Econ 3023 Microeconomic Analysis

Chapter 15B: Elasticity

Instructor: Hiroki Watanabe
Spring 2013

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Elasticity</td>
<td>Optimal Pricing & Elasticity</td>
<td>Summary</td>
</tr>
</tbody>
</table>

How does the change in price affect our consumption choice?

Slutsky decomposition (Ch. 14) and its precursor Ch. 6

One problem: unit sensitivity
 \(\Delta x \) changes depending on the unit of measure.

Question 1.1 (Hawaii Hotel Tax)

Take a listen to [Marketplace Clip].

Some state lawmakers want to boost one of the taxes on hotel rooms – from around 7 percent to around 12 percent.

But the proposed increase could keep corporate visitors away.

Does a proposed tax hike lead to larger tax revenue?

Two forces at play:

- State lawmakers: Increase in revenue because they can collect larger tax from each tourist.
- Bill Connors: Reduction in revenue because increased tax reduces the number of tourists.

Q: Which force surpasses the other?
Introduction

Elasticity
 • Percent Change
 • Price Elasticity of Demand

Optimal Pricing & Elasticity

Summary

Definition 2.1 (Percent Change)

Percent change in a variable x is denoted by

$$\frac{x_{\text{new}} - x_{\text{old}}}{x_{\text{old}}} \times 100 = \frac{\Delta x}{x_{\text{old}}} \times 100.$$

Suppose 1.5$\$/€.

<table>
<thead>
<tr>
<th>Price</th>
<th>Δp</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>€50</td>
<td>$€10$</td>
<td>20%</td>
</tr>
<tr>
<td>$75</td>
<td>90</td>
<td>20%</td>
</tr>
</tbody>
</table>

% change is a unit-independent measure.
Price Elasticity of Demand

Definition 2.2 (Price Elasticity of Demand)
Price elasticity of demand measures the responsiveness of demand against the change in price, defined by
\[
\epsilon(x) := \left| \frac{\% \text{ change in } x}{\% \text{ change in } p} \right| = \left| \frac{\Delta x / x}{\Delta p / p} \right|.
\]

*\(|a|\) means \(a\) if \(a\) is positive and \(-a\) if \(a\) is negative.

- Usually, \(\epsilon(x) = -\Delta x / x \Delta p / p\).
- Regardless of the sign of \(a\), \(|a|\) is always positive.

The slope \((\Delta p / \Delta x)\) is one way to measure the responsiveness, but then the exact same demand curve is steeper in US than in Europe. Quantity demanded increases by \(\epsilon(x)\%\) against 1% increase in price.

We can rearrange
\[
\epsilon(x) = \left| \frac{\Delta x / x}{\Delta D(x) / D(x)} \right| = \left| \frac{x \Delta D(x)}{\Delta x D(x)} \right| = \left| \frac{D(x) / x}{\text{slope of the inverse demand curve}} \right|.
\]

You can also write \(\epsilon(x) = -\log x\).
Exercise 2.3 (Elasticity for a Linear Demand Function)
Suppose the inverse demand function is given by $D(x) = \frac{-1}{2}x + 10$. The slope ($\frac{\Delta D(x)}{\Delta x}$) is $-\frac{1}{2}$. Find the elasticity at $x = 5, 10, 15$.

- $e(x) = \frac{\frac{\Delta D(x)}{\Delta x}}{\frac{D(x)}{x}} = \frac{x-20}{x}$.
- $e(5) = 3$.
- $e(10) = 1$.
- $e(15) = \frac{1}{3}$.

Even when the slope is constant everywhere, elasticity varies.
Price Elasticity of Demand

Definition 2.4 (Elastic & Inelastic Demand)

- Demand is **elastic** at \(x \) if \(\epsilon(x) > 1 \).
- Demand is **unit elastic** at \(x \) if \(\epsilon(x) = 1 \).
- Demand is **inelastic** at \(x \) if \(\epsilon(x) < 1 \).

Example 3.1 (Revenue & Elasticity)

Jack’s total revenue is

\[
TR(x) = \text{price} \times \text{quantity} = D(x) \times x,
\]

where \(D(x) = \frac{1}{2}x + 10 \). Does it increase Jack’s revenue to sell one more cheesecake (by reducing price accordingly)?

- If additional increase in sales brings in extra revenue \(\frac{\Delta R(x)}{x} > 0 \), then yes.
Does additional sales bring in money?

\[
\frac{\Delta TR(x)}{\Delta x} = \frac{\Delta[D(x) \cdot x]}{\Delta x} = \frac{\Delta D(x)}{\Delta x} \cdot x + \frac{D(x)}{\Delta x} \cdot \Delta x
\]

- price differential
- existing sales
- revenue from an additional cheesecake

Q': In what range of \(x \) is it a good idea to increase sales of \(x \) by reducing \(p \)?

Increasing sales by reducing the price will bring in more revenue if current sales (\(x \)) falls into the elastic region. ²

- 1% price reduction leads to more than 1% sales increase.
- price effect > quantity effect.

²See Appendix for proof.
- If current sales (x) falls into the inelastic region, increasing sales by reducing the price will bring in less revenue.
- 1% price reduction leads to less than 1% sales decrease.
- price effect < quantity effect

If current sales (x) falls into the unit-elastic region, increasing sales by reducing the price will not change revenue.
- 1% price reduction leads to 1% sales decrease.
- price effect = quantity effect
- Jack can't do any better, i.e., this is where he maximizes the revenue.
Chapter 24 preview:
- We’ve just found the level x_C where Jack maximizes total revenue for Example 3.1.
- The cost was out of equation.
- If Jack takes the cost into account, Jack never operates in the inelastic region.
Measuring the responsiveness of demand against price.
- When to raise price.

\[
\frac{\Delta R(x)}{\Delta x} > 0
\]
\[
\frac{\Delta D(x)}{\Delta x} x + D(x) > 0
\]
\[
1 + \frac{\Delta D(x)}{\Delta x} < 0
\]
\[
1 + (-\varepsilon(x)) < 0
\]
\[
1 < \varepsilon(x).
\]

Additional revenue by selling one more slice > 0

\[
D(x), \text{see inverse demand}
\]
\[
demand, 10
\]
\[
elastic, 16
\]
\[
\varepsilon(x), \text{see price elasticity of demand}
\]
\[
inelastic, 16
\]
\[
inverse \text{ demand, 12, 13}
\]
\[
\text{percent change, 8}
\]
\[
\text{price effect, 6}
\]
\[
\text{price elasticity of demand, 10}
\]
\[
\text{quantity effect, 6}
\]
\[
\text{Slutsky decomposition, 4}
\]
\[
\text{total revenue, 18}
\]
\[
TR(x), \text{see total revenue}
\]
\[
\text{unit elastic, 16}
\]
\[
\text{unit sensitivity, 4}
\]