Section 5

5.1 (a) True: Definition 5.3.
(b) False: \(\mathbb{N} \) is the set of positive integers
(c) True: Example 5.5.
(d) True: Theorem 5.7.

5.2 (a) False: \(A \cap B = \emptyset \) means \(A \) and \(B \) are disjoint.
(b) True: Definition 5.8.
(c) False: \(x \in A \setminus B \) means \(x \in A \) and \(x \notin B \).
(d) False: this is OK to use since \(S \) being nonempty is the only nontrivial case.

5.4 (a) \(\{2, 4\} \)
(b) \(\{1, 2, 3, 4, 6, 8\} \)
(c) \(\{6, 8\} \)
(d) \(\emptyset \)
(e) \(B \)
(f) \(\{1, 3, 5, 7\} \)
(g) \(\{6\} \)
(h) \(\{5, 7\} \)

5.5, 5.6, 5.7, and 5.8 are routine.

5.10 (a) \(U \)
(b) \(\emptyset \)
(c) \(A \cap B \)
(d) \(A \cup B \)
(e) \(A \)
(f) \(A \)

5.11 is similar to 5.9.

5.12 True. Both are equal to \(A \cap B \). Here is one of the proofs: If \(x \in A \cap B \), then \(x \in A \) and \(x \in B \). Thus \(x \in A \setminus B \), so \(x \in A \setminus (A \setminus B) \). Conversely, if \(x \notin A \setminus (A \setminus B) \), then \(x \notin A \) and \(x \notin A \setminus B \). If \(x \notin B \), then since \(x \in A \), \(x \in A \setminus \emptyset \), a contradiction. Thus \(x \notin B \) and so \(x \in A \cap B \).

5.13 False. The left side is \(A \) and the right side is \(B \).

5.14 (a) The diagram is the same as \((A \cup B) \setminus (A \cap B) \).
(b) \(\emptyset \)
(c) \(A \)
(d) \(U \setminus A \)

5.16 Similar to 5.9.

5.17 and 5.18 are routine.

5.19 (b) \(\cup B = \{1, 2\} \),
\(\cap B = \emptyset \)
(c) \(\cup B = [2, \infty) \),
\(\cap B = \{2\} \)
(d) \(\cup B = [0, 5) \),
\(\cap B = [2, 3] \)