Electrical Activity of Conduction System Coordinates Mechanical Activity of Pumping

Conduction System of Heart: Coordinates Atrial and Ventricular Excitement to Optimize Blood Pumping
Cardiac Cycle – Mechanical Events of SYSTOLE (Pumping)

Rapid increase in pressure \(\rightarrow\) open aortic valve \(\rightarrow\) eject blood into aorta

Isovolumetric ventricular contraction
- Atria relaxed
- Ventricles contract

Ventricular ejection
- Blood flows out of ventricle
- Atria relaxed
- Ventricles contract

<table>
<thead>
<tr>
<th>AV valves</th>
<th>Closed</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic and pulmonary valves</td>
<td>Closed</td>
<td>Open</td>
</tr>
</tbody>
</table>
Cardiac Cycle – Mechanical Events

Close Aortic Valve ➔ relax contraction ➔ open a-v (mitral) valve ➔ passively fill ventricle ➔ actively fill ventricle (atrial contraction)

Mid- Ventricular Diastole
1. Atrial P > Vent P, a-v open
2. Reduced late slow passive ventricular filling

Late Ventricular Diastole
3. ECG P wave = atrial contracts
4. Increase atrial pressure
5. Increase ventric pressure (a>v)
6. Active ventricular filling

End of Ventricular Diastole
7. Ventricle full for cycle EDV = 135 ml
Ventricular Excitation = Systole

8. QRS = ventricular excitation
9. Ventricular Contraction ➔ ventricular press > atrial press, close a-v valve, first heart sound (lub)

Isovolumetric Contraction

10. Rapid increase ventricular press
11. All valves closed, no Δ in volume

Ventricular Ejection

13. Aortic pressure increases but < ventricular pressure
14. Ventricular volume decreases

End of Ventricular Systole

15. 70 ml SV ejected, ESV remains (65ml) SV = EDV-ESV
 \[70 = 135 - 65\]

Ventricular Repolarization – Onset of Ventricular Diastole

16. T wave = ventricular repolarization
18. Dicrotic notch as aortic pressure briefly decreases

Isovolumetric Relaxation (diastole)

19. Rapid decrease in aortic pressure, both valves closed
20. No change in ventricular volume

Early Ventricular Filling (diastole)

21. Atrial Pressure > Ventricular Pressure = a-v valve opens
22. Atrial Pressure increased by blood from pulmonary artery
23. Rapid early passive filling

Mid Ventricular Diastole

24. Reduced late passive filling

Late Ventricular Diastole

25. SA node ➔ P wave
Cardiac Output = 5 liters per minute = 5000ml per minute

- Volume of blood ejected by each ventricle each minute
- Determined by **heart rate** times **stroke volume**

HEART RATE = beats / minute = 70bpm
STROKE VOLUME = ml or Liters per beat = 70 ml/beat

\[
\text{CO} = 5000 \text{ ml/min} = 70 \times 70 = 71 \times 71 = 70 \times 71 = \text{etc}
\]
\[
4900 = 5041 = 4970 = \text{etc}
\]
CO = HR x SV

- Heart rate is varied by altering balance of parasympathetic and sympathetic influence on SA node
 - Parasympathetic stimulation slows heart rate 70 to 60 to 50
 - Removal speeds HR 70 to 80 to 90 to 100 (rate with complete ps blockage)
 - Sympathetic stimulation speeds it up
 - 70 to max HR = ~ 220 – age for population
 HR > 100 has to be sympathetic or adrenal catecholamine effect

KEY
- Inherent SA node pacemaker activity
- SA node pacemaker activity on parasympathetic stimulation
- SA node pacemaker activity on sympathetic stimulation

(a) Autonomic influence on SA node potential

Fig. 9-17a, p. 248
(b) Control of heart rate by autonomic nervous system

Fig. 9-17b, p. 248
CO = HR \times SV

- **Stroke volume**
 - Determined by extent of venous return and by sympathetic activity
 - Influenced by two types of controls
 - Intrinsic control
 - Extrinsic control
 - Both factors increase stroke volume by increasing strength of heart contraction

Fig. 9-18, p. 249
Cardiac Reserve = Max CO/Rest CO

Frank-Starling curve on sympathetic stimulation
Normal Frank-Starling curve

Increase in stroke volume at same end-diastolic volume

End-systolic volume
End-diastolic volume

(a) Normal stroke volume
Stroke volume 70 ml
End-systolic volume 65 ml
End-diastolic volume 135 ml

(b) Stroke volume during sympathetic stimulation
Stroke volume 100 ml
End-systolic volume 35 ml
End-diastolic volume 135 ml

(c) Stroke volume with combination of sympathetic stimulation and increased end-diastolic volume
Stroke volume 140 ml
End-systolic volume 35 ml
End-diastolic volume 175 ml

Fig. 9-20, p. 250
Ejection Fraction

- One way to quantify contractility is through the ejection fraction (EF), defined as the ratio of stroke volume (SV) to end-diastolic volume (EDV):
 - \[\text{EF} = \frac{\text{SV}}{\text{EDV}} = \frac{70\text{ml}}{135\text{ml}} = 51\% \]
 - \[\text{EF} = \frac{\text{SV}}{\text{EDV}} = \frac{70\text{ml}}{120\text{ml}} = 58\% \]

- Expressed as a percentage, the ejection fraction normally averages between 50 and 75 percent under resting conditions.

- Increased contractility causes an increased ejection fraction.

Preload and Afterload

- Preload is proportional to the amount of ventricular myocardial fiber stretch just before systole (EDV)
 - The “load” that the heart must pump out
 - Increase preload, increase contractile force, increase heart “work” (volume overload) ... force development assisted by Starling Mechanism

- Afterload is the pressure that the ventricles must overcome to force open the aortic and pulmonary valves.
 - Anything that increases systemic or pulmonary arterial pressure can increase afterload.

 ➔ Afterload, increase contractile force necessary, increase heart work (pressure overload) Force development not assisted by Starling Mechanism
Normal College Male

<table>
<thead>
<tr>
<th></th>
<th>Heart Rate (Strokes/min)</th>
<th>End Diastolic Volume</th>
<th>End Systolic Volume</th>
<th>Stroke Volume (ml/stroke)</th>
<th>Cardiac Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supine Rest</td>
<td>60</td>
<td>150</td>
<td>65</td>
<td>85</td>
<td>5100</td>
</tr>
<tr>
<td>Sitting Rest</td>
<td>72</td>
<td>135</td>
<td>65</td>
<td>70</td>
<td>5040</td>
</tr>
<tr>
<td>Stand Rest</td>
<td>80</td>
<td>130</td>
<td>65</td>
<td>65</td>
<td>5200</td>
</tr>
<tr>
<td>Walking</td>
<td>100</td>
<td>150</td>
<td>65</td>
<td>85</td>
<td>8500</td>
</tr>
<tr>
<td>Jogging</td>
<td>120</td>
<td>150</td>
<td>65</td>
<td>100</td>
<td>12000</td>
</tr>
<tr>
<td>Mile Run</td>
<td>190</td>
<td>155</td>
<td>50</td>
<td>105</td>
<td>19950</td>
</tr>
</tbody>
</table>

Strokes/min x ml/stroke = ml/min
Heart Rate x stroke volume = cardiac output

Trained College Athlete – male basketball player

<table>
<thead>
<tr>
<th></th>
<th>Heart Rate (Strokes/min)</th>
<th>End Diastolic Volume</th>
<th>End Systolic Volume</th>
<th>Stroke Volume (ml/stroke)</th>
<th>Cardiac Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supine Rest</td>
<td>50</td>
<td>165</td>
<td>65</td>
<td>100</td>
<td>5000</td>
</tr>
<tr>
<td>Sitting Rest</td>
<td>60</td>
<td>150</td>
<td>65</td>
<td>85</td>
<td>5100</td>
</tr>
<tr>
<td>Stand Rest</td>
<td>70</td>
<td>150</td>
<td>65</td>
<td>85</td>
<td>5950</td>
</tr>
<tr>
<td>Walking</td>
<td>90</td>
<td>160</td>
<td>65</td>
<td>95</td>
<td>8550</td>
</tr>
<tr>
<td>Jogging</td>
<td>110</td>
<td>160</td>
<td>40</td>
<td>120</td>
<td>13200</td>
</tr>
<tr>
<td>Mile Run</td>
<td>190</td>
<td>170</td>
<td>40</td>
<td>130</td>
<td>24700</td>
</tr>
</tbody>
</table>

Strokes/min x ml/stroke = ml/min
Heart Rate x stroke volume = cardiac output
World Class Cross Country Ski Racer

Champion endurance athletes have had cardiac output of 40 liters during maximal exercise.

<table>
<thead>
<tr>
<th></th>
<th>Heart Rate</th>
<th>End Diastolic Volume</th>
<th>End Systolic Volume</th>
<th>Stroke Volume</th>
<th>Cardiac Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mile Run</td>
<td>185</td>
<td>240</td>
<td>20</td>
<td>220</td>
<td>40700</td>
</tr>
</tbody>
</table>

\[\text{Lower Max HR} \]

\[\text{Strokes/min} \times \text{ml/stroke} = \text{ml/min} \]

\[\text{Heart Rate} \times \text{stroke volume} = \text{cardiac output} \]