
CHAPTER 9

ONE- AND TWO-SAMPLE ESTIMATION PROBLEMS

9.1 Introduction

The purpose of statistical inference is to draw con-
clusions from data. We have already examined data
and arrived at conclusions many times in the previous
chapters. Formal inference emphasizes substantiating
our conclusions by probability calculations.

Although there are many specific recipes for in-
ference, there are only a few general types of statis-
tical inference. This chapter and next chapter will
introduce the two most common types: confidence in-
tervals and tests of significance. We usually refer them
as the problems of estimation and hypothesis testing.

9.2 Statistical Inference

Statistical inference draws conclusions about a popu-
lation or process based on sample data. For instance,
one uses the sample mean x to make generalization
for the population mean µ, and uses the sample stan-
dard deviation s for the population standard deviation
σ . It also provides a statement, expressed in terms of
probability, of how much confidence we can place in
our conclusions.

For the problem of estimation of unknown pop-
ulation parameters such as the mean, the proportion,
and the variance, the trend is to distinguish between
the classical method, or frequentist method, whereby
inferences are based strictly on information obtained
from a random sample selected from the population,
and the Bayesian method, which utilizes prior sub-
jective knowledge about the probability distribution of
the unknown parameters in conjunction with the in-
formation provided by the sample data. We shall use
classical methods to estimate unknown population pa-
rameters by computing statistics from random samples
and applying the theory of sampling distributions.

Because the methods of formal inference are based

on sampling distributions, they require a probability
model for the data. Trustworthy probability models
can arise in many ways, but the model is most secure
and inference is most reliable when the data are pro-
duced by a properly randomized design. When you use
statistical inference, you are acting as if the data come
from a random sample or a randomized experiment.

9.3 Classical Methods of Estimation

A point estimate of some population parameter θ is
a single value θ̂ of a statistic Θ̂. For example, the

value x=
∑

n
i=1 xi

n
of the statistic X =

∑
n
i=1 Xi

n
is a point

estimate of the population parameter µ. Similarly,
p̂ = x/n is a point estimate of the true proportion p
for a binomial experiment.

Note that we don’t expect an error-free estima-
tion because of the sampling bias and variability. Also,
there may be more than one point estimates for a
population unknown parameter; we need choose one
wisely.

Unbiased Estimator

A statistic Θ is said to be an unbiased estimator of the
parameter θ if

µ
Θ̂
= E

(
Θ̂
)
= θ .

EXAMPLE 9.1. Show that X is an unbiased estimator
of the parameter µ .

EXAMPLE 9.2. Show that S2 is an unbiased estimator
of the parameter σ2.

Most Efficient Estimator

If we consider all possible unbiased estimators of some
parameter θ , the one with the smallest variance is
called the most efficient estimator of θ .
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EXAMPLE 9.3. Which one of the following estimators
is the most efficient one?268 Chapter 9 One- and Two-Sample Estimation Problems
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Figure 9.1: Sampling distributions of different estimators of θ.

of X̃. Thus, both estimates x̄ and x̃ will, on average, equal the population mean
µ, but x̄ is likely to be closer to µ for a given sample, and thus X̄ is more efficient
than X̃.

Interval Estimation

Even the most efficient unbiased estimator is unlikely to estimate the population
parameter exactly. It is true that estimation accuracy increases with large samples,
but there is still no reason we should expect a point estimate from a given sample
to be exactly equal to the population parameter it is supposed to estimate. There
are many situations in which it is preferable to determine an interval within which
we would expect to find the value of the parameter. Such an interval is called an
interval estimate.

An interval estimate of a population parameter θ is an interval of the form
θ̂L < θ < θ̂U , where θ̂L and θ̂U depend on the value of the statistic Θ̂ for a
particular sample and also on the sampling distribution of Θ̂. For example, a
random sample of SAT verbal scores for students in the entering freshman class
might produce an interval from 530 to 550, within which we expect to find the
true average of all SAT verbal scores for the freshman class. The values of the
endpoints, 530 and 550, will depend on the computed sample mean x̄ and the
sampling distribution of X̄. As the sample size increases, we know that σ2

X̄
= σ2/n

decreases, and consequently our estimate is likely to be closer to the parameter µ,
resulting in a shorter interval. Thus, the interval estimate indicates, by its length,
the accuracy of the point estimate. An engineer will gain some insight into the
population proportion defective by taking a sample and computing the sample
proportion defective. But an interval estimate might be more informative.

Interpretation of Interval Estimates

Since different samples will generally yield different values of Θ̂ and, therefore,
different values for θ̂L and θ̂U , these endpoints of the interval are values of corre-
sponding random variables Θ̂L and Θ̂U . From the sampling distribution of Θ̂ we
shall be able to determine Θ̂L and Θ̂U such that P (Θ̂L < θ < Θ̂U ) is equal to any

In many situations, we prefer to determine an
interval within which we would expect to find the value
of the parameter. Such an interval is called an interval
estimate.

Interval Estimation

An interval estimate of a population parameter θ is an
interval of the form

θ̂L < θ < θ̂U ,

where θ̂L and θ̂U depend on the value of the statistic
Θ̂ for a particular sample and also on the sampling
distribution of Θ̂.

9.4 Single Sample: Estimating the
Mean

9.4.1 An Introductory Example.

Let us now look at an example.

The heights of the freshmen at UMD are sup-
posed to follow a normal distribution with mean µ and
standard deviation σ = 10 (in cm). A random sample
of size n = 36 is taken, the sample mean x = 160.

• Use x = 160 to estimate the value of µ. This is
a point estimation of µ.

• Is µ equal to 160?

• We would like to convert this point estimate into
a statement, like “the value of µ is between 150
cm and 170 cm” and attached to the statement
a measure of degree of confidence of it being
true.

• From the distribution of X ,

X−µ

σ/
√

n
∼ N(0, 1)

• About 95% of the values of X are expected to
fall within 2(σ/

√
n) of µ, i.e.,

P

(
µ−2

σ√
n
≤ X ≤ µ +2

σ√
n

)
= 0.95.

Exchanging the positions of µ and X ,

P

(
X−2

σ√
n
≤ µ ≤ X +2

σ√
n

)
= 0.95.

• Our sample gives x = 160, then the interval is

from
(

x−2 σ√
n

)
to
(

x+2 σ√
n

)
, or,

(
160−2

10√
36

, 160+2
10√
36

)

or,
(157, 163)

• This is an interval estimate of the unknown pa-
rameter of µ.

– 0.95, confidence level or confidence coeffi-
cient

– (157, 163), 95% confidence interval of µ

– 157, lower confidence limit

– 163, upper confidence limit

– 6 = 163−157, interval width

Interpretation of Interval Estimates

From the sampling distribution of Θ̂, we shall be able
to determine θ̂L and θ̂U such that

P
(
Θ̂L < θ < Θ̂U

)
= 1−α,

for 0 < α < 1, then we have a probability of 1−α of
selecting a random sample that will produce an interval
containing θ .

• The interval θ̂L < θ < θ̂U , computed from the
selected sample, is called a 100(1−α)% confi-
dence interval.

• The fraction 1−α is called the confidence co-
efficient or the degree of confidence.

• The endpoints, θ̂L and θ̂U , are called the lower
and upper confidence limits.
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the shape of the distributions not too skewed, sampling theory guarantees good
results.

Clearly, the values of the random variables Θ̂L and Θ̂U , defined in Section 9.3,
are the confidence limits

θ̂L = x̄ − zα/2
σ√
n

and θ̂U = x̄ + zα/2
σ√
n

.

Different samples will yield different values of x̄ and therefore produce different
interval estimates of the parameter µ, as shown in Figure 9.3. The dot at the
center of each interval indicates the position of the point estimate x̄ for that random
sample. Note that all of these intervals are of the same width, since their widths
depend only on the choice of zα/2 once x̄ is determined. The larger the value we
choose for zα/2, the wider we make all the intervals and the more confident we
can be that the particular sample selected will produce an interval that contains
the unknown parameter µ. In general, for a selection of zα/2, 100(1 − α)% of the
intervals will cover µ.
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Figure 9.3: Interval estimates of µ for different samples.

Example 9.2: The average zinc concentration recovered from a sample of measurements taken
in 36 different locations in a river is found to be 2.6 grams per milliliter. Find
the 95% and 99% confidence intervals for the mean zinc concentration in the river.
Assume that the population standard deviation is 0.3 gram per milliliter.

Solution : The point estimate of µ is x̄ = 2.6. The z-value leaving an area of 0.025 to the
right, and therefore an area of 0.975 to the left, is z0.025 = 1.96 (Table A.3). Hence,
the 95% confidence interval is

2.6 − (1.96)

(
0.3√
36

)
< µ < 2.6 + (1.96)

(
0.3√
36

)
,
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Continue on the UMD freshmen height example.

• Interpretation of 95% confidence interval

– We are 95% confident that the interval
from 157 cm and 163 cm will contain the
true value of µ.

– We are 95% confident that the true value
of µ lies between 157 cm and 163 cm.

– If we repeat the sampling processes over
and over again, then approximately 95% of
the similarly constructed intervals are ex-
pected to contain the true value of µ.

• Caution – Don’t say

– 95% of all freshmen at UMD are expected
to have heights between 157cm and 163cm.

– We are 95% confident that a randomly se-
lected UMD freshman has a height between
157cm and 163cm.

– 95% of all simple random samples of 10
UMD freshmen will have mean height be-
tween 157cm and 163cm.

In general, let us consider the interval estimate of the
unknown population mean µ, in general. If the sample
is selected from a normal population or, if n is suffi-
ciently large, we can establish a confidence interval for
µ based on the sampling distribution of X .

9.4.2 The case of known σ

The idea is the same as that in the UMD freshmen
height example.

P
(
−zα/2 < Z < zα/2

)
= 1−α

P

(
−zα/2 <

X−µ

σ/
√

n
< zα/2

)
= 1−α

P

(
µ− zα/2

σ√
n
< X < µ + zα/2

σ√
n

)
= 1−α

P

(
X− zα/2

σ√
n
< µ < X + zα/2

σ√
n

)
= 1−α

Confidence Interval on µ, when σ Known

If x is the mean of a random sample of size n from a
population with known standard deviation σ , a 100(1−
α)% confidence interval for µ is given by

x− zα/2
σ√

n
< µ < x+ zα/2

σ√
n

where zα/2 is the z-value such that P
(
Z > zα/2

)
=

α/2.

270 Chapter 9 One- and Two-Sample Estimation Problems

standard deviation σX̄ = σ/
√

n. Writing zα/2 for the z-value above which we find
an area of α/2 under the normal curve, we can see from Figure 9.2 that

P (−zα/2 < Z < zα/2) = 1 − α,

where

Z =
X̄ − µ

σ/
√

n
.

Hence,

P

(
−zα/2 <

X̄ − µ

σ/
√

n
< zα/2

)
= 1 − α.

z

1 −

−z
α /2 0 z

α /2

α /2
α /2

α

Figure 9.2: P (−zα/2 < Z < zα/2) = 1 − α.

Multiplying each term in the inequality by σ/
√

n and then subtracting X̄ from each
term and multiplying by −1 (reversing the sense of the inequalities), we obtain

P

(
X̄ − zα/2

σ√
n

< µ < X̄ + zα/2
σ√
n

)
= 1 − α.

A random sample of size n is selected from a population whose variance σ2 is known,
and the mean x̄ is computed to give the 100(1 − α)% confidence interval below. It
is important to emphasize that we have invoked the Central Limit Theorem above.
As a result, it is important to note the conditions for applications that follow.

Confidence
Interval on µ, σ2

Known

If x̄ is the mean of a random sample of size n from a population with known
variance σ2, a 100(1 − α)% confidence interval for µ is given by

x̄ − zα/2
σ√
n

< µ < x̄ + zα/2
σ√
n

,

where zα/2 is the z-value leaving an area of α/2 to the right.

For small samples selected from nonnormal populations, we cannot expect our
degree of confidence to be accurate. However, for samples of size n ≥ 30, with

NOTE. Sometimes, it is easier to use the t table to find
the z-values.

NOTE. The C.I. is exact if the population is normal; it
is approximate if the population is non-normal and n is
sufficiently large.

EXAMPLE 9.4. High school students who take the SAT
mathematics exam a second time generally score higher
than on their first try. The change in score has a normal
distribution with variance σ2 = 2500. A random sample
of 1000 students gains an average of x = 22 points on
their second try.

(a) Construct a 90% confidence interval for the mean
score gain µ in the population of all students.

(b) Interpret the C.I. in part (a).

(c) Repeat part (a) for levels of confidence of 95%
and 99%.

(d) How does increasing the confidence level affect
the width of a confidence interval?

A wise user of statistics never plans data collec-
tion without at the same time planning the inference.
We could arrange to have both high confidence and a
small error.

If e is a pre-fixed (perhaps, desired and specified)
amount that the error zα/2

σ√
n can not exceed, we set

zα/2
σ√

n
< e

Solve for n, we have

Sample Size Determination

If x is used as an estimate of µ, we can be 100(1−α)%
confident that the error will not exceed a specified
amount e when the sample size is

n =

(
zα/2 σ

e

)2

NOTE. When solving for the sample size, n, we round
all fractional values up to the next whole number. This
way, we can be sure that our degree of confidence never
falls below 100(1−α)%.

X. Li 2015 Fall STAT-3611 Lecture Notes



46 Chapter 9. One- and Two-Sample Estimation Problems

EXAMPLE 9.5. A community health nutritionist wishes
to conduct a survey among a population of teenage girls
to determine their average daily protein intake (mea-
sured in grams). Assume that the population of protein
intakes is normally distributed with a standard deviation
of 20 grams. If she wants a 95% confidence interval with
an error of no more than 5 grams, how many teenage
girls should be interviewed?

One-Sided Confidence Interval on µ, σ Known

If x is the mean of a random sample of size n from
a population with standard deviation σ , the one-sided
100(1−α)% confidence intervals for µ are given by

upper one-sided C.I.: −∞ <µ < x+ zα

σ√
n

lower one-sided C.I.: x− zα

σ√
n
<µ < ∞.

The derivation can be similarly done. For the
lower one-sided C.I.,

1−α = P(Z < zα) = P

(
X−µ

σ/
√

n
< zα

)

= P

(
X < zα

σ√
n
+µ

)
= P

(
µ > X− zα

σ√
n

)

EXAMPLE 9.6. An electrical firm manufactures light
bulbs that have a length of life that is approximately nor-
mally distributed with a standard deviation of 40 hours.
If a sample of 30 bulbs has an average life of 780 hours,
find a 98% lower one-sided confidence interval for the
population mean of all bulbs produced by this firm.

9.4.3 The case of unknown σ

It is more practical and important that the population
standard deviation σ is assumed unknown.

Confidence Interval on µ, when σ Unknown

If x and s are the mean and the standard deviation
of a random sample of size n from a population with
unknown standard deviation σ , a 100(1−α)% confi-
dence interval for µ is given by

x− tα/2
s√
n
< µ < x+ tα/2

s√
n

where tα/2 is the t-value with (n−1) degrees of free-

dom such that P
(
T (n−1)> tα/2

)
= α/2.
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−t
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α

Figure 9.5: P (−tα/2 < T < tα/2) = 1 − α.

Confidence
Interval on µ, σ2

Unknown

If x̄ and s are the mean and standard deviation of a random sample from a
normal population with unknown variance σ2, a 100(1−α)% confidence interval
for µ is

x̄ − tα/2
s√
n

< µ < x̄ + tα/2
s√
n

,

where tα/2 is the t-value with v = n − 1 degrees of freedom, leaving an area of
α/2 to the right.

We have made a distinction between the cases of σ known and σ unknown in
computing confidence interval estimates. We should emphasize that for σ known
we exploited the Central Limit Theorem, whereas for σ unknown we made use
of the sampling distribution of the random variable T . However, the use of the t-
distribution is based on the premise that the sampling is from a normal distribution.
As long as the distribution is approximately bell shaped, confidence intervals can
be computed when σ2 is unknown by using the t-distribution and we may expect
very good results.

Computed one-sided confidence bounds for µ with σ unknown are as the reader
would expect, namely

x̄ + tα
s√
n

and x̄ − tα
s√
n

.

They are the upper and lower 100(1 − α)% bounds, respectively. Here tα is the
t-value having an area of α to the right.

Example 9.5: The contents of seven similar containers of sulfuric acid are 9.8, 10.2, 10.4, 9.8,
10.0, 10.2, and 9.6 liters. Find a 95% confidence interval for the mean contents of
all such containers, assuming an approximately normal distribution.

Solution : The sample mean and standard deviation for the given data are

x̄ = 10.0 and s = 0.283.

Using Table A.4, we find t0.025 = 2.447 for v = 6 degrees of freedom. Hence, the

The derivation can be done in the similar fashion.

1−α = P
(
−tα/2 < T < tα/2

)

= P

(
−tα/2 <

X−µ

s/
√

n
< tα/2

)

= P

(
X− tα/2

s√
n
< µ < X + tα/2

s√
n

)

EXAMPLE 9.7. In an experiment on the metabolism
of insects, American cockroaches were fed measured
amounts of a sugar solution after being deprived of food
for a week and of water for 3 days. After 2, 5, and
10 hours, the researchers dissected some of the cock-
roaches and measured the amount of sugar in various
tissues. Five cockroaches fed the sugar D-glucose and
dissected after 10 hours had the following amounts (in
micrograms) of D-glucose in their hindguts:

55.95 68.24 52.73 21.50 23.78

(a) List the conditions that are required for this inter-
val estimation.

(b) Find a 99% confidence interval for the mean amount
of D-glucose in cockroach hindguts under these
conditions.

EXAMPLE 9.8. How much do users pay for Internet
service? Here are the monthly fees (in dollars) paid by a
random sample of 50 users of commercial Internet ser-
vice providers in August 2000: (Data from the August
2000 supplement to the Current Population Survey, from
the Census Bureau Web site, www.census.gov.)

20 40 22 22 21 21 20 10 20 20
20 13 18 50 20 18 15 8 22 25
22 10 20 22 22 21 15 23 30 12
9 20 40 22 29 19 15 20 20 20

20 15 19 21 14 22 21 35 20 22

(a) Is it appropriate to use t confidence interval to an-
alyze the data? Briefly explain.

(b) Give a 95% confidence interval for the mean monthly
cost of Internet access in August 2000.

STAT-3611 Lecture Notes 2015 Fall X. Li
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One-Sided Confidence Interval on µ, σ Unknown

If x and s are the mean and the standard deviation
of a random sample of size n from a population with
standard deviation σ , the one-sided 100(1−α)% con-
fidence intervals for µ are given by

upper one-sided C.I.: −∞ <µ < x+ tα
s√
n

lower one-sided C.I.: x− tα
s√
n
<µ < ∞.

EXAMPLE 9.9. A meat inspector has randomly selected
30 packs of 95% lean beef. The sample resulted in a
mean of 96.2% with a sample standard deviation of 0.8%.
Find a 90% upper one-sided confidence interval for the
leanness of all packs. Assume normality.

9.4.4 Large-Sample Confidence Interval

Assume that the sample size n is greater than 30 and
the population distribution is not too skewed. We may
utilize both the z-values and the sample standard de-
viation s for estimating the population mean µ

x− zα/2
s√
n
< µ < x+ zα/2

s√
n

This is often referred to as a large-sample confidence
interval.
NOTE. This can be regarded as a normal approximation
(t-value becomes z-value when n is sufficiently large);
the quality of the approximation becomes better as the
sample size gets larger.

EXAMPLE 9.10. Due to the decrease in interest rates,
the First Citizens Bank received a lot of mortgage appli-
cations. A recent sample of 100 mortgage loans resulted
in an average loan amount of $255,500 with a standard
deviation of $25,000. Construct a 95% confidence inter-
val for the loan amount. for all customers who fill out
mortgage applications.

9.4.5 Summary

For estimating population means based on a single
sample, it is essential to require that (i) the statistics
(i.e., x and s) must be from a random sample, and
(ii) the population is normal, or, if failing, n≥ 30.

In general, when constructing the 2-sided C.I.,
we

• use x± zα/2
σ√

n
, if σ is known.

• use x± tα/2
s√
n

, if σ is unknown and n small.

• use x± zα/2
s√
n

, if σ is unknown and n large.

9.5 Standard Error of a Point Esti-
mate

The standard error of X is the standard deviation of
X .

s.e.(x) =
σ√

n

The estimated standard error of X is defined by the
estimator of σ/

√
n.

ŝ.e.(x) =
s√
n

It is also called as the standard error of X in many
statistical computing packages.

NOTE. All the 2-sided confidence intervals that we have
constructed in preceding section can be written as

x± (zα/2 or tα/2) · s.e.(x)

More generally, a 2-sided 100(1−α)% C.I. for θ

is expressible of

θ̂ ± (critical value) · s.e.(θ̂)

9.6 Prediction Intervals

Take STAT 3612 for “Prediction Intervals”

9.7 Tolerance Limits

Take STAT 3612 for “Tolerance Limits”

9.8 Two Samples: Estimating the Dif-
ference between Two Means

We will now conduct statistical inference procedures
for estimating µ1−µ2, the difference between two pop-
ulation means, based on independent samples.

As in Subsection 8.4.3, suppose that we have
two populations with means µ1 and µ2 and variances
σ2

1 and σ2
2 , respectively. We take two independent

random samples, one from each population, of sizes n1
and n2. Then it is quite nature to have the difference
between two sample means X1−X2 as a nature point
estimator of the difference between two population
means µ1−µ2.

For an interval estimate of µ1−µ2, we must con-
sider the sampling distribution of X1−X2.
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9.8.1 Variances Known

Assume that both σ2
1 and σ2

2 are known, we have from
Subsection 8.4.3, that

Z =

(
X1−X2

)
− (µ1−µ2)√

σ2
1 /n1 +σ2

2 /n2

∼ N(0,1)

Now,

1−α = P
(
−zα/2 < Z < zα/2

)

= P


−zα/2 <

(
X1−X2

)
− (µ1−µ2)√

σ2
1 /n1 +σ2

2 /n2

< zα/2




follows

C.I. for µ1−µ2, when both σ2
1 and σ2

2 known

If x1 and x2 are means of independent random sam-
ples of sizes n1 and n2 from populations with known
variances σ2

1 and σ2
2 , respectively, a 100(1−α)% con-

fidence interval for µ1−µ2 is given by

(x1− x2)− zα/2

√
σ2

1
n1

+
σ2

2
n2

< µ1−µ2

< (x1− x2)+ zα/2

√
σ2

1
n1

+
σ2

2
n2

where zα/2 is the z-value defined previously.

NOTE. The confidence interval is exact when two in-
dependent samples are taken from normal populations.
For non-normal populations, the Central Limit Theorem
allows for a pretty good approximation for reasonable
size samples.

EXAMPLE 9.11. We would like to compare the mean
tar content in regular cigarettes and light cigarettes. We
take simple random samples of regular and light cigarettes
of a particular brand and measure the tar content (in mg)
of each cigarette. The data are as follows:

Regular: 11.3 12.1 12.6 11.5 12.2 12.8
Light: 9.5 9.8 9.3 8.9 10.0

It is known that tar content for regular cigarettes of this
brand follows a normal distribution with standard devi-
ation 0.4 mg and tar content for light cigarettes of this
brand follows a normal distribution with standard devi-
ation 0.3 mg. Find a 95% confidence interval for the
difference in mean tar content for all regular cigarettes
and all light cigarettes of this brand.

9.8.2 Variances Unknown but Equal

Assume that the population variances σ2
1 and σ2

2 are
unknown but equal, i.e., σ2

1 = σ2
2 = σ2. We can show

that the statistic

T =
(X1−X2)− (µ1−µ2)√

σ2(1/n1 +1/n2)

/√
(n1−1)S2

1 +(n2−1)S2
2

σ2 (n1 +n2−2)

follows the Student t-distribution with ν = n1 +n2−2
degrees of freedom.

Define the pooled estimate of variance, or, the
pooled sample variance, as

S2
p =

(n1−1)S2
1 +(n2−1)S2

2
n1 +n2−2

NOTE. The pooled variance is just a weighted average
of the variances of X1 and X2, where the weights are the
respective degrees of freedom.

Then the above statistic becomes

T =
(X1−X2)− (µ1−µ2)

Sp

√
1
n1
+ 1

n2

∼ T (n1 +n2−2)

Now,

1−α = P
(
−tα/2 < T < tα/2

)

= P


−tα/2 <

(X1−X2)− (µ1−µ2)

Sp

√
1
n1
+ 1

n2

< tα/2




follows

C.I. for µ1−µ2, when σ2
1 = σ2

2 = σ2, but Unknown

If x1 and x2 are means of independent random samples
of sizes n1 and n2 from populations with unknown but
equal variances, a 100(1−α)% confidence interval for
µ1−µ2 is given by

(x1− x2)− tα/2sp

√
1
n1

+
1
n2

< µ1−µ2

< (x1− x2)+ tα/2sp

√
1
n1

+
1
n2

where tα/2 is the t-value defined previously and

sp =

√
(n1−1)s2

1 +(n2−1)s2
2

n1 +n2−2
.

EXAMPLE 9.12. An insurance company would like to
know if men drive faster on average than women. The
company took a random sample of 52 cars driven by men
on a highway and found the mean speed to be 114 km/h
with a standard deviation of 10 km/h. Another sample
of 30 cars driven by women on the same highway gave
a mean speed of 108 km/h with a standard deviation of
7 km/h. Construct a 98% confidence interval for the true
difference between the mean speeds of cars driven by
men and women on this highway.
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NOTE. It is practically important to determine whether
the population variances can be assumed to be equal or
not. A rule of thumb is to look at the ratio of the sample

standard deviations. If
1
2
<

s1

s2
< 2, the equal variance

can be assumed; otherwise unequal.

9.8.3 Variances Unknown and Unequal

Assume that the population variances σ2
1 and σ2

2 are
unknown but unequal, i.e., σ2

1 6= σ2
2 . The statistic

T =

(
X1−X2

)
− (µ1−µ2)√

s2
1/n1 + s2

2/n2

·∼ T(ν)

where ν =
(s2

1/n1 + s2
2/n2)

2

[(s2
1/n1)2/(n1−1)]+ [(s2

2/n2)2/(n2−1)]
.

NOTE. The expression for v above is an estimate of the
degrees of freedom. In applications, it is rarely a whole
number, and we should round it down to the nearest
integer to achieve the desired confidence.

C.I. for µ1−µ2, when σ2
1 6= σ2

2 , but Unknown

If x1 and s2
1 and x2 and s2

2 are the means and vari-
ances of independent random samples of sizes n1 and
n2, respectively, from approximately normal popula-
tions with unknown and unequal variances, an ap-
proximate 100(1−α)% confidence interval for µ1−µ2
is given by

(x1− x2)− tα/2

√
s2

1
n1

+
s2

2
n2

< µ1−µ2

< (x1− x2)+ tα/2

√
s2

1
n1

+
s2

2
n2

where tα/2 is the t-value defined previously with ν as
above.

EXAMPLE 9.13. The gasoline prices (in cents/litre) for
a random sample of 8 Winnipeg gas stations and 5 Cal-
gary gas stations are recorded one day and are shown
below:

Winnipeg: 119.9 122.4 121.7 120.9
121.0 122.9 119.9 121.7

Calgary: 117.9 120.4 118.4 122.9 117.0

Find a 95% confidence interval for the difference in mean
gas prices for the two cities.

9.9 Paired Observations

Take STAT 3612 for “Paired Observations”

9.10 Single Sample: Estimating a
Proportion

Suppose that we draw a random sample of size n from
a large population having population proportion p of
successes. Let X be the count of successes in the
sample that follows the Binomial distribution with pa-
rameters n and p.

Define the sample proportion of successes

P̂ =
X
n
.

When n is large, the sampling distribution of P̂ is
approximately normal with mean

µP̂ = E
(

P̂
)
= E

(
X
n

)
=

np
n

= p

and variance

σ
2
P̂
= Var

(
P̂
)
= Var

(
X
n

)
=

np(1− p)
n2 =

p(1− p)
n

.

That is,

P̂ ·∼ N

(
p,

√
p(1− p)

n

)
, n→ ∞.

or,

Z =
P̂− p√

p(1−p)
n

→ N(0,1)

NOTE. As a thumb rule, this approximation requires
np≥ 5 and n(1− p)≥ 5.

Now,

1−α = P
(
−zα/2 < Z < zα/2

)

= P


−zα/2 <

P̂− p√
p(1−p)

n

< zα/2




≈ P


−zα/2 <

P̂− p√
p̂(1−p̂)

n

< zα/2




= P

(
P̂− zα/2

√
p̂(1− p̂)

n
< p < P̂+ zα/2

√
p̂(1− p̂)

n

)

where we used the point estimate p̂ = x/n to replace
p under the radical sign.

Large-Sample Confidence Intervals for p

If p̂ is the proportion of successes in a random sam-
ple of size n an approximate 100(1−α)% confidence
interval, for the binomial parameter p is given by

P̂− zα/2

√
p̂(1− p̂)

n
< p < P̂+ zα/2

√
p̂(1− p̂)

n
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NOTE. The (estimated) standard error of P̂ is defined
by

s.e.(P̂) =

√
p̂(1− p̂)

n
.

EXAMPLE 9.14. A question in a Christmas tree market
survey was “Did you have a Christmas tree last year?”
Of the 500 respondents, 421 answered “Yes.”

(a) Find the sample proportion and its standard error.

(b) Give a 90% confidence interval for the proportion
of Indiana households who had a Christmas tree
this year.

EXAMPLE 9.15. When trying to hire managers and ex-
ecutives, companies sometimes verify the academic cre-
dentials described by the applicants. One company that
performs these checks summarized its findings for a six-
month period. Of the 84 applicants whose credentials
were checked, 15 lied about having a degree. (Data pro-
vided by Jude M. Werra & Associates, Brookfield, Wis-
consin.)

(a) Find the proportion of applicants who lied about
having a degree and its standard error.

(b) Consider these data to be a random sample of cre-
dentials from a large collection of similar appli-
cants. Give a 95% confidence interval for the true
proportion of applicants who lie about having a
degree.

In a similar fashion, if e is a pre-fixed amount that
the error can not exceed, we set zα/2

√
p̂(1− p̂)/n < e.

and solve for n to determine the sample size.

Sample Size Determination

If p̂ is used as an estimate of p, we can be 100(1−α)%
confident that the error will be less than a specified
amount e when the sample size is approximately

n =
(zα/2)

2 p̂(1− p̂)
e2

NOTE. In order to ensure the the confidence degree is
no less than 100(1−α)%, we round all fractional values
up to the next whole number.

EXAMPLE 9.16. An automobile manufacturer would
like to know what proportion of its customers are dissat-
isfied with the service received from their local dealer.
The customer relations department will survey a random
sample of customers and compute a 95% confidence in-
terval for the proportion that are dissatisfied. From past
studies, they believe that this proportion will be about
0.25. Find the sample size needed if the error of the
confidence interval is to be no more than 0.02.

NOTE. If we have no idea what the value of p might be,
we can use p̂ = 0.5 in the sample size formula, i.e.,

n =
(zα/2)

2

4e2 .

This is the most conservative estimate of the sample size.

EXAMPLE 9.17. The use of email is growing rapidly
and is having a dramatic effect on the way we commu-
nicate. Suppose that we want to determine the current
proportion of Canadian households using email. How
many households must be surveyed to estimate the pro-
portion with a 90% confidence and an error of no more
than 3%?

9.11 Two Samples: Estimating the
Difference between Two Pro-
portions

We will now turn our attention to the case where we
wish to compare two population proportions and would
like to estimate the difference in population propor-
tions p1− p2, where p1 and p2 are the true propor-
tions of all individuals in Population 1 and Population
2 who have some attribute, respectively.

To do this, we will take a random sample of size
n1 from Population 1 and a random sample of size n2
from Population 2, and then calculate p̂1 and p̂2, the
sample proportions from the first and second samples,
respectively.

Hence it is quite nature that our point estimate
of p1− p2 is p̂1− p̂2. The mean of p1− p2 is

µp̂1−p̂2 = E(p̂1− p̂2)

= E(p̂1)−E(p̂2) = p1− p2

and, since the sample proportions are independent, the
variance of p̂1− p̂2 is

σ
2
p̂1−p̂2

= Var(p̂1− p̂2)

= Var(p̂1)+Var(p̂2)

=
p1(1− p1)

n1
+

p2(1− p2)

n2

If both sample sizes are large, we have the ap-
proximate distribution of p̂1− p̂2:

p̂1− p̂2 ∼ N


p1− p2,

√
p1(1− p1)

n1
+

p2(1− p2)

n2




and so

Z =
(p̂1− p̂2)− (p1− p2)√

p1(1−p1)
n1

+ p2(1−p2)
n2

·∼ N(0, 1)
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NOTE. The (estimated) standard error of p̂1− p̂2 is given
by the estimate of the standard deviation

s.e.(p̂1− p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
.

Large-Sample Confidence Interval for p1− p2

If p̂1 and p̂2 are the proportions of successes in ran-
dom samples of sizes n1 and n2, respectively, an ap-
proximate 100(1−α)% confidence interval for the dif-
ference of two binomial parameters, p1− p2, is given
by

(p̂1− p̂2)− zα/2 s.e.(p̂1− p̂2)< p1− p2

< (p̂1− p̂2)+zα/2 s.e.(p̂1− p̂2)

or

(p̂1− p̂2)− zα/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
< p1− p2

< (p̂1− p̂2)+ zα/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

EXAMPLE 9.18. Do older adults and young adults have
different views on Canada’s involvement in the war in
Afghanistan? A sample of 150 older adults (aged 40
- 65) and a sample of 120 young adults (aged 18 - 30)
were selected. Respondents were asked if they approved
of Canada’s continued involvement in Afghanistan. Of
the older adults, 87 said they agree with the decision,
while 54 of the young adults said they agree. Let p1
be the true population proportion of all older adults who
agree with the war and let p2 be the true population pro-
portion of all young adults who agree with the war. Cal-
culate a 95% confidence interval for the difference in
population proportions p1− p2.

9.12 Single Sample: Estimating the
Variance

We have shown that the sample variance S2 is an un-
biased estimator of the population variance σ2. Thus,
S2 is a point estimate of σ2.

We have also shown that the statistic

χ
2 =

(n−1)S2

σ2 ∼ χ
2(n−1)

if random samples of size n are selected from a normal
population.

Based on this,

P
(

χ
2
1−α/2 < χ

2 < χ
2
α/2

)
= 1−α
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Figure 9.7: P (χ2
1−α/2 < X2 < χ2

α/2) = 1 − α.

Dividing each term in the inequality by (n − 1)S2 and then inverting each term
(thereby changing the sense of the inequalities), we obtain

P

[
(n − 1)S2

χ2
α/2

< σ2 <
(n − 1)S2

χ2
1−α/2

]
= 1 − α.

For a random sample of size n from a normal population, the sample variance s2

is computed, and the following 100(1 − α)% confidence interval for σ2 is obtained.

Confidence
Interval for σ2

If s2 is the variance of a random sample of size n from a normal population, a
100(1 − α)% confidence interval for σ2 is

(n − 1)s2

χ2
α/2

< σ2 <
(n − 1)s2

χ2
1−α/2

,

where χ2
α/2 and χ2

1−α/2 are χ2-values with v = n−1 degrees of freedom, leaving

areas of α/2 and 1 − α/2, respectively, to the right.

An approximate 100(1 − α)% confidence interval for σ is obtained by taking
the square root of each endpoint of the interval for σ2.

Example 9.18: The following are the weights, in decagrams, of 10 packages of grass seed distributed
by a certain company: 46.4, 46.1, 45.8, 47.0, 46.1, 45.9, 45.8, 46.9, 45.2, and 46.0.
Find a 95% confidence interval for the variance of the weights of all such packages
of grass seed distributed by this company, assuming a normal population.

Solution : First we find

s2 =

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

n(n − 1)

=
(10)(21, 273.12) − (461.2)2

(10)(9)
= 0.286.

And,

1−α = P

(
χ

2
1−α/2 <

(n−1)S2

σ2 < χ
2
α/2

)

= P

(
1

χ2
α/2

<
σ2

(n−1)S2 <
1

χ2
1−α/2

)

= P

(
(n−1)S2

χ2
α/2

< σ
2 <

(n−1)S2

χ2
1−α/2

)

where χ2
α/2 and χ2

1−α/2 are as we defined previously.

Confidence Intervals for σ2

If s2 is the variance of a random sample of size n from a
normal population, a 100(1−α)% confidence interval
for σ2 is given by

(n−1)s2

χ2
α/2

< σ
2 <

(n−1)s2

χ2
1−α/2

where χ2
α/2 and χ2

1−α/2 are χ2-values with ν = n− 1
degrees of freedom, leaving areas of α/2 and 1−α/2,
respectively, to the right.

EXAMPLE 9.19. The bottlers of a new soft drink are ex-
periencing problems with the filling mechanism for their
16 floz bottles. To estimate the standard deviation of the
fill volume, the filled volume for 20 bottles was mea-
sured, yielding a sample standard deviation of 0.1 floz.
Compute a 95% confidence interval for the population
variance.

NOTE. Under the same setups, a 100(1−α)% confi-
dence interval for σ is given by

√
(n−1)s2

χ2
α/2

< σ <

√
(n−1)s2

χ2
1−α/2

EXAMPLE 9.20. Suppose that the data collected from
a random sample of 20 observations from a normal pop-
ulation and the sample variance is 100. Construct a 90%
confidence interval for the population standard devia-
tion σ .
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