linear equation and a complementary function Yc are given. 
Apply the method of Problem 57 to find a particular solution 
of the equation. 

58. x 2 y"- 4xy' + 6y = x3 ; Yc = c1x2 + c2x 3 

59. x 2 y"- 3xy' + 4y = x 4 ; Yc = x2(c1 + c2lnx) 
60. 4x2y"- 4xy' + 3y = 8x4 /3; Yc = Ct X + c2x 3f 4 

61. x 2 y" + xy' + y = ln x; Yc = c1 cos(lnx) + c2 sin(lnx) 
62. (x2 - 1)y" -2xy' + 2y = x2 -1; Yc = Ct X +c2(1 +x2) 
63. Carry out the solution process indicated in the text to 

derive the variation of parameters formula in (33) from 
Eqs. (31) and (32). 

64. Apply the variation of parameters formula in (33) to find 
the particular solution y p (x) = - x cos x of the nonhomo­
geneous equation y" + y = 2 sin x. 
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FIGURE 5.6.8. Solutions of the initial value problem in (24) with 
xo = -20,-10, 0, 10, and 20. 

FIGURE 5.6.9. Plot of amplitude C 
versus external frequency w . 

Problems 
In Problems 1 through 6, express the solution of the given ini­
tial value problem as a sum of two oscillations as in Eq. (8). 
Throughout, primes denote derivatives with respect to timet. 
In Problems 1-4, graph the solution function x(t) in such a 
way that you can identify and label (as in Fig. 5.6.2) its pe­
riod. 

l. x" + 9x = 10 cos 2t ; x (0) = x' (0) = 0 
2. x" + 4x = Ssin3t; x(O) = x'(O) = 0 
3. x" + lOOx = 225 cos St + 300 sin St ; x(O) = 375, x'(O) = 0 
4. x" + 25x = 90cos4t ; x(O) = 0, x'(O) = 90 
S. mx" +kx = Focoswt with w # wo; x(O) = xo, x'(O) = 0 
6. mx" + kx = Fo coswt with w = wo; x(O) = 0, x'(O) = vo 

In each of Problems 7 through 10, find the steady periodic so­
Xsp(t) = C cos(wt -a) of the given equation mx" + 

+ kx = F(t) with periodic forcing function F(t) of fre­
w. Then graph Xsp(t) together with (for comparison) 

adjustedforcingfunction Ft(t) = F(t) / mw. 

x" + 4x' + 4x = 10 cos 3t 
x" + 3x1 + Sx = -4cos5t 
2x" + 2x' + x = 3 sin lOt 
x" + 3x' + 3x = 8cos lOt+ 6sin lOt 

of Problems 11 through 14, find and plot both the 
periodic solution Xsp(t) = C cos(wt -a) of the given 

· equation and the actual solution x(t) = Xsp(t) + 
that satisfies the given initial conditions. 

x" + 4x' + Sx = 10cos3t; x(O) = x'(O) = 0 
x" + 6x' + l3x = 10 sin St ; x(O) = x'(O) = 0 

+ 2x' + 26x = 600cos lOt; x(O) = 10, x'(O) = 0 
r' + 8x' + 25x = 200cost + 520sint ; x(O) = -30, 

(0) = -10 

Problems 15 through 18 gives the parameters for 
mass-spring-dashpot system with equation mx11 + 

ex' + kx = Fo cos wt. Investigate the possibility of practi­
cal resonance of this system. In particular, find the amplitude 
C(w) of steady periodic forced oscillations with frequency w. 
Sketch the graph ofC(w) and find the practical resonance fre­
quency w (if any). 

15. m = 1, c = 2, k = 2, Fo = 2 

16. m = 1, c = 4, k = 5, Fo = 10 

17. m = 1, c = 6, k = 45, Fo =50 

18. m = 1, c = 10, k = 650, Fo = 100 

19. A mass weighing 100 lb (mass m = 3.125 slugs in fps 
units) is attached to the end of a spring that is stretched 
l in . by a force of 100 lb. A force Fo coswt acts on the 
mass. At what frequency (in hertz) will resonance oscilla­
tions occur? Neglect damping. 

20. A front-loading washing machine is mounted on a thick 
rubber pad that acts like a spring; the weight W = mg 
(with g = 9.8 m js2 ) of the machine depresses the pad ex­
actly 0.5 em. When its rotor spins at w radians per second, 
the rotor exerts a vertical force Fo cos wt newtons on the 
machine. At what speed (in revolutions per minute) will 
resonance vibrations occur? Neglect friction. 

21. Pendulum-spring system Figure 5.6.10 shows a mass 
m on the end of a pendulum (of length L) also attached to a 
horizontal spring (with constant k ). Assume small oscilla­
tions of m so that the spring remains essentially horizontal 
and neglect damping. Find the natural circular frequency 
w0 of motion of the mass in terms of L, k, m, and the 
gravitational constant g. 

22. Pulley-spring system A mass m hangs on the end of a 
cord around a pulley of radius a and moment of inertia I , 
as shown in Fig. 5.6.11. The rim of the pulley is attached 
to a spring (with constant k) . Assume small oscillations so 
that the spring remains essentially horizontal and neglect 
frictio . Find the natural circular frequency of the system 
in terms of m, a, k, I, and g. 
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FIGURE 5.6.10. The pendulum-and-spring 
system of Problem 21. 

23. Earthquake A building consists of two floors. The first 
floor is attached rigidly to the ground, and the second floor 
is of mass m = 1000 slugs (fps units) and weighs 16 tons 
(32,000 lb ). The elastic frame of the building behaves as a 
spring that resists horizontal displacements of the second 
floor; it requires a horizontal force of 5 tons to displace the 
second floor a distance of 1 ft. Assume that in an earth­
quake the ground oscillates horizontally with amplitude 
Ao and circular frequency w, resulting in an external hor­
izontal force F(t) = mA0 w2 sin wt on the second floor. 
(a) What is the natural frequency (in hertz) of oscillations 
of the second floor? (b) If the ground undergoes one 
oscillation every 2 .25 s with an amplitude of 3 in., what 
is the amplitude of the resulting forced oscillations of the 
second floor? 

24. A mass on a spring without damping is acted on by the 
external force F(t) = Fo cos3 wt. Show that there are two 
values of w for which resonance occurs, and find both. 

25. Derive the steady periodic solution of 

m x" +ex'+ kx = Fo sinwt. 

In particular, show that it is what one would expect-the 
same as the formula in (20) with the same values of C and 
w, except with sin(wt- a) in place of cos(wt- a) . 

26. Given the differential equation 

mx" +ex'+ kx =Eo coswt + Fo sinwt 

-with both cosine and sine forcing terms-derive the 
steady periodic solution 

JE2 + F2 
Xsp(t) = 0 0 

cos(wt -a- {3), 
)(k- mw2 )2 + (cw)2 

where a is defined in Eq. (22) and {3 = tan- 1 (Fo/ Eo). 
(Suggestion: Add the steady periodic solutions separately 
corresponding to Eo cos wt and Fo sin wt (see Problem 
25).) 

27. According to Eq. (21), the amplitude of forced steady 
periodic oscillations for the system mx" + ex' + kx = 

FIGURE 5.6.11. The mass-spring-pulley 
system of Problem 22. 

Fo cos wt is given by 

C(w) = Fo 
.j(k- mw2)2 + (cw)1 

(a) If c ~ Ccr/../2, where Ccr = -J4lmi, show that 
steadily decreases as w increases. (b) If c < Ccr/ 
show that C attains a maximum value (practical 
nance) when 

w = Wm = J ':._ - c
2 

< wo = ff.. 
m 2m 2 Y; 

28. As indicated by the cart-with-flywheel example u<~'-"u'•o~ 
in this section, an unbalanced rotating machine part typ· 
ically results in a force having amplitude proportional to 
the square of the frequency w. (a) Show that the am· 
plitude of the steady periodic solution of the differential 
equation 

m x'' +ex' + kx = mAw2 cos wt 

(with a forcing term similar to that in Eq. (17)) is given by 

(b) Suppose that c2 < 2mk. Show that the maximum 
amplitude occurs at the frequency Wm given by 

Wm = k ( 2mk ) 
m 2mk -c2 · 

Thus the resonance frequency in this case is larger (in 
contrast with the result of Problem 27) than the natural fre­
quency wo = Km. (Suggestion: Maximize the square 
of C .) 

Automobile Vibrations 

Problems 29 and 30 deal further with the car of Example 
5. Its upward displacement function satisfies the equation 

Apply theW 
c of the resu 
given by 

Because w = 
v, this gives 

30. Figure 5.6.1 
C(w) using 
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mx" +ex'+ kx = cy' + ky when the shock absorber is con­
nected (so that c > 0). Withy =a sin wt for the road surface, 
this differential equation becomes 

but then subside to more tolerable levels at high speeds . 
Verify these graphically based conclusions by analyzing 
the function C(w ). In particular, find the practical reso­
nance frequency and the corresponding amplitude. mx" +ex'+ kx =Eo coswt + Fo sinwt 

where Eo = cwa and Fo = ka. 

29. Apply the result of Problem 26 to show that the amplitude 
C of the resulting steady periodic oscillation for the car is 
given by 

a)k2 + (cw)2 
C = -.jr;(k:;==='_=m=w=;;2;=:::;)2-F+=:(=cw=:)""2 

Because w = 2rcv/L when the car is moving with velocity 
u, this gives C as a function of v. 

30. Figure 5.6.12 shows the graph of the amplitude function 
C(w) using the numerical data given in Example 5 (in­
cluding c = 3000 N·s/ m). It indicates that, as the car 
accelerates gradually from rest, it initially oscillates with 
amplitude slightly over 5 em. Maximum resonance vibra­
tions with amplitude about 14 em occur around 32 mi/ h, 
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FIGURE 5.6.12. Amplitude of vibrations of the car 
on a washboard surface . 

co Go to goo.g1/12hK16 to 
download this application's 
computing resources including 
Maple/Mathematica!MATLAB . 

Here we investigate forced vibrations of the mass-spring-dashpot system with equa­
tion 

5 10 15 

5.6.13. The solution 
(t) + Xsp(t) and the steady 

solution x(t) = Xsp(t) with 
external force 
901 cos 3t . 

mx" +ex'+ kx = F(t). (1) 

To simplify the notation, let's take m = p 2 , c = 2p, and k = p 2 q2 + 1, where p > 0 
and q > 0. Then the complementary function of Eq. (1) is 

Xc(t) = e-I /P(c1 cosqt + c2 sinqt). (2) 

We will take p = 5, q = 3, and thus investigate the transient and steady periodic 
solutions corresponding to 

25x" +lOx'+ 226x = F(t) , x(O) = 0, x'(O) = 0 (3) 

with several illustrative possibilities for the external force F(t). For your personal 
investigations to carry out similarly, you might select integers p and q with 6 ~ p ~ 9 
and 2 ~ q ~ 5. 

INVESTIGATION 1: With periodic external force F(t) = 901 cos 3t, the MATLAB 

commands 

X dsolve('25*D2x+l0*Dx+226*x=901*cos(3*t)', 
'x(O)=O, Dx(O)=O' ) ; 

x simple (x) ; 
syms t, xsp = cos(3*t) + 30*sin(3*t); 
ezplot (x, [0 6*pi]) ,hold on 
ezplot (xsp, [0 6*pi]) 

produce the plot shown in Fig. 5.6.13. We see the (transient plus steady periodic) 
solution 

x(t) = cos 3t + 30 sin 3t + e-1
/
5 (- cos 3t - 4

1
5
5
1 sin 3t) 

rapidly "building up" to the steady periodic oscillation Xsp(t) = cos 3t + 30 sin 3t. 


