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Exercises 

SECTION 16.4 GREEN'S THEOREM 1089 

with center the origin and radius a, where a is chosen to be small enough that C' lies 
inside C. (See Figure 11 .) Let D be the region bounded by C and C'. Then its positively 
oriented boundary is C U (-C') and so the general version of Green's Theorem gives 

f. P dx + Q dy + f P dx + Q dy = ff ( aQ - oP) dA 
c -c· ax ay 

D 

ff [ 
y2 _ x2 

= (x2 + y2)2 -
D 

Therefore f. P dx + Q dy = s.· P dx + Q dy 
c c· 

that is, f. F · dr = J. F • dr c c· 

We now easily compute this last integral using the parametrization given by 
r(t) =a cos ti +a sin tj, 0 ~ t ~ 271". Thus 

f. F · dr = J. F · dr = f2"' F(r(t)) · r'(t) dt 
c c Jo 

= [2"' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2"' dt = 271" -
Jo a 2cos2t + a 2sin2t Jo 

We end this section by using Green's Theorem to discuss a result that was stated in the 
preceding section. 

SKETCH OF PROOF OF THEOREM 16.3.6 We' re assuming that F =Pi + Q j is a vector field 
on an open simply-connected region D, that P and Q have continuous first-order partial 
derivatives, and that 

aP = aQ_ 
ay ax 

throughout D 

If Cis any simple closed path in D and R is the region that C encloses, then Green's The­
orem gives 

fc F · dr = fc P dx + Q dy == ff ( ~~ - ~;) dA = JJ 0 dA = 0 
R R 

A curve that is not simple crosses itself at one or more points and can be broken up 
into a number of simple curves. We have shown that the line integrals ofF around these 
simple curves are all 0 and, adding th~se integrals, we see that fc F · dr = 0 for any 
closed curve C. Therefore fc F · dr is independent of path in D by Theorem 16.3.3. It fol­
lows that F is a conservative vector field. -

Evaluate the line integral by two methods: (a) directly and 
using Green's Theorem. 

2. ~c xydx+x2 dy, 
Cis the rectangle with vertices (0, 0), (3, 0), (3, 1), and (0, 1) 

~c (x - y) dx + (x + y) dy, 3. ~c xy dx + x 2y 3 dy, 
C is the circle with center the origin and radius 2 Cis the triangle with vertices (0, 0), (1, O),_and (1, 2) 

... 
Graphing calculator or computer required ~ Computer algebra system required 1. Homework Hints available at stewartcalculus.com 
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4. Pc x 2y 2 dx + xy dy, C consists of the arc of the parabola 
y = x2 from (0, 0) to (1, 1) and the line segments from (1, 1) 
to (0, 1) and from (0, 1) to (0, O) 

5-10 Use Green's Theorem to evaluate the line integral along 
the given positively oriented curve. 

5. fc xy2 dx + 2x2y dy, 
Cis the triangle with vertices (0, 0), (2, 2), and (2, 4) 

&. fc cosy dx + x 2sin y dy, 
Cis the rectangle with vertices (0, 0), (5, 0), (5, 2), and (0, 2) 

7. fc (y + el%) dx + (2x + cos y2) dy, 
C is the boundary of the region enclosed by the parabolas 
y = x 2 and x = y2 

8. fcY 4 dx + 2xy3 dy, Cis the ellipse x2 + 2y2 7' 2 

9. fc y3 dx - x 3 dy, Cis the circle x 2 + y 2 
= 4 

10. fc (1 - y 3
) dx + (x3 + e'') dy, Cis the boundary of the 

region between the circles x 2 + y2 = 4 and x2 + y 2 = 9 

11-14 Use Green's Theorem to evaluate fc F • dr. (Check the 
orientation of the curve before applying the theorem.) 

11. F(x, y) = (y cos x - xy sin x, xy + x cos x), 
Cis the triangle from (0, O) to (0, 4) to (2, O) to (0, 0) 

12. F(x, y) = (e-• + y 2
, e-' + x 2 ), 

C consists of the arc of the curve y = cos x from ( -7T/2, 0) 
to ( 7T/2, 0) and the line segment from ( 7T/2, O) to ( -7T/2, O) 

13. F(x,y) = (y- cosy,xsiny), 
Cis the circle (x - 3)2 + (y + 4)2 = 4 oriented clockwise 

14. F(x, y) = ( y0+1, tan -t x ), C is the triangle from (0, 0) 
to (1, 1) to (0, 1) to (0, O) 

~ 15-16 Verify Green's Theorem by using a computer algebra sys­
tem to evaluate both the line integral and the double integral. 

15. P(x, y) = y2e', Q(x, y) = x2e', 
C consists of the line segment from ( -1, 1) to (1, 1) 
followed by the arc of the parabola y = 2 - x 2 from {1, 1) 
to(-1,1) 

16. P(x, y) = 2x - x3ys, Q(x, y) = x 3y 8
, 

Cis the ellipse 4x 2 + y2 = 4 

17. Use Green's Theorem to find the work done by the force 
F(x, y) = x(x + y) i + xy 2 j in moving a particle from the 
origin along the x-axis to (1, 0), then along the line segment 
to (0, 1), and then back to the origin along they-axis. 

18. A particle starts at the point ( -2, 0), moves along the x-axis 
, to (2, 0), and then along the semicircle y = ../4 - x 2 to the 

starting point. Use Green's Theorem to find the work done 
on this particle by the force field F(x, y) = (x, x 3 + 3xy2) . 

19. Use one of the fomiu1as in [1] to find the area under one 
arch of the cycloid x = t - sin t, y = 1 - cos t. 

ffi 20. If a circle C with radius 1 rolls along the outside of the 
circle x 2 + y 2 = 16, a fixed point P on C traces out a 
curve called an epicycloid, with parametric equations 
x = 5 cost - cos 5t, y = 5 sin t - sin 5t. Graph the epi­
cycloid and use rn to find the area it encloses. 

21 . (a) If Cis the line segment connecting the point (xt. y1) to 
the point (x2, y2), show that 

fc X dy - Y dx. = XtY2 - X2Yt 

(b) If the vertices of a polygon, in counterclockwise order, 
are (xt, Yt ), (x2, y2), ... , (x., y.), show that the area of 
the polygon is 

A = H<x1Y2 - X2Yt) + (x2YJ - x3y2) + · · · 
+ (Xn-tYn - x.y.-d + (x.yl - XtY.)] 

(c) Find the area of the pentagon with vertices (0, 0), (2, 1), 
(1, 3), (0, 2), and ( -1, 1). 

22. Let D be a region bounded by a simple closed path C in the 
xy-plane. Use Green's Theorem to prove that the coordinates 
of the centroid (:X, y) of/) are 

x = -
1-i x 2dy y = --

1-i y 2dx 
2A 1c 2A Tc 

where A is the area of D. 

23. Use Exercise 22 to find the centroid of a quarter-circular 
region of radius a. 

24. Use Exercise 22 to find the centroid of the triangle with 
vertices (0, 0), (a, 0), and (a, b), where a > 0 and b > 0. 

25. A plane lamina with constant density p(x, y) = p occupies a 
region in the xy-plane bounded by a simple closed path C. 
Show that its moments of inertia about the axes are 

26. U~e Exercise 25 to find the moment of inertia of a circular 
·disk of radius a with constant density p about a diameter. 
(Compare with Example 4 in Section 15.5.) 

27. Use the method of Example 5 to calculate fc F · dr, where 

( ) 
_ 2xy i + (y 2 - x2) j 

F X, y - ( 2 2)2 
X + y 

and C is any positively oriented simple closed curve that 
encloses the origin. 

28. Calculate fcF · dr, where F(x,y) = (x2 + y, 3x- y2) and 
C is the positively oriented boundary curve of a region D 
that bas area 6. 

29. IfF is the vector field of Example 5, show that fc F • dr = 0 
for every simpl~ closed path that does not pass through or 
enclose the origin. 
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30. Complete the proof of the special case of Green's Theorem 
by proving Equation 3. 

Here R is the region in the xy-plane that corresponds to the 
region S in the uv-plane under the transformation given by 
x = g(u, v) , y = h(u, v) . 31. Use Green's Theorem to prove the change of variables 

formula for a double integral (Formula 15.10.9) for the case 
where f(x, y) = 1: 

[Hint: Note that the left side is A(R) and apply the first 
part of Equation 5. Convert the line integral over aR to a 
line integral over as and apply Green's Theorem in the 
uv-plane.] [f dx dy = [f I:~::~~ I du dv 

Curl ~nd Divergence 

In tbls section we define two operations· that can be performed on vector fields and that 
play a basic role in the applications of vector calculus to fluid flow and electricity and mag­
netism. Each operation resembles differentiation, but one produces a vector field whereas 
the other produces a scalar field. ' 

-Curl 
IfF =Pi + Q j + R k is a vector field on IR 3 and the partial derivatives of P, Q, and R 
all exist, then the curl of F is the vector field on 1R 3 defined by 

curl F = (~ _ aQ) i + ( aP _ aR) j + ( aQ _ aP) k 
~ ~ ~ ~ ~ ~ 

As an aid to our memory, let's rewrite Equation 1 using operator notation. We intro­
duce the vector differential operator V' ("del") as 

n • a . a a 
y =•-+J-+k-ax ay az 

It has meaning when it operates on a scalar function to produce the gradient oft: 

v t = i at + j at + k at = at i + at j + at k 
ax ay az ax ay az 

If we think of V' as a vector with components ajax, ajay, and ajaz, we can also consider 
the formal cross product of V' with the vector field F as follows : 

j k 

V X F= 
a a a. 
ax ay az 
p Q R 

= ( aR _ aQ) i + ( aP _ aR) j + ( aQ _ aP) k 
~ - ~ ~ ~ ~ ~ 

=curl F 

So the easiest way to remember Definition 1 is by means of the symbolic expression 

curl F = V' X F 
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by Green's Theorem. But the integrand in this double integral is just the divergence of F. 
So we have a second vector form of Green's Theorem. 

fc F · n ds = JJ div F(x, y) dA 
D 

This version says that the line integral of the normal component of F along C is equal to 
the double integral -of the divergence ofF over the region D enclosed by C. 

1-8 Find (a) the curl and (b) the divergence of the vector field. 

1. F(x, y, z) = (x + yz) i + (y + xz) j + (z + xy) k 

2. F(x, y, z) = xy 2z3 i + x 3yz2 j + x 2y 3z k 

3. F(x, y, z) = xye' i + yze' k 

4. F(x, y, z) = sin yz i + sin zx j + sin xy k 

5. F(x, y, z) = 
1 

(x i + y j + z k) .Jx2 + y2 + z2 

6. F(x, y, z) = e'' sin z j + y tan- 1(x/z) k 

7. F(x, y, z) = (e' sin y, e' sin z, e' sin x) 

8. F(x, y, z)· = / ~. 1:'.., !..._) \y Z X 

9-11 The vector field F is shown in the xy-plane and looks the 
same in all other horizontal planes. (In other words, F is independ­
ent of z and its z-component is 0.) 
(a) Is div F positive, negative, or zero? Explain. 
(b) Determine whether curl F = 0. If not, in which direction does 

curl F point? 

9. y 10. y 

I I I/ t 
t 

1/// 
r r i i 
i i i i 

/ / / __.,/" 

- - --+ ______,. 

0 X 0 X 

11. y 
--.-.-
-.---....-.-

.... .... .... .... 

...,__ ......... ...,__ ...,._. 

0 X 

l Homework Hints available at stewartcalculus.com 

12. Let f be a scalar field and Fa vector field. State whether 
each expression is meaningful. If not, explain why. If so, state 
whether it is a scalar field or a vector field. 

(a) curl f (b) grad/ 

(c) div F (d) curl(gradf) 

(e) grad F (f) grad(di¥ i') 

(g) div(gradf) (h) grad(div f) 

(i) curl( curl F) ( j) div(div F) 

(k) (grad f) X (div F) (l) div(curl(gradf)) 

13- 18 Determine whether or not the vector field is conservative. 
If it is conservative, find a function f such that F = "il f . 

13, F(x, y, z) = y2z3 i + 2xyz3 j + 3xy2z2 k 

16. F~x, y, z) = i + sin z j + y cos z k 

17. F(x, y, z) = e'' i + xze'' j + xye'' k 

18. F(x, y, z) = e' sin yz i + ze' cos yz j + ye' cos yz k 

19. Is there a vector field G on IR 3 such that 
curl G = (x sin y, cosy, z - xy)? Explain. 

20. Is the,re a vector field G on IR 3 such that 
curl G = (xyz, -y2z, yz2)? Explain. 

21 . Show that any vector field of the form 

F(x, y, z) = f(x) i + g(y) j + h(z) k 

where f, g, h are differentiable functions, is irrotational . 

22. Show that any vector field of the form 

F(x, y, z) = f(y, z) i + g(x, z) j + h(x, y) k 

is incompressible. 
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23-29 Prove the identity, assuming that the appropriate partial 
derivatives exist and are continuous. Iff is a scalar field and F, G 
are vector fields, then JF, F • G, and F X G are defmed by 

(!F)(x, y, z) = f(x, y, z) F(x, y, z) 

(F · G)(x, y, z) = F(x, y, z) · G (x, y, z) 

~xm~~~=F~~~XG~~~ 

23. div(F + G) = div F + div G 

24. curl(F + G) = curl F + curl G 

25. div(!F) = f div F + F · Vj 

26. curl(!F) = f curl F + (V f) X F 

21. div(F x G) = G · curl F - F · curl G 

28. div(VfX Vg) = 0 

29. curl( curl F) = grad(div F) - V2F 

30-32 Let r =xi + y j + z k and r = I r J. 

30. Verify each identity. 
(a) V • r = 3 (b) V · (rr) = 4r 
(c) V2 r 3 = 12r 

31 . Verify each identity. 

(a) Vr = r/r 

(c) V(l/r) = -r/r3 

(b) V X r = 0 

(d) Vlnr=r/r2 

32. IfF = r/ rP, find div F. Is there a value of p for which 
divF = 0? 

33. Use Green's Theorem in the form of Equation 13 to prove 
Green's first identity: 

D D 

where D and C satisfy the hypotheses of Green's Theorem 
and the appropriate partial derivatives off and g exist and are 
continuous. (The quantity Vg · n = D. g occurs in the line inte­
gral. This is the directional derivative in the direction of the 
normal vector n and is called the normal derivative of g.) 

34. Use Green's first identity (Exercise 33) to prove Green's 
second identity: 

ff (!V 2g - gV2j) dA = fc (!V g - gV f) · n ds 
D 

where D and C satisfy the hypotheses of Green's Theorem 
and the appropriate partial derivatives off and g exist and are 
continuous. 

35. Recall from Section 14.3 that a function g is called harmonic 
on d if it satisfies Laplace's equation, that is, V2g = 0 on D. 
Use Green's first identity (with the same hypotheses as in 

Exercise 33) to show that if g is harmonic on D, then 
~c Dog ds = 0. Here Dog is the normal derivative of g defined 
in Exercise 33. · 

36. Use Green's first identity to show that iff is hariJ;loni~ 
on D, and ifj(x, y) = 0 on the boundary curve C, then 
JJ 0 I Vf 12 dA = 0. (Assume the same hypotheses as in 
Exercise 33.) 

37. This exercise demonstrates a connection between the curl 
vector and rotations. Let B be a rigid body rotating about the 
z-axis. The rotation can be described by the vector w = wk, 
where w is the angular speed of B, that is, the tangential speed 
of any point P in B divided by the distance d from the axis of 
rotation. Let r = (x, y, z) be the position vector of P. 
(a) By considering the angle 8 in the figure, show that the 

velocity field of B is given by v = w X r . 
(b) Show that v = -wy i + wxj. 
(c) Show that curl v = 2w. 

z 

w 

y 

38. Maxwell's equations relating the electric field E and magnetic 
field H as they vary with time in a region containing no charge 
and no current can be stated as follows: 

.divE= 0 

1 aH 
curlE = --­

c at 

divH = 0 

1 aE 
curlH =-­

c at 
where cis the speed of light. Use these equations to prove the 
following: 

1 a2 E 
(a) V X (V X E)=---. 

c 2 at 2 

1 a2 H 
(b) V X (V X H)==--­

c2 at 2 


