Math 3298 Exam II, Part II NAME:

SCORE:

1. Calculate the double integral $\int \int_D \frac{y}{x^2 + y^2} dA$ by converting it to polar coordinates. Here D is the region between circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

2. Find the surface area of the paraboloid $z = x^2 + y^2$ between z = 1 and z = 4.

3. Rewrite the integral

$$\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} f(x, y, z) dz dy dx$$

as an iterated integral in the order dxdydz.

4. Calculate the triple integral $\int \int \int_E \frac{1}{x^2 + y^2 + z^2} dV$ by converting it to spherical coordinates. Here *E* is the region between sphere $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$. 5. Given the following double integrals

$$\int_{1/\sqrt{2}}^{1} \int_{\sqrt{1-x^2}}^{x} xy dy dx + \int_{1}^{\sqrt{2}} \int_{0}^{x} xy dy dx + \int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^2}} xy dy dx.$$

Sketch all three regions of integration on one XY plane.

6. (BONUS PROBLEM) Use a simple way to calculate it.