A note on proving things: To prove $\exists x \ P(x)$, one need only give an example of an x for which $P(x)$ is true. Similarly, to demonstrate that $\forall x \ P(x)$ is false, an example of an x making $P(x)$ false is all that is needed. Such an x is called a counter example. Proving $\exists x \ P(x)$ is false or $\forall x \ P(x)$ is true is much harder. We will come back to these later.

In mathematics, we usually have lots of variables floting around. For example, from Section 1.4, we learned that $A \mathbf{x} = \mathbf{b}$ is always consistent if A has a pivot in every row. Here we seem to be swimming in variables: Matrices A, vectors \mathbf{b}, the rows of A, and a hidden one: $A \mathbf{x} = \mathbf{b}$ is consistent means that there is a vector \mathbf{x}_0 with the property that when you multiply it by A, you get \mathbf{b}. All this without even mentioning the constituents of \mathbf{x}, that we might typically refer to as variables. How do we handle this kind of thing? We must quantify every variable that appears in a propositional function.

To back up to something simpler, consider the statement

$$(x + 1)^2 = x^2 + 2x + 1.$$

What we mean by this is that $\forall x \ ((x + 1)^2 = x^2 + 2x + 1)$. That is, the original statement is not a propostion, but a propositional function. To make it a proposition, we quantify the variable x. Extending this,

$$(x + y)^2 = x^2 + 2xy + y^2$$

means

$$\forall x \ \forall y \ ((x + y)^2 = x^2 + 2xy + y^2).$$

We quantify each of the two variables. We might read the above as “For every x and every y, ...”

Often, a mathematical statement does not sound like a multivariable quantification, but the only reasonable way to think about it is in those terms. For example, if someone tells you that a positive number times a negative number is negative, what they almost certainly mean is the following:
\[\forall x \forall y ((x > 0 \land y < 0) \rightarrow xy < 0). \]

That is, a universal claim was being made. In such cases, we say the quantifiers are **nested**. Here is another: If a prime is one more than a multiple of 4, then it is a sum of two squares. We might write this:

\[\forall p (\exists k (p = 4k + 1) \rightarrow \exists m \exists n (p = m^2 + n^2)). \]

Here, we quantify over all primes \(p \). The first statement inside the \(\forall p (\) \) deals with the property that \(p \) is one more than a multiple of 4. The conclusion is that there are integers floating around with \(p \) being the sum of their squares.

Closer to this course, what does it mean to say that you can row reduce a matrix? It means for every matrix \(A \) there is a matrix \(R \) with the property that \(R \) is in reduced echelon form and \(A \) is row equivalent to \(R \). (Slightly) more symbolic, \(\forall A \exists R \) (\(R \) is reduced \land \(A \) is row equivalent to \(R \)).

When you have several variables, order matters. That is, consider the following: (a) \(\forall x \exists y (x + y > 0) \) and (b) \(\exists y \forall x (x + y > 0) \). These are not the same. In fact, (a) is true and (b) is false. Intuitively, you might think of working from the outside in. That is, in (a), \(x \) comes first, and then \(y \) gets its chance. That is, when picking \(y \), you can assume \(x \) is known. However in (b), \(y \) comes first. Given some value of \(y \), is \(x + y > 0 \) true for all \(x \)?

Technically, the way something like \(\forall x \exists y (x + y > 0) \) works is that we view \(\exists y (x + y > 0) \) as a propositional function in \(x \), the variable with no quantifier yet. That is to say, let \(P(x) \) be the propositional function \(\exists y (x + y > 0) \). Then \(P(1) \) is the proposition \(\exists y (1 + y > 0) \), \(P(-10) \) is the propositional function \(\exists y (-10 + y > 0) \), and so on. We see that these are true, and in general, \(\forall x P(x) \) is true.

With \(\exists y \forall x (x + y > 0) \), we first consider the propositional function \(Q(y) \): \(\forall x (x + y > 0) \). Here, \(Q(1) \) says \(\forall x (x + 1 > 0) \), \(Q(-4) \) says \(\forall x (x - 4 > 0) \). These are both false. In particular, \(Q(y) \) is false for all \(y \), so \(\exists y Q(y) \) is false.
How do we negate nested quantifiers? In a fashion similar to ordinary quantifiers: the negation changes \forall to \exists, \exists to \forall and then moves inside one level. For example,

$$\neg(\forall x \exists y \,(x + y > 0)) = \exists x \neg(\exists y \,(x + y > 0))$$

$$= \exists x \forall y \neg(x + y > 0)$$

$$= \exists x \forall y \,(x + y \leq 0).$$

For a more complicated example,

$$\neg(\forall p \,(\exists k \,(p = 4k + 1) \rightarrow \exists m \exists n \,(p = m^2 + n^2)))$$

$$= \exists p \neg((\exists k \,(p = 4k + 1) \rightarrow \exists m \exists n \,(p = m^2 + n^2)))$$

$$= \exists p ((\exists k \,(p = 4k + 1) \land \neg(\exists m \exists n \,(p = m^2 + n^2))))$$

$$= \exists p ((\exists k \,(p = 4k + 1) \land \forall m \forall n \neg(p = m^2 + n^2)))$$

$$= \exists p ((\exists k \,(p = 4k + 1) \land \forall m \forall n \,(p \neq m^2 + n^2))).$$

Here, the meaning is that the original claim about primes is wrong if there is a prime which IS one more than a multiple of 4, but which is never the sum of two squares.