Acute and Chronic Lethal Effects to Individuals: Contaminant Interactions and Mixtures

2009
Mixture Effects

Many contamination scenarios reflect exposure to multiple toxicants.

How are combined effects of contaminants assessed?
 - direct measurement preferred; but prediction is most often necessary

Problems include:
 - measuring or predicting effects under equivalent conditions
 - establishing valid interaction models; e.g.
 - potentiation
 - additive
 - comparative
 - multiplicative
 - detecting synergistic or antagonistic interactions

Note – issues are similar for both lethal and sublethal effects
Toxicant Interactions

Potentiation: non-toxic chemical enhances the toxicity of another chemical

- naringin, bergamottin (grapefruit, orange, apple)
 - inhibit CYP3A4
- piperonyl butoxide - routinely added to insecticide formulations
 - inhibits cytochrome P450s

![Structure of piperonyl butoxide](image.png)
Toxicant Interaction Models

Potentiation: non-toxic chemical enhances the toxicity of another chemical

Additive: observed effect is the sum of the individual effects

Simple Comparative: observed effect is equal to the single worst effect

Multiplicative: observed effect is the approximate product of the individual effects
Toxicant Interactions

Synergism: observed effect is greater than the combination of the predicted individual effects

Additivities/synergism mechanisms:
- concentration additivity
- similar joint action - same mode of action
- independent joint action - different modes of action

Antagonism: observed effect is less than the combination of the predicted individual effects

Antagonism mechanisms:
- functional
- chemical
- dispositional
- receptor
Mixture Effects - Additivity

Toxic Unit approach:

Incipient LCs of the individual compounds are determined; e.g.

Define a Toxic Unit (TU) as the incipient LC$_{50}$ for each compound

- chemical concentrations can be converted to proportional TUs

- TUs can be added to predict mixture effects; e.g. PAH mixtures
Calculating PAH Toxicity for Amphipods

Input

- Measure PAH bulk
- Predicted PAHs in Interstitial Water
- Toxic Units for each PAH
- Toxic Units for sediments

Model

- Equilibrium Partitioning Model
- Toxic Unit: \(TU = \frac{PAH_{iw}}{10\text{-d } LC_{50}} \)
- Additivity Model: Sum TU for all PAHs
- Concentration-Response Model

Output

- Predicted PAHs in interstitial water
- Toxic Units for each PAH
- Toxic Units for each sediment sample
- Probability of toxic effect from each sediment sample

Field collected samples

Landis, WG, & Yu, MH, 2004
Mixture Effects - Additivity

Toxic Equivalency approach (for compounds with similar MOAs):

- most toxic member of a family is assigned a **Toxic Equivalency Factor (TEF) = 1**
- *similarly acting* compounds given empirically-determined TEFs (< 1)
- **Toxic Equivalency (TEQ) = TEF x concentration**
- mixture TEQ = (TEF_A x [A]) + (TEF_B x [B]) + (TEF_i x [i])
Additivity Isobole

- Toxic Units of Toxicant A
- Toxic Units of Toxicant B

- Additivity
- Synergism
- Antagonism
Choice of interaction models critical for definition of synergistic/antagonistic responses.

Standard models:
- comparative
- additive
- multiplicative
Synergism/Antagonism Models

Simple comparative effect model: effect of stressors in combination is equal to the effect of the **single worst** or dominant stressor.

Stressor A: results in 55% decreased yield

Synergism/Antagonism Models

Simple comparative effect model: effect of stressors in combination is equal to the effect of the single worst or dominant stressor.

Stressor A: results in 55% decreased yield
Stressor B: results in 45% decreased yield

Synergism/Antagonism Models

Simple comparative effect model: effect of stressors in combination is equal to the effect of the *single worst* or dominant stressor.

Stressor A: results in 55% decreased yield
Stressor B: results in 45% decreased yield

\[
\text{Combining A & B:}
\]

Yield with simple comparative effect

Synergism

Antagonism

\% Optimal yield (etc.)

Additive effect model: The combined effect = sum of each individual effect.

Stressor A: results in 55% decreased yield
Stressor B: results in 45% decreased yield

Combining A & B:

% Optimal yield (etc.)

Synergism/Antagonism Models

Additive effect model: The combined effect = sum of each individual effect.

- **Stressor A:** results in 55% decreased yield
- **Stressor B:** results in 45% decreased yield

\[\text{Combining A \& B:} \]

- Yield with additive effect

\[\text{Synergism} \quad \text{Antagonism} \]

Synergism/Antagonism Models

Multiplicative effect model: Stress from one source can be further operated on probabilistically by another source. Combined effects approximate the product of the individual effects.

Stressor A: results in 55% decreased yield
Stressor B: results in 45% decreased yield

Combining A & B:

Yield with multiplicative effect

Synergism

Antagonism

% Optimal yield (etc.)

Temporal Perspective

Time-response (T-R) approach compliments dose–response approach.

The T-R approach emphasizes exposure duration, not level
- metric: “Time To Death” (TDD)
- \(LT_{50} \) estimates the median time to death.

The T-R approach generates substantially more data than D-R
(see Figure 9.9 in text)
= more statistical power
- requires considerably more effort and resources than D-R

The T-R approach is employed less broadly and used less frequently in Risk Assessments and in the overall regulatory arena.