
CHAPTER 6

SOME CONTINUOUS PROBABILITY DISTRIBUTIONS

Recall that a continuous random variable X is a
random variable that takes all values in an interval (or
a set of intervals).

• The distribution of a continuous random variable
is described by a density function f (x). A density
curve must satisfy that

– The total area under the curve, by defini-

tion, is equal to 1 or 100%, i.e.,
∫

∞

−∞

f (x) dx=

1.

– The probability of variable values between
a and b is the area from a to b under the
curve (a≤ b), i.e., the area under the curve

for a range of values,
∫ b

a
f (x) dx, is the pro-

portion of all observations for that range.

• The probability of any event is the area under
the density curve and above the values of X that
make up the event.

EXAMPLE 6.1. What value of r makes the following to
be valid density curve?

6.1 Continuous Uniform Distribu-
tion

Being the simplest continuous distribution, uniform
distribution Unif[A,B] is often called “rectangular dis-
tribution” because the density function forms a rect-
angle with base B−A and constant height 1/(B−A).

Continuous Uniform Distribution

The density function of the continuous uniform ran-
dom variable X on the interval [A,B] (or, (A,B], [A,B),
(A,B)) is

f (x;A,B)=





1
B−A

, x ∈ [A,B] (or, (A,B], [A,B), (A,B))

0 elsewhere.

NOTE. The interval may not always be closed. It can
be (A,B), (A,B], or [A,B) as well.

Mean and Variance of Continuous Uniform r.v.

The mean and variance of the uniform distribution are

µ =
A+B

2
and σ

2 =
(B−A)2

12
.

EXAMPLE 6.2. Suppose that X follows the continuous
uniform distribution Unif[2,7].

(a) Find the PDF of X . Plot it.

(b) Calculate the mean and the standard deviation of
X .

(c) Determine (i) P(3≤ X < 6), (ii) P(X ≥ 5), and
(iii) P(X = 4).

(d) Find the value of c such that P(2 < X ≤ c) = 0.4.

6.2 Normal Distribution

Normal Density Function

The density of the normal random variable X with
mean µ and variance σ2 is

n(x; µ,σ) =
1√

2πσ
e−

1
2 (

x−µ

σ )
2

, −∞ < x < ∞

where e = 2.71828 . . . and π = 3.1425926 . . . .
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Normal Density Curve

• a “bell shaped” curve.

• depends upon two parameters for its particular
shape:

– µ : the mean of the distribution (i.e. loca-
tion).

– σ : the standard deviation of the distribu-
tion (i.e. spread or variation).

EXAMPLE 6.3. Given a family of density curves. Which
is which?

Properties of a Normal Curve

• The mode, which is the point on the horizontal
axis where the curve is a maximum, occurs at
x = µ.

• The curve is symmetric about a vertical axis
through the mean µ.

• The curve has its points of inflection at x = µ±
σ ; it is concave downward if µ−σ < X < µ +σ

and is concave upward otherwise.

• The normal curve approaches the horizontal axis
asymptotically as we proceed in either direction
away from the mean.

• The total area under the curve and above the
horizontal axis is equal to 1.

EXAMPLE 6.4. Evaluate
∫

∞

−∞

e−
1
2 (

x−1
3 )

2
dx.

Mean and Variance of Normal r.v.

The mean and variance of n(x; µ, σ) are µ and σ2,
respectively. Hence, the standard deviation is σ .

6.3 Areas under the Normal Curve

Because all normal distributions share the same prop-
erties, we can standardize our data to transform any
normal curve n(x; µ, σ) into the standard normal curve
n(z;0, 1) by

Z =
X−µ

σ
.

Theorem. If X ∼ n(x; µ,σ), then

X−µ

σ
= Z ∼ n(z;0,1)

Standard Normal Distribution

The standard normal distribution is the normal distri-
bution with mean 0 and standard deviation 1, denoted
as n(z;0, 1). Its density function is given by

f (x) =
1√
2π

e−
1
2 x2

, −∞ < x < ∞.

Suppose that Z follows the standard normal dis-
tribution. Then

• for Z ≤ a, denoted as P(Z ≤ a), is equal to the
area under the curve to the left of a.

• for a ≤ Z ≤ b representing the area under the
density curve between a and b, , denoted as
P(a≤ Z ≤ b), is equal to that for Z ≤ b minus
the proportion for Z ≤ a, i.e. P(a≤ Z ≤ b) =
P(Z ≤ b)−P(Z < a).
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Section 6.3. Areas under the Normal Curve 31

• for Z > a is equal to 1 minus the proportion for
Z ≤ a, i.e. P(Z > a) = 1−P(Z ≤ a).

• for Z ≥ a is equal to that for Z ≤−a by symme-
try, i.e. P(Z ≥ a) = P(Z ≤−a).

• for Z = a for any a, is equal to 0, i.e. P(Z = a) =
0. It follows that

P(a < Z < b) = P(a≤ Z < b)

= P(a≤ Z ≤ b)

= P(a < Z ≤ b)

EXAMPLE 6.5. Suppose that Z follows the standard
normal distribution, i.e. Z ∼ n(x; 0, 1). Find

(a) P(Z ≤ 1.05)

(b) P(1.05≤ Z ≤ 2.38)

(c) P(Z > 1.75)

(d) P(1.05 < Z ≤ 2.38)

(e) P(1.05≤ Z < 2.38)

(f) P(1.05 < Z < 2.38)

(g) P(−2 < Z ≤ 1)

(h) P(|Z| ≤ 1)

(i) P(|Z| ≥ 2.45)

By standardizing we convert the desired area for X into
an equivalent area associated with Z.

X ≤ a⇐⇒ Z ≤ a−µ

σ

a < X ≤ b⇐⇒ a−µ

σ
< Z ≤ b−µ

σ

EXAMPLE 6.6. (a) Suppose that X ∼ n(x; 1, 0.5). Find
P(0≤ X < 1.5).

(b) Suppose that Y ∼ n(y; −2, 5). Find P(Y > 0).

Inverse normal calculations

We may also want to find the observed range of values
z that correspond to a given probability/ area under
the curve. One needs use the normal table backward:

• we first find the desired area/ probability in the
body of the table.

• we then read the corresponding z-value from the
left column and top row.

For convenience, we shall always choose the z
value corresponding to the tabular probability that comes
closest to the specified probability.

EXAMPLE 6.7. Let Z be the standard normal random
variable. Determine the value of k such that

(a) P(Z ≤ k) = 0.0778

(b) P(−2.88 < Z ≤ k) = 0.85

(c) P(Z > k) = 0.25

When dealing with the general normal distribu-
tion X ∼ n(x; µ,σ), we still reverse the process and
begin with a known area or probability, (i) find the
z value, and then (ii) determine x by rearranging the
formula

z =
x−µ

σ
⇐⇒ x = σz+µ.

EXAMPLE 6.8. Find the value of k such that

(a) P(X ≤ k) = 0.1977, where X ∼ n(x; 10, 5).

(b) P(k < X ≤ 1.98) = 75%, where X ∼ n(x; −1, 2).

(c) P(|X−2| ≤ k) = 50%, where X ∼ n(x; 2, 1).
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6.4 Applications of the Normal Dis-
tribution

z-score

z =
x−µ

σ
is often called the z-score. It measures the

number of standard deviations that a data value x is
from the mean µ. When x is larger than the mean µ,
z is positive. When x is smaller than the mean µ, z is
negative.

EXAMPLE 6.9. Sarah is 22 and her mother Ann is 65
years old. Sarah scores 125 on a standard IQ test and
Ann scores 110 on the same test. Scores on this test
for the 21-30 age group are approximately normally dis-
tributed with mean 110 and standard deviation 25, while
scores for the 61-70 age group are approximately nor-
mally distributed with mean 90 and standard deviation
25. Who did better?

EXAMPLE 6.10. The length of human pregnancies from
conception to birth varies according to a distribution that
is approximately normal with mean 266 days and stan-
dard deviation 15 days.

(a) What percent of pregnancies last less than 240
days (that’s about 8 months)?

(b) What percent of pregnancies last between 240 and
270 days (roughly between 8 months and 9 months)?

(c) How long do the longest 15% of pregnancies last?

EXAMPLE 6.11. The tensile strength of paper used to
make grocery bags is a crucial quality characteristic. It
is known that the measurement of tensile strength of a
type of paper is normally distributed with µ = 40 lb/in2

and σ = 2 lb/in2. The purchaser of bags requires to have
a strength that is at least 35 lb/in2.

(a) What is the probability that a bag produced using
this paper will fail to meet the specification?

(b) Among 10000 bags, how many do you expect fail-
ing to meet the specification?

EXAMPLE 6.12. The weights of eggs laid by young
hens at a local farm are normally distributed with un-
known mean µ and standard deviation 5 grams. If ap-
proximately 12.1% of eggs weigh less than 45 grams,
determine the value of the mean (in grams).

EXAMPLE 6.13. A physical-fitness association is in-
cluding the mile run in its secondary-school fitness test
for boys. The time for this event for boys in secondary
school is approximately normally distributed with mean
300 seconds and standard deviation of 20 seconds. If the
association wants to designate the fastest 10% as “excel-
lent”, what time should the association set for this crite-
rion?

EXAMPLE 6.14. Scores on a provincial math exam are
known to be well-described by a normal distribution with
mean 600 and standard deviation 100. Exam adminis-
trators have decided to give the top 15% of students a
grade of A and the next 25% a grade of B. Find the min-
imum exam score required to receive each of the two
letter grades.

6.5 Normal Approximation to the
Binomial

Theorem. If X ∼ b(x; n, p), then

Z =
X−µX

σX
=

X−np√
np(1− p)

→ n(z;0,1),

as n→ ∞.

NOTE. This approximation works well when n is large
and p is not extremely close to 0 or 1. As a rule of
thumb, we require both np > 5 and n(1− p)> 5.

EXAMPLE 6.15. Suppose that X is a binomial random
variable with parameters n = 12 and p = 0.4.

(a) Find P(X = 5) using the binomial formula.

(b) Find P(4.5 < X < 5.5) using the normal approxi-
mation.

(c) Compare the answers.

EXAMPLE 6.16. Suppose that X ∼ b(x; 12,0.4).

(a) Find P(6≤ X ≤ 8) using the binomial formula.

(b) Find P(5.5 < X < 8.5) using the normal approxi-
mation.

(c) Compare the answers.
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Section 6.6. Exponential Distr. and Gamma Distribution 33

Continuity Correction

This correction accommodates the fact that a discrete
distribution (e.g., binomial) is being approximated by a
continuous distribution (e.g., normal). The correction
±0.5 is called a continuity correction.

Normal Approximation to the Binomial Distribu-
tion

Let X be a binomial random variable with parameters
n and p. For large n, X has approximately a normal
distribution with µ = np and σ2 = np(1− p) and

P(X < x)≈ P

(
Z <

x−0.5−np√
np(1− p)

)

P(X ≤ x)≈ P

(
Z <

x+0.5−np√
np(1− p)

)

P(X > x)≈ P

(
Z >

x+0.5−np√
np(1− p)

)

P(X ≥ x)≈ P

(
Z >

x−0.5−np√
np(1− p)

)

Similarly,

P(a≤ X ≤ b)≈ P

(
a−0.5−np√

np(1− p)
< Z <

b+0.5−np√
np(1− p)

)

P(a < X ≤ b)≈ P

(
a+0.5−np√

np(1− p)
< Z <

b+0.5−np√
np(1− p)

)

P(a≤ X < b)≈ P

(
a−0.5−np√

np(1− p)
< Z <

b−0.5−np√
np(1− p)

)

P(a < X < b)≈ P

(
a+0.5−np√

np(1− p)
< Z <

b−0.5−np√
np(1− p)

)

NOTE. Again, this approximation requires np > 5 and
n(1− p)> 5.

EXAMPLE 6.17. A process yields 10% defective items.
If 100 items are randomly selected from the process,
what is the probability that the number of defectives

(a) is less than 8?

(b) exceeds 13?

(c) is between 9 and 11 (inclusive)?

Linear Combinations of Normal R.V.’s

Theorem. If X1,X2, . . . ,Xn are independent random vari-
ables having normal distributions with means µ1,µ2, . . . ,µn

and variances σ2
1 ,σ

2
2 , . . . ,σ

2
2 , respectively, then the ran-

dom variable

Y = a1X1 +a2X2 + · · ·+anXn

has a normal distribution with mean

µY = E(Y ) = a1µ1 +a2µ2 + · · ·+anµn

and variance

σ
2
Y = Var(Y ) = a2

1σ
2
1 +a2

2σ
2
2 + · · ·+a2

nσ
2
2 .

In short, if Xi
independent∼ N(µi, σi) for i= 1,2, . . . ,n,

then

n

∑
i=1

aiXi ∼ N

(
n

∑
i=1

aiµi,

√
n

∑
i=1

a2
i σ2

i

)
.

6.6 Exponential Distr. and Gamma
Distribution

Exponential Distribution

The continuous random variable X has an exponential
distribution, with parameter β , if its density function
is given by

f (x;β ) =

{
1
β

e−x/β , x > 0

0, x≤ 0

where β > 0.

EXAMPLE 6.18. Find k such that

f (x) =

{
k exp(−2013x), x > 0
0, x≤ 0

is a legitimate density function of an exponential r.v..

EXAMPLE 6.19. Evaluate
∫

∞

0
e−2x dx without using

calculus knowledge.

EXAMPLE 6.20. Let X be an exponential random vari-
able with parameter β .

(a) Derive its cumulative density function F(x)

(b) Evaluate P(0 < X < T ), where T > 0.

(c) Evaluate P(X ≥ T ), where T > 0.

(d) Find M such that P(0 < X < M) = P(X ≥M).
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34 Chapter 6. Some Continuous Probability Distributions

EXAMPLE 6.21. Suppose that the time, in hours, re-
quired to repair a heat pump is a random variable X hav-
ing an exponential distribution with parameter β = 1/2.

(a) What is the probability that at most 1 hour will
be required to repair the heat pump on the next
service call?

(b) What is the probability that at least 2 hours will
be required to repair the heat pump on the next
service call?

Mean and Variance of the Exponential r.v.

The mean and variance of the exponential distribution
are

µ = β and σ
2 = β

2.

EXAMPLE 6.22. Derive the above formulas.

EXAMPLE 6.23. Refer to Example 6.21. How long do
you expect to take to repair a heat pump of this type?

EXAMPLE 6.24. If an exponential distribution has mean
2.5, what is its standard deviation?

EXAMPLE 6.25. Evaluate, without using calculus knowl-
edge, the following integrals.

(a)
∫

∞

0
e−2x dx

(b)
∫

∞

0
xe−2x dx

(c)
∫

∞

0
x2e−2x dx

Let us review the well-known gamma function
and some of its important properties.

Gamma Function

The gamma function is defined by

Γ(α) =
∫

∞

0
xα−1e−x dx, for α > 0.

Properties of the Gamma Function

(a) Γ(α) = (α−1)Γ(α−1).

(b) Γ(n) = (n−1)!, where n is a positive integer.

(c) Γ(1) = 1 and Γ(1/2) =
√

π

Gamma Distribution

The continuous random variable X has a gamma distri-
bution, with parameters α and β , if its density function
is given by

f (x;α,β ) =

{
1

β α Γ(α)xα−1e−x/β , x > 0

0, x≤ 0

where shape parameter α > 0 and rate parameter β >
0.

6.6 Gamma and Exponential Distributions 195

(b) Γ(n) = (n − 1)! for a positive integer n.

(c) Γ(1) = 1.

Furthermore, we have the following property of Γ(α), which is left for the reader
to verify (see Exercise 6.39 on page 206).

(d) Γ(1/2) =
√

π.

The following is the definition of the gamma distribution.

Gamma
Distribution

The continuous random variable X has a gamma distribution, with param-
eters α and β, if its density function is given by

f(x; α, β) =

{
1

βαΓ(α)x
α−1e−x/β , x > 0,

0, elsewhere,

where α > 0 and β > 0.

Graphs of several gamma distributions are shown in Figure 6.28 for certain
specified values of the parameters α and β. The special gamma distribution for
which α = 1 is called the exponential distribution.

0 1 2 3 4 5 6

0.5

1.0

f(x)

x

= 1α

β
= 1

= 2α

β
= 1

= 4α

β
= 1

Figure 6.28: Gamma distributions.

Exponential
Distribution

The continuous random variable X has an exponential distribution, with
parameter β, if its density function is given by

f(x; β) =

{
1
β e−x/β , x > 0,

0, elsewhere,

where β > 0.

NOTE. The special gamma distribution for which α = 1
is called the exponential distribution.

EXAMPLE 6.26. Evaluate
∫

∞

0
x5/2e−x/3 dx.

Mean and Variance of the Gamma r.v.

The mean and variance of the gamma distribution are

µ = αβ and σ
2 = αβ

2.

EXAMPLE 6.27. A biomedical study determines that
the survival time, in weeks, has a gamma distribution
with α = 3 and β = 4, for a certain dose of a toxicant.
What is the probability that a rat survives no longer than
10 weeks?

6.7 Chi-Squared Distribution

The chi-squared distribution is another very important
special case of the gamma distribution. It is obtained
by letting α = ν/2 and β = 2, where ν is a positive
integer and called the degree of freedom.

Chi-squared Distribution

The continuous random variable X has a chi-squared
distribution, with ν degrees of freedom, if its density
function is given by

f (x;ν) =

{
1

2ν/2 Γ(ν/2)
xν/2−1 e−x/2, x > 0

0, x≤ 0,

where ν is a positive integer.
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Mean and Variance of the Chi-squared r.v.

The mean and variance of the chi-squared distribution
are

µ = ν and σ
2 = 2ν .

Linear Combinations of Chi-squared R.V.’s

Theorem. If X1,X2, . . . ,Xn are independent random vari-
ables having Chi-squared distributions with ν1,ν2, . . . ,νn
degrees of freedom, respectively, then the random vari-
able

Y = X1 +X2 + · · ·+Xn

has a Chi-squared distribution with ν = ν1 +ν2 + · · ·+
νn degrees of freedom.

In short, if Xi
independent∼ χ2(νi) for i = 1,2, . . . ,n,

then
n

∑
i=1

Xi ∼ χ
2

(
n

∑
i=1

νi

)
.

Theorem. If Z ∼ N(0,1) then

Z2 ∼ χ
2(1)

Theorem. If X1,X2, . . . ,Xn are independent and nor-
mally distributed with mean µ and standard deviation σ ,

n

∑
i=1

(
Xi−µ

σ

)2

∼ χ
2(n).

EXAMPLE 6.28. Verify that the exponential distribu-
tion with parameter β = 2 is a chi-squared distribution
with parameter ν = 2.

EXAMPLE 6.29. If a ch-squared distribution has mean
2.5, what is its standard deviation?

F distribution

If F ∼ F(ν1,ν2), then its density is given by

h( f )=
Γ[(ν1 +ν2)/2](ν1/ν2)

ν1/2

Γ(ν1/2)Γ(ν2/2)
f (ν1/2)−1

(1+ν1 f/ν2)(ν1+ν2)/2

Theorem. Let U ∼ χ2(ν1) and V ∼ χ2(ν2). If U and
V are independent, then

F =
U/ν1

V/ν2
∼ F(ν1,ν2) or Fν1,ν2

NOTE. Let Fα(ν1,ν2) be the upper tail critical value.

F1−α(ν1,ν2) =
1

Fα(ν2,ν1)

6.8 Beta Distribution

Beta Function

The (complete) beta function is defined by

B(α,β ) =
∫ 1

0
xα−1(1− x)β−1 dx

=
Γ(α)Γ(β )

Γ(α +β )
, for α,β > 0,

where Γ(α) is the gamma function.

NOTE. The incomplete beta function is known as

B(x;α,β ) =
∫ x

0
tα−1(1− t)β−1 dt.

For x = 1, it coincides with the complete beta function.

EXAMPLE 6.30. Define the regularized incomplete beta
function in terms of

Ix(α,β ) =
B(x;α,β )

B(α,β )

Prove the following properties:

(a) I0(α,β ) = 0

(b) I1(α,β ) = 1

(c) Ix(α,β ) = I1−x(β ,α)

(d) Ix(α +1,β ) = Ix(α,β )− xα(1− x)β

aB(α,β )

Beta Distribution

The continuous random variable X has a beta distri-
bution, with parameters α > 0 and β > 0, if its density
function is given by

f (x;α,β ) =

{
1

B(α,β )xα−1(1− x)β−1, 0 < x < 1

0, elsewhere

where α,β > 0.

Mean and Variance of the Beta r.v.

The mean and variance of the beta distribution are

µ =
α

α +β
and σ

2 =
αβ

(α +β )2(α +β +1)
,

respectively.

EXAMPLE 6.31. Prove that E(X) =
α

α +β
, where X

has the beta distribution with parameter α and β .

NOTE. The uniform distribution on (0,1) is a beta dis-
tribution with parameters α = 1 and β = 1. Its mean and
variance are

µ =
1

1+1
=

1
2

and σ
2 =

(1)(1)
(1+1)2(1+1+1)

=
1

12
.
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