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ARITHMETIC PROPERTIES OF 3-REGULAR PARTITIONS
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Abstract

In 2019, Gireesh and Naika proved an infinite family of congruences modulo powers of 3 for the function
p{3,3}(n), the number of 3-regular partitions in three colors. In this paper, using elementary generating
function manipulations and classical techniques, we significantly extend the list of proven arithmetic
properties satisfied by p{3,3}(n).
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1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers,
called parts, whose sum equals n. For ` a positive integer, a partition of n is called
`-regular if there is no part divisible by `. The generating function for the number of
`-regular partitions of n, denoted by b`(n), is given by

∞∑
n=0

b`(n)qn =
(q`; q`)∞
(q; q)∞

,

where we use the standard q-series notation (for |q| < 1):

(a; q)∞ =

∞∏
k=0

(1 − aqk).

Arithmetic properties of `-regular partition functions have been studied by many
authors, including [3, 5–7, 11–14].

In 2018, Hirschhorn [10] studied the number of partitions of n in three colors,
p3(n), given by

∞∑
n=0

p3(n)qn =
1

(q; q)3
∞

.

He derived a number of congruences for p3(n) modulo high powers of 3.
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Soon after, Gireesh and Naika [8] studied p{3,3}(n), the number of 3-regular
partitions in three colors, whose generating function is given by

∞∑
n=0

p{3,3}(n)qn =
(q3; q3)3

∞

(q; q)3
∞

. (1.1)

They deduced some congruences modulo powers of 3 for p{3,3}(n), including the
following: For all α ≥ 0 and n ≥ 0,

p{3,3}

(
32α+1n +

32α+2 − 1
4

)
≡ 0 (mod 32α+2).

In this paper, our goal is to significantly extend the list of proven arithmetic
properties satisfied by p{3,3}(n) using elementary generating function manipulations
and well-known q-series identities. In particular, we provide a parity characterization
for p{3,3}(2n) as well as the following characterization mod 3 for p{3,3}(n): For all n ≥ 0,

p{3,3}(3n + 1) ≡ 0 (mod 3),
p{3,3}(3n + 2) ≡ 0 (mod 3),

p{3,3}(3n) ≡

(−1)k+l (mod 3), if n = k(3k − 1)/2 + l(3l − 1)/2,
0 (mod 3), otherwise.

2. Parity characterization for p{3,3}(2n)

This section is devoted to proving a characterization modulo 2 for p{3,3}(2n) as well
as some consequences. In order to do so, we need a number of identities.

Throughout this paper, we define

fk := (qk; qk)∞

in order to shorten the notation. Thus, (1.1) becomes

∞∑
n=0

p{3,3}(n)qn =
f 3
3

f 3
1

. (2.1)

Lemma 2.1. The following 2-dissection identities hold:

f3
f1

=
f4 f6 f16 f 2

24

f 2
2 f8 f12 f48

+ q
f6 f 2

8 f48

f 2
2 f16 f24

, (2.2)

f 2
3

f 2
1

=
f 4
4 f6 f 2

12

f 5
2 f8 f24

+ 2q
f4 f 2

6 f8 f24

f 4
2 f12

. (2.3)

Proof. Identities (2.2) and (2.3) are equations (30.10.3) and (30.9.9) of [9], respec-
tively. �
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We also recall Jacobi’s identity (see [2, Theorem 1.3.9]):

f 3
1 =

∞∑
n=0

(−1)n(2n + 1)qn(n+1)/2. (2.4)

Substituting (2.2) and (2.3) into (2.1), we can extract the terms involving q2 to
obtain

∞∑
n=0

p{3,3}(2n)q2n ≡
f4 f6 f16 f 2

24

f 2
2 f8 f12 f48

·
f 4
4 f6 f 2

12

f 5
2 f8 f24

≡
f 5
4

f 7
2

≡ f 3
2 (mod 2).

Therefore, thanks to (2.4),

∞∑
n=0

p{3,3}(2n)qn ≡ f 3
1 ≡

∞∑
k=0

qk(k+1)/2 (mod 2).

Thus, we know

Theorem 2.2. For all n ≥ 1,

p{3,3}(2n) =

1, if n = k(k + 1)/2 for some k ∈ Z;
0, otherwise.

We close this section with two consequences of the theorem above.

Corollary 2.3. Let p ≥ 5 be a prime and 1 ≤ r ≤ p − 1 be an integer such that 8r + 1
is a quadratic nonresidue modulo p. Then, for all n ≥ 0,

p{3,3}(2(pn + r)) ≡ 0 (mod 2).

Proof. We need to know whether pn + r = k(k + 1)/2, for some k ∈ Z, which is
equivalent to 8(pn + r) + 1 = (2k + 1)2. This implies that 8r + 1 is a quadratic residue
modulo p, which contradicts the fact that 8r + 1 is a quadratic nonresidue modulo
p. �

Corollary 2.4. For all n ≥ 0, p{3,3}(2(3n + 2)) ≡ 0 (mod 2).

Proof. If 8(3n + 2) + 1 = (2k + 1)2, for some k ∈ Z, then 24n + 17 = (2k + 1)2, which
would imply that (2k + 1)2 ≡ 5 (mod 12). However, no square can be congruent to 5
(mod 12). �

3. Congruences modulo powers of 3

With the goal of extending the work of Gireesh and Naika [8] in a slightly different
direction, we begin this section by providing a complete characterization for p{3,3}(n)
modulo 3.
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Theorem 3.1. For all n ≥ 0,

p{3,3}(3n + 1) ≡ 0 (mod 3),
p{3,3}(3n + 2) ≡ 0 (mod 3),

p{3,3}(3n) ≡

(−1)k+l (mod 3), if n = k(3k − 1)/2 + l(3l − 1)/2,
0 (mod 3), otherwise.

Proof. From (2.1) we have
∞∑

n=0

p{3,3}(n)qn ≡ f 2
3 (mod 3). (3.1)

Thus, the coefficients of the terms of the forms q3n+1 and q3n+2 on both sides of (3.1)
are congruent to 0 modulo 3. This proves the first two congruences above.

Extracting the terms of the form q3n from (3.1), we obtain
∞∑

n=0

p{3,3}(3n)q3n ≡ f 2
3 (mod 3).

Replacing q3 by q, it follows that
∞∑

n=0

p{3,3}(3n)qn ≡ f 2
1 =

∞∑
k,l=−∞

(−1)k+lqk(3k−1)/2+l(3l−1)/2 (mod 3), (3.2)

thanks to Euler’s identity [9, Eq. (1.6.1)]

f1 =

∞∑
n=−∞

(−1)nqn(3n−1)/2. (3.3)

Comparing the coefficients of qn on both sides of (3.2) completes the proof. �

The proof of the next theorem requires the following lemma, which can easily be
proved by the binomial theorem.

Lemma 3.2. Given a prime p, we have

f p2

1 ≡ f p
p (mod p2).

The next theorem presents an infinite family of congruences modulo 9.

Theorem 3.3. Let p be a prime such that p ≡ 3 (mod 4). Then, for all k,m ≥ 0 with
p - m, we have

p{3,3}

(
p2k+1m +

p2k+2 − 1
4

)
≡ 0 (mod 9).
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Proof. From (2.1), (2.4), and Lemma 3.2 we see that
∞∑

n=0

p{3,3}(n)qn ≡ f 6
1 = ( f 3

1 )2 =

∞∑
k,l=0

(−1)k+l(2k + 1)(2l + 1)qk(k+1)/2+l(l+1)/2 (mod 9).

Thus p{3,3}(n) ≡ 0 (mod 9) if 8n + 2 is not a sum of two squares. However we have

n = p2k+1m +
p2k+2 − 1

4
, which yields

8n + 2 = 8p2k+1m + 2p2k+2 = 2p2k+1(4m + p).

We recall that a positive integer N is the sum of two squares if and only if each prime
factor congruent to 3 modulo 4 has an even power in the prime factorization of N.
Thus, since p ≡ 3 (mod 4), it follows that 8n + 2 is not a sum of two squares, which
completes the proof. �

For example, the following congruences are special cases of Theorem 3.3:

p{3,3}(9n + 3r + 2) ≡ 0 (mod 9), for r ∈ {1, 2},
p{3,3}(49n + 7r + 12) ≡ 0 (mod 9), for r ∈ {1, 2, . . . , 6},

p{3,3}(121n + 11r + 30) ≡ 0 (mod 9), for r ∈ {1, 2, . . . , 10}.

The rest of this section is devoted to proving an infinite family of congruences
modulo 81 for p{3,3}(n). We begin by recalling Ramanujan’s theta functions

f (a, b) :=
∞∑

n=−∞

a
n(n+1)

2 b
n(n−1)

2 , for |ab| < 1,

φ(q) := f (q, q) =

∞∑
n=−∞

qn2
=

f 5
2

f 2
1 f 2

4

, and (3.4)

ψ(q) := f (q, q3) =

∞∑
n=0

qn(n+1)/2 =
f 2
2

f1
. (3.5)

We also recall Identity (14) of [4]:

1
f 3
1

=
f 3
9

f 12
3

(
P(q3)2 + 3q f 3

9 P(q3) + 9q2 f 6
9

)
, (3.6)

where

P(q) = f1

(
ϕ(−q3)3

ϕ(−q)
+ 4q

ψ(q3)3

ψ(q)

)
.

Theorem 3.4. Let p be a prime such that p ≡ 3 (mod 4). Then, for all k,m ≥ 0 with
p - m, we have

p{3,3}

(
9p2k+1m + 9

(p2k+2 − 1)
4

+ 2
)
≡ 0 (mod 81).



6 R. da Silva and J. A. Sellers

Proof. Thanks to (3.6) we can extract the terms involving q3n+2 from (2.1), which
yields

∞∑
n=0

p{3,3}(3n + 2)q3n+2 = 9q2 f 9
9

f 9
3

.

After dividing both sides of the identity above by q2, replacing q3 by q, and using
Lemma 3.2, we are left with

∞∑
n=0

p{3,3}(3n + 2)qn ≡ 9 f 6
3 (mod 81). (3.7)

It follows that
∞∑

n=0

p{3,3}(9n + 2)qn ≡ 9( f 3
1 )2 (mod 81).

By (2.4), we see that
∞∑

n=0

p{3,3}(9n + 2)qn ≡ 9
∞∑

k,l=0

(−1)k+l(2k + 1)(2l + 1)qk(k+1)/2+l(l+1)/2 (mod 81).

Note that n = k(k + 1)/2 + l(l + 1)/2 is equivalent to 8n + 2 = (2k + 1)2 + (2l + 1)2.
Thus p{3,3}(9n + 2) ≡ 0 (mod 81) if 8n + 2 is not a sum of two squares. However we

have n = p2k+1m +
p2k+2 − 1

4
, which yields

8n + 2 = 8p2k+1m + 2p2k+2 = 2p2k+1(4m + p).

Therefore, 8n + 2 is not a sum of two squares, which completes the proof. �

For example, the following congruences are special cases of Theorem 3.4:

p{3,3}(729n + 243r + 182) ≡ 0 (mod 81), for r ∈ {1, 2},
p{3,3}(441n + 63r + 110) ≡ 0 (mod 81), for r ∈ {1, 2, . . . , 6},

p{3,3}(1089n + 99r + 272) ≡ 0 (mod 81), for r ∈ {1, 2, . . . , 10}.

Corollary 3.5. For all n ≥ 0, p{3,3}(9n + 5) ≡ p{3,3}(9n + 8) ≡ 0 (mod 81).

Proof. These congruences follow from (3.7) after extracting the terms involving q3n+1

and q3n+2. �

4. Congruences modulo 4

In order to prove the main result of this section, we need the following identity.

Lemma 4.1.

1
f 2
1

=
f 5
8

f 5
2 f 2

16

+ 2q
f 2
4 f 2

16

f 5
2 f8

(4.1)
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Proof. By Entry 25 (i), (ii), (v), and (vi) in [1, p. 40], we have

φ(q) = φ(q4) + 2qψ(q8), (4.2)

φ(q)2 = φ(q2)2 + 4qψ(q4)2. (4.3)

Using (3.4) and (3.5) we can rewrite (4.2) in the form

f 5
2

f 2
1 f 2

4

=
f 5
8

f 2
4 f 2

16

+ 2q
f 2
16

f8
,

from which we obtain (4.1) after multiplying both sides by f 2
4

f 5
2

. �

We now prove a small set of congruences modulo 4 which are satisfied by p{3,3}(n)
for specific arithmetic progressions.

Theorem 4.2. For all n ≥ 0 and t ∈ {16, 46, 76, 136}, we have

p{3,3}(150n + t) ≡ 0 (mod 4).

Proof. Thanks to (3.6) we can extract the terms involving q3n+1 from (2.1), which
yields

∞∑
n=0

p{3,3}(3n + 1)q3n+1 ≡ 3q
f 6
9

f 8
3

φ(−q9)3

φ(−q3)
(mod 4).

After dividing both sides of the congruence above by q, replacing q3 by q, and using
the elementary facts f 4

k ≡ f 2
2k (mod 4) and 2 f 2

k ≡ 2 f2k (mod 4), we are left with

∞∑
n=0

p{3,3}(3n + 1)qn ≡ 3
f 6
3

f 8
1

φ(−q3)3

φ(−q)
≡ 3

f2 f 12
3

f 10
1 f 3

6

≡ 3
f2 f 3

6

f 10
1

≡ 3
f 3
6

f 2
1 f 3

2

(mod 4).

Now we use (4.1) to extract the odd part on both sides of the last congruence:

∞∑
n=0

p{3,3}(6n + 4)q2n+1 ≡ 6q
f 2
4 f 3

6 f 2
16

f 8
2 f8

(mod 4).

Dividing by q and replacing q2 by q yields

∞∑
n=0

p{3,3}(6n + 4)qn ≡ 2
f 2
2 f 3

3 f 2
8

f 8
1 f4

(mod 4).

Thus, after some simplification, we obtain

∞∑
n=0

p{3,3}(6n + 4)qn ≡ 2 f 3
3 f8 (mod 4).
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Thanks to (2.4) and (3.3), we finally obtain

∞∑
n=0

p{3,3}(6n + 4)qn ≡ 2
∞∑

k=0

∞∑
l=−∞

(−1)k+l(2k + 1)q3k(k+1)/2+4l(3l−1)

≡ 2
∞∑

k=0

∞∑
l=−∞

q3k(k+1)/2+4l(3l−1) (mod 4).

Now we note that the possible residues of 3k(k + 1)/2 modulo 25 are 0, 3, 5, 8, 9, 10,
13, 15, 18, 20, and 23, whereas the possible residues of 4l(3l−1) modulo 25 are 0, 1, 5,
6, 8, 10, 11, 15, 16, 20, and 21. Thus, a number of the form 3k(k+1)/2+4l(3l−1) is not
congruent to 2, 7, 12 or 22 (mod 25). Therefore, the coefficients of the terms q25n+t,
where t ∈ {2, 7, 12, 22}, are congruent to 0 modulo 4, which completes the proof. �

5. Concluding remarks

As noted in Section 3, the following two congruences are direct consequences of
Theorem 3.3:

p{3,3}(9n + 3r + 2) ≡ 0 (mod 9), for r ∈ {1, 2}.

In light of (3.6), a more general congruence holds, namely p{3,3}(3n + 2) ≡ 0 (mod 9).
This congruence can be directly derived from (1.12) in [8]. Nevertheless we note that
thanks to (3.6) we can rewrite (2.1) as

∞∑
n=0

p{3,3}(n)qn =
f 3
9

f 9
3

(
P(q3)2 + 3q f 3

9 P(q3) + 9q2 f 6
9

)
.

Extracting the terms involving q3n+2, dividing the resulting identity by q2 and replacing
q3 by q, we are left with

∞∑
n=0

p{3,3}(3n + 2)qn = 9
f 9
3

f 9
1

,

which yields p{3,3}(3n + 2) ≡ 0 (mod 9).
We close this work by noting that p{3,3}(n) appears to satisfy a number of

Ramanujan–like congruences modulo 5. In particular, we note the following:

Conjecture 5.1. For all n ≥ 0,

p{3,3}(15n + 6) ≡ 0 (mod 5),
p{3,3}(25n + 6) ≡ 0 (mod 5),

p{3,3}(25n + 16) ≡ 0 (mod 5),
p{3,3}(25n + 21) ≡ 0 (mod 5).
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