
Chapter 3

JavaServer Pages

JavaServer Pages (JSP) and Servlets are complementary technologies for pro-
ducing dynamic Web pages via Java. While Servlets are the foundation for server-
side Java, they are not always the most efficient solution with respect to
development time. Coding, deploying, and debugging a Servlet can be a tedious
task. Fixing a simple grammar or markup mistake requires wading through
print() and println() calls, recompiling the Servlet, and reloading a Web
Application. Making a grammar or markup mistake is not hard, and the problem
is compounded in complex Servlets. JSP complements Servlets by helping solve
this problem and simplifying Servlet development.

This chapter discusses the following topics:

• An explanation of JSP and why you would want to use the tech-
nology.

• The JSP life cycle—that is, how a container manages a JSP.

• Examination of the similarities and differences between JSP and
Servlets.

• An introduction to JSP syntax and semantics.

• Configuring JSP via the Web Application Deployment Descriptor,
web.xml.

• An explanation of the JSP implicit objects and why implicit objects
are helpful.

• How to use the alternative JSP XML syntax.

As with Chapter 2, do read this chapter straight through. Chapters 2 and 3
describe the basic functionality on which all of the other chapters depend.
Chapter 2 introduced Servlets and demonstrated several practical uses of them.
This chapter complements Chapter 2 by providing a similar discussion on
JavaServer Pages.

109

falkner.ch3.qxd 8/21/03 7:06 PM Page 109

110 JAVASERVER PAGES

JSP 2.0 Specification
The first JavaServer Pages specification was released in 1999. Originally JSP was
modeled after other server-side template technologies to provide a simple
method of embedding dynamic code with static markup. When a request is
made for the content of a JSP, a container interprets the JSP, executes any
embedded code, and sends the results in a response. At the time this type of
functionality was nothing terribly new, but it was and still is a helpful
enhancement to Servlets.

JSP has been revised several times since the original release, each adding
functionality, and is currently in version 2.0. The JSP specifications are developed
alongside the Servlet specifications and can be found on Sun Microsystems’
JavaServer Pages product information page, http://java.sun.com/products/
jsp.

The functionality defined by the JSP 2.0 specifications can be broken down
as follows:

JSP
The JSP specifications define the basic syntax and semantics of a JavaServer Page.
A basic JavaServer Page consists of plain text and markup and can optionally take
advantage of embedded scripts and other functionality for creating dynamic
content.

JavaBeans
JavaBeans are not defined by the JSP specifications, but JSP does provide support
for easily using and manipulating them. Often objects used on the server-side of
a Web Application are in the form of what is commonly called a JavaBean.

Custom Tags and JSP Fragments
JSP provides a mechanism for linking what would normally be static markup to
custom Java code. This mechanism is arguably one of the strong points of JSP
and can be used in place of or to complement embedded scripts of Java code.

Expression Language
JSP includes a mechanism for defining dynamic attributes for custom tags. Any
scripting language can be used for this purpose; usually Java is implemented, but
the JSP specification defines a custom expression language designed specifically

falkner.ch3.qxd 8/21/03 7:06 PM Page 110

for the task. Often the JSP EL is a much simpler and more flexible solution, espe-
cially when combined with JSP design patterns that do not use embedded scripts.

Discussing the basics of JSP is the focus of this chapter. JavaBeans, Custom
Tags, and the JSP Expression Language are all fully discussed in later chapters
after a proper foundation of JSP is established.

JSP Life Cycle
Much like Servlets, understanding JSP requires understanding the simple life
cycle that JSP follows. JSP follows a three-phase life cycle: initialization, service,
and destruction, as shown in Figure 3-1. This life cycle should seem familiar and
is identical to the one described for Servlets in Chapter 2.

While a JSP does follow the Servlet life cycle, the methods have different
names. Initialization corresponds to the jspInit() method, service corresponds
to the _jspService() method, and destruction corresponds to the jspDestroy()
method. The three phases are all used the same as a Servlet and allow a JSP to
load resources, provide service to multiple client requests, and destroy loaded
resources when the JSP is taken out of service.

JSP is designed specifically to simplify the task of creating text producing
HttpServlet objects and does so by eliminating all the redundant parts of coding
a Servlet. Unlike with Servlets there is no distinction between a normal JSP and
one meant for use with HTTP. All JSP are designed to be used with HTTP and to
generate dynamic content for the World Wide Web. The single JSP
_jspService() method is also responsible for generating responses to all seven
of the HTTP methods. For most practical purposes a JSP developer does not

JSP LIFE CYCLE 111

jspInit()
(Load Resources)

_jspService()
(Accept Requests)

jspDestroy()
(Unload Resources)

Request
Response

JavaServer Page

Figure 3-1 JSP Life Cycle

falkner.ch3.qxd 8/21/03 7:06 PM Page 111

need to know anything about HTTP, nor anything more than basic Java to code
a dynamic JSP.

The Difference Between Servlets and JSP
A clear and important distinction to make about JSP is that coding one is nothing
like coding a Servlet. From what this chapter has explained, it might appear that
JSP is just a simple version of Servlets. In many respects JSP is in fact a simple
method of creating a text-producing Servlet; however, do not be fooled into
thinking this mindset is always true. As the chapter progresses, it will be clear that
JSP and Servlets are two very distinct technologies. Later, after custom tags are
introduced, the degree of separation between the two will seem even larger. The
use of JSP for easily making a Servlet really only applies in the simplest of cases.

To show how vastly different the code for a JSP can be from a Servlet, Listing
3-1 displays the code for the JSP equivalent of the HelloWorld Servlet (Listing 2-
1 that appeared in Chapter 2).

Listing 3-1 HelloWorld.jsp

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1>Hello World!</h1>

</body>

</html>

They are quite different! You’ll recall the code for HelloWorld.java and
notice the two look nothing alike. The code for the JSP is actually identical to the
text generated by the HelloWorld Servlet, not the source code. Authoring an
HTML-generating JSP is as easy as just authoring the HTML. Compared to using
print() and println() methods in Servlets, the JSP approach is obviously easier.
This is why simple JSP are usually considered a quick method of creating text-
producing Servlets.

Deploying a JSP is also simpler; a Web Application automatically deploys any
JSP to a URL extension that matches the name of the JSP. Test out HelloWorld.jsp
by saving it in the base directory of the jspbook Web Application then browsing to
http://127.0.0.1/jspbook/HelloWorld.jsp. Figure 3-2 shows the output of
HelloWorld.jsp as rendered by a Web browser, identical to the HTML generated
by the HelloWorld Servlet, Figure 2-6.

112 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 112

From looking at the results of the example, it certainly does appear Hello
World.jsp is a simple form of HelloWorld.java. What is not shown, but is very
important to understand, is that HelloWorld.jsp is also actually compiled into
equivalent Servlet code. This is done in what is called the translation phase of JSP
deployment and is done automatically by a container. JSP translation both is and
is not something of critical importance for a JSP developer to be aware of. JSP
translation to Servlet source code is important because it explains exactly how a
JSP becomes Java code. While it varies slightly from container to container, all
containers must implement the same JSP life cycle events. Understanding these
life cycle methods helps a JSP developer keep code efficient and thread-safe.
However, JSP translation is not of critical importance because it is always done
automatically by a container. Understanding what a container will do during the
translation phase is good enough to code JSP. Keeping track of the generated
Servlet source code is not a task a JSP developer ever has to do.

JSP translated to Servlet code can be found by looking in the right place for
a particular container. Tomcat stores this code in the /work directory of the
Tomcat installation. Generated code is never pretty, nor does it always have the
same name. Listing 3-2 was taken from HelloWorld$jsp.java in the /work/
localhost/jspbook directory. It is the Servlet code generated for HelloWorld.
jsp that Tomcat automatically compiled and deployed.

Listing 3-2 Tomcat-Generated Servlet Code for HelloWorld.jsp

package org.apache.jsp;

import javax.servlet.*;

import javax.servlet.http.*;

THE DIFFERENCE BETWEEN SERVLETS AND JSP 113

Figure 3-2 Browser Rendering of HelloWorld.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 113

import javax.servlet.jsp.*;

import org.apache.jasper.runtime.*;

public class HelloWorld$jsp extends HttpJspBase {

static {

}

public HelloWorld$jsp() {

}

private static boolean _jspx_inited = false;

public final void _jspx_init() throws

org.apache.jasper.runtime.JspException {

}

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

throws java.io.IOException, ServletException {

JspFactory _jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String _value = null;

try {

if (_jspx_inited == false) {

synchronized (this) {

if (_jspx_inited == false) {

_jspx_init();

_jspx_inited = true;

}

}

}

_jspxFactory = JspFactory.getDefaultFactory();

114 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 114

response.setContentType("text/html;charset=ISO-

8859-1");

pageContext = _jspxFactory.getPageContext(this, request,

response,

"", true, 8192, true);

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

// HTML // begin

[file="/HelloWorld.jsp";from=(0,0);to=(8,0)]

out.write("<html>\r\n<head>\r\n<title>Hello

World!</title>\r\n</head>\r\n<body>\r\n<h1>Hello

World!</h1>\r\n</body>\r\n</html>\r\n");

// end

} catch (Throwable t) {

if (out != null && out.getBufferSize() != 0)

out.clearBuffer();

if (pageContext != null)

pageContext.handlePageException(t);

} finally {

if (_jspxFactory != null)

_jspxFactory.releasePageContext(pageContext);

}

}

}

Do not bother trying to read through and understand the generated code.
The important point to understand is that a container handles a JSP as a Servlet
but does so behind the scenes. This ties directly back to the greater point that JSP
are really just Servlets. The difference between the two technologies is not in the
life cycles or how a container manages them at runtime. The difference between
Servlets and JSP is the syntax they offer for creating the same functionality. With
JSP it is almost always simpler to create text-producing Servlets, but normal
Servlets are still best suited for sending raw bytes to a client or when complete
control is needed over Java source code.

THE DIFFERENCE BETWEEN SERVLETS AND JSP 115

falkner.ch3.qxd 8/21/03 7:06 PM Page 115

JSP Syntax and Semantics
JSP is not governed by the syntax and semantics defined by the Java 2 specifica-
tions. Translated JSP source code is just Java, but when you author a JSP, you abide
instead by the rules laid out in the JSP specification. With each release of the JSP
specification, these rules grow, and they cannot be easily summed by a few sen-
tences. The majority of this chapter focuses on explaining the current syntax and
semantics of JSP. Much of the functionality found in JSP is taken directly from the
underlying Servlet API which was already covered in Chapter 2. Expect to see lots
of code examples demonstrating syntax, while repetitious semantics are only
skimmed with a reference to the full explanation previously given in Chapter 2.

Elements and Template Data
Everything in a JSP is broken down into two generic categories called elements
and template data. Elements are dynamic portions of a JSP. Template data are the
static bits of text between. Template data are easily categorized as they are all the
text arbitrarily placed on a JSP and meant to be directly sent to a client. Elements
are easily categorized as custom actions, tags, and the content allowed to be in
between as defined by the JSP specifications.

The concept of elements and template data is important to understand as it
dictates when, where, and what text will do when placed in a JSP. This chapter has
yet to introduce any elements, but it has shown a use of template text. The
HelloWorld.jsp example was entirely template text. The corresponding Servlet
generated from HelloWorld.jsp treated this text as static content and sent it as
the content of a response. While HelloWorld.jsp only had one big chunk of tem-
plate text, more complex JSP follow the same rule. Any chunk of template text is
taken and sent directly to a client as it appears on the JSP. Elements on the other
hand are not sent directly to a client. An element is interpreted by a JSP container
and defines special actions that should be taken when generating a response.

Template text does not change, and this little section defines it in total.
Elements are what make JSP dynamic, and elements are further explained
throughout the rest of the chapter. Elements can be broken down into three dif-
ferent categories: scripting elements, directives, and actions. The following self-
named sections explain these elements.

Two Types of Syntax
JSP containers are required to support two different formats of JSP syntax:
normal and XML-compatible. The normal JSP syntax is a syntax designed to be

116 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 116

JSP SYNTAX AND SEMANTICS 117

1. eXtensible Markup Language, http://www.w3.org/XML

easy to author. The XML-compatible JSP syntax takes the normal JSP syntax and
modifies it to be XML-compliant1. Both syntaxes provide the same functionality,
but the XML-compatible syntax is intended to be more easily used by devel-
opment tools. In the examples of this book the normal JSP syntax is preferred as
it is easily read, understood, and will be familiar if you have used older versions
of JSP.

Just because the XML syntax will not be appearing much in this book’s
examples does not mean it is the lesser of the two syntaxes. The JSP XML syntax
introduced in the JSP 1.2 specification, from a developer’s perspective, is cer-
tainly a hassle to use compared to the regular syntax. This is largely due to the
complexity and strict enforcement of syntax the JSP 1.2 XML syntax had. JSP 2.0
remedies the problem by providing a much more flexible XML syntax. Later on
in the chapter this new, more flexible XML syntax is further explained.

Scripting Elements
The simplest method of making a JSP dynamic is by directly embedding bits of
Java code between blocks of template text by use of scripting elements. In theory
JSP does not limit scripting elements to only those containing Java code, but the
specification only talks about Java as the scripting language, and every container
by default has to support Java. Examples in this book use Java as a scripting lan-
guage. There are three different types of scripting elements available for use in
JSP: scriptlets, expressions, and declarations.

Scriptlets
Scriptlets provide a method for directly inserting bits of Java code between
chunks of template text. A scriptlet is defined with a start ,<%, an end, %>, with
code between. Using Java, the script is identical to normal Java code but without
needing a class declaration or any methods. Scriptlets are great for providing low-
level functionality such as iteration, loops, and conditional statements, but they
also provide a method for embedding complex chunks of code within a JSP.

For many reasons complex scriptlets should be avoided. This is mainly due to
the fact that the more scriptlets are used the harder it is to understand and
maintain a JSP. In this chapter most of the scriptlet examples are purposely kept
simple. This aids in directly demonstrating the core functionality of JSP, but it is
also done so that examples do not appear to encourage heavy use of scriptlets. As

falkner.ch3.qxd 8/21/03 7:06 PM Page 117

an introduction, Listing 3-3 provides a simple JSP that loops to produce multiple
lines of text. Looping is accomplished the same as in Java but by placing the
equivalent Java code inside scriptlet elements.

Listing 3-3 Loop.jsp

<html>

<head>

<title>Loop Example</title>

</head>

<body>

<% for (int i=0; i<5;i++) { %>

Repeated 5 Times.

<% } %>

</body>

</html>

Save Loop.jsp in the base directory of the jspbook Web Application and
browse to http://127.0.0.1/jspbook/Loop.jsp. The page shows up with the
statement, “Repeated 5 Times.”, repeated five times. Figure 3-3 shows what a
browser rendering of the output looks like.

It is important to note that the contents of the scriptlet did not get sent to a
client. Only the results of the scriptlet did. This is important because it shows that
scriptlets are interpreted by a container and that code inside a scriptlet is not by
default shared with visitors of the JSP.

A JSP may contain as many scriptlets as are needed, but caution should be
taken not to overuse scriptlets. Scriptlets make a JSP very hard to maintain and
are not easily documented; for example, tools like javadoc do not work with JSP.

118 JAVASERVER PAGES

Figure 3-3 Browser Rendering of Loop.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 118

Expressions
Expressions provide an easy method of sending out dynamic strings to a client.
An expression must have a start, <%=, end, %>, and an expression between. An
expression element differs in syntax from a scriptlet by an equal sign that must
appear immediately after the start. Expressions always send a string of text to a
client, but the object produced as a result of an expression does not have to
always end up as an instance of a String object. Any object left as the result of an
expression automatically has its toString() method called to determine the
value of the expression. If the result of the expression is a primitive, the prim-
itive’s value represented as a string is used.

Combined with scriptlets, expressions are useful for many different purposes.
A good example is using a scriptlet that is combined with an expression to
provide a method of iterating over a collection of values. The scriptlet provides a
loop, while expressions and static content are used to send information in a
response. Iteration.jsp (Listing 3-4) provides an example of this along with a
demonstration of passing a non-String object as the result of an expression.

Listing 3-4 Iteration.jsp

<html>

<head>

<title>Iteration Example</title>

</head>

<body>

<%

String[] strings = new String[4];

strings[0] = "Alpha";

strings[1] = "in";

strings[2] = "between";

strings[3] = "Omega";

for (int i=0; i<strings.length;i++) { %>

String[<%= i %>] = <%= strings[i] %>

<% } %>

</body>

</html>

Save Iteration.jsp in the base directory of the jspbook Web Application
and browse to http://127.0.0.1/jspbook/Iteration.jsp. The page displays a
list of an iteration through all of the values of the array. Figure 3-4 shows a
browser rendering of the output sent by Iteration.jsp.

JSP SYNTAX AND SEMANTICS 119

falkner.ch3.qxd 8/21/03 7:06 PM Page 119

Declarations
Declarations are the third and final scripting element available for use in JSP. A
declaration is used like a scriptlet to embed code in a JSP, but code embedded by
a declaration appears outside of the _jspService() method. For this reason code
embedded in a declaration can be used to declare new methods and global class
variables, but caution should be taken because code in a declaration is not
thread-safe, unless made so by the writer of that code.

Listing 3-5 is a JSP designed to keep a page counter of how many times it has
been visited. The JSP accomplishes this by declaring a class-wide variable in a
declaration, using a scriptlet to increment the variable on page visits, and an
expression to show the variable’s value.

Listing 3-5 PageCounter.jsp

<%! int pageCount = 0;

void addCount() {

pageCount++;

}

%>

<html>

<head>

<title>PageCounter.jsp</title>

</head>

<body>

<% addCount(); %>

This page has been visited <%= pageCount %> times.

</body>

</html>

120 JAVASERVER PAGES

Figure 3-4 Iteration.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 120

Save PageCounter.jsp in the base directory of the jspbook Web Application
and browse to http://127.0.0.1/jspbook/PageCounter.jsp. Refresh the
browser a few times to watch the JSP count how many times it has been visited.
Figure 3-5 shows a browser rendering of the output after visiting the JSP 6 times.

Using scriptlets, expressions, and declarations most anything can be created
using JSP. An analogy to Servlets would be: scriplets are code placed inside a
service method, expressions are print() method calls, and declarations are code
placed globally for a class to use. After the brief explanation above it should be
fairly straightforward to start coding using sciptlets, expressions, and declara-
tions, but it is still helpful to understand what the three different scripting ele-
ments translate to in a Java code.

Listing 3-6 is the code Tomcat generated from PageCounter.jsp. It contains
the translation of all three of the scripting elements. The lines of importance are
highlighted with an asterisk.

Listing 3-6 PageCounter$jsp.java

package org.apache.jsp;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import org.apache.jasper.runtime.*;

public class PageCounter$jsp extends HttpJspBase {

// begin [file="/PageCounter.jsp";from=(0,3);to=(4,0)]

JSP SYNTAX AND SEMANTICS 121

Figure 3-5 Browser Rendering of PageCounter.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 121

122 JAVASERVER PAGES

int pageCount = 0;

void addCount() {

pageCount++;

}

// end

static {

}

public PageCounter$jsp() {

}

private static boolean _jspx_inited = false;

public final void _jspx_init() throws

org.apache.jasper.runtime.JspException {

}

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

throws java.io.IOException, ServletException {

JspFactory _jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String _value = null;

try {

if (_jspx_inited == false) {

synchronized (this) {

if (_jspx_inited == false) {

_jspx_init();

_jspx_inited = true;

}

}

}

_jspxFactory = JspFactory.getDefaultFactory();

response.setContentType("text/html;charset=ISO-

8859-1");

falkner.ch3.qxd 8/21/03 7:06 PM Page 122

JSP SYNTAX AND SEMANTICS 123

pageContext = _jspxFactory.getPageContext(this, request,

response,

"", true, 8192, true);

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

// HTML // begin

[file="/PageCounter.jsp";from=(4,2);to=(10,0)]

out.write("\r\n<html>\r\n<head>\r\n<title>PageCounter.jsp</title>\r\

n</head>\r\n<body>\r\n");

// end

// begin

[file="/PageCounter.jsp";from=(10,2);to=(10,15)]

addCount();

// end

// HTML // begin

[file="/PageCounter.jsp";from=(10,17);to=(11,27)]

out.write("\r\nThis page has been visited ");

// end

// begin

[file="/PageCounter.jsp";from=(11,30);to=(11,41)]

out.print(pageCount);

// end

// HTML // begin

[file="/PageCounter.jsp";from=(11,43);to=(14,0)]

out.write(" times.\r\n</body>\r\n</html>\r\n");

// end

} catch (Throwable t) {

if (out != null && out.getBufferSize() != 0)

out.clearBuffer();

if (pageContext != null)

pageContext.handlePageException(t);

} finally {

if (_jspxFactory != null)

falkner.ch3.qxd 8/21/03 7:06 PM Page 123

124 JAVASERVER PAGES

2. Except in the case of debugging, where it is often useful to see the JSP and the generated Servlet
side-by-side.

_jspxFactory.releasePageContext(pageContext);

}

}

}

Thankfully this is the last bit of generated code that appears in this book.
Reading through translated JSP is rarely required nor is it usually helpful2, but it
is certainly needed to understand what a container does when a JSP is translated
to a Servlet. Taking the highlighted lines from PageCounter$jsp.java, each can
be linked back to scripting elements from PageCounter.jsp.

In PageCounter.jsp a declaration is used to define a class-wide variable for
counting the number of page visits and a method for incrementing it.

<%! int pageCount = 0;

void addCount() {

pageCount++;

}

%>

Translated into PageCounter$jsp.java, the code of the declaration appears
outside of the _jspService() method and is class-wide. This allows for the
addCount() method to be coded as a real method of the Servlet and the
pageCount variable to be accessible by all calls to the _jspService() method. The
methods are not thread-safe, but for this particular example, it does not matter
if the pageCount variable changes halfway through generating a response.

public class PageCounter$jsp extends HttpJspBase {

// begin [file="/PageCounter.jsp";from=(0,3);to=(4,0)]

int pageCount = 0;

void addCount() {

pageCount++;

}

// end

In PageCounter.jsp a scriptlet and expression are used to increase and send
the value of the pageCount variable to client.

<% addCount(); %>

This page has been visited <%= pageCount %> times.

falkner.ch3.qxd 8/21/03 7:06 PM Page 124

JSP SYNTAX AND SEMANTICS 125

3. “Thread safety” is not a Servlet-specific or JSP-specific issue. Whenever Java code is using multiple
threads, state concurrency issues arise. Thread safety is a common term when describing these issues
as it is important to ensure code is thread-safe—that is, able to work properly if multiple threads are
running it. Chapter 9 provides a complete discussion on thread-safety and state management as the
topics apply to Servlets and JSP.

Translated in PageCounter$jsp.java, the scriptlet is used verbatim, but the
expression is turned into a call to the print() method of a PrintWriter object
obtained from the corresponding HttpServletResponse. Both scripting ele-
ments are located in the _jspService() method, are thread-safe, and local to a
specific client request.

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

throws java.io.IOException, ServletException {

...

// begin

[file="/PageCounter.jsp";from=(10,2);to=(10,15)]

addCount();

// end

// HTML // begin

[file="/PageCounter.jsp";from=(10,17);to=(11,27)]

out.write("\r\nThis page has been visited ");

// end

// begin

[file="/PageCounter.jsp";from=(11,30);to=(11,41)]

out.print(pageCount);

// end

...

}

The point of the preceding code is to illustrate exactly where scriptlets,
expressions, and declarations appear in Java source code generated from a JSP. It
is important to understand that both scriptlets and expressions appear inside the
_jspService() method and are by default thread-safe to a particular request.
Declarations are not thread-safe. Code inside a declaration appears outside the
_jspService() method and is accessible by a requests being processed by the JSP.
Declarations, unlike scriptlets, can also declare functions for use by scriptlets.

Good Coding Practice with Scripting Elements
Before going out and recklessly coding JSP with scripting elements, there are a
few important points to be made. Most prominent is the issue of thread safety3.

falkner.ch3.qxd 8/21/03 7:06 PM Page 125

Expressions can be considered harmless. Unless purposely used to cause a con-
flict, an expression is always going to be thread-safe. Declarations and scriptlets
are more problematic. Using a scriptlet is analogous to declaring and using vari-
ables locally in the appropriate service method of a Servlet. Variables declared by
a scriptlet are initialized, used, and destroyed once per a call to the _jsp
Service() method. By default this makes scriptlets thread-safe, but they do not
ensure the objects they access are thread-safe. If a scriptlet accesses an object in a
scope outside of the _jspService() method, then a synchronized block should
be used to ensure thread safety. Declarations are not thread-safe! A declaration
appears outside the _jspService() method. Far too often declarations are com-
pletely misunderstood as an enhanced form of a scriptlet. They are not!

A common debate is whether scriptlets and declarations are needed at all
with JSP. The power of JSP comes from easily creating text-producing Servlets. A
JSP is maintainable if it is primarily markup, which is easily edited by page
authors. Many developers take the stance that scripting elements destroy this
feature of JSP and should be completely replaced by custom actions and the JSP
expression language (new as of JSP 2.0, and covered in a later chapter). This view-
point is valid, is endorsed by the authors ,and is further covered in later chapters,
but custom actions are relatively heavyweight components compared to a simple
embedded script. Scriptlets, declarations, and particularly expressions certainly
have a place with JSP, but they should not be overused. If a page is littered with
countless scripting elements, they are likely to do more harm than good. Always
be conscious of how scripting elements are being used and if the code might be
better encapsulated in other objects that can be used by a few scripting elements.

Directives
Directives are messages to a JSP container. They do not send output to a client,
but are used to define page attributes, which custom tag libraries use and which
other pages include. All directives use the following syntax.

<%@ directive {attribute="value"}* %>

Directives may optionally have extra whitespace after the <%@ and before the
%>. There are three different JSP directives for use on a page4: page, taglib, and
include.

126 JAVASERVER PAGES

4. There are other directives that can only be used in tag files: tag, attribute, and variable.

falkner.ch3.qxd 8/21/03 7:06 PM Page 126

<%@ page %>
The page directive provides page-specific information to a JSP container. This
information includes settings such as the type of content the JSP is to produce,
the default scripting language of the page, and code libraries to import for use.
Multiple page directives may be used on a single JSP or pages included via JSP as
long as no specific attribute, except import, occurs more than once. Attributes for
the page directive are as follows.

language The language attribute defines the scripting language to be used by
scriptlets, expressions, and declarations occurring in the JSP. The only defined
and required scripting language value for this attribute is java. Different con-
tainers may provide additional language support; however, it is uncommon to see
a JSP use a language other than Java for scripting elements.

In this book it is always assumed that the language appearing in scripting ele-
ments is Java (as that is currently the only defined language). Translation of a
scripting element using Java code fragments into real Java code is easily done by
any developer with previous Java experience. Understanding how and why a
scriptlet example works is assumed to be intuitive because it is identical to under-
standing the Java equivalent.

extends The extends attribute value is a fully qualified Java programming lan-
guage class name that names the superclass of the class to which this JSP is trans-
formed. The extends attribute is analogous to the extends keyword used when
authoring a Java class. This attribute should be used sparingly as it prevents a
container from using a pre-built optimized class.

import The import attribute describes the types that are available for use in
scripting elements. The value is the same as in an import declaration in the Java
programming language, with multiple packages listed with either a fully qualified
Java programming language-type names or a package name followed by .*,
denoting all the public types declared in that package.

The default import list is java.lang.*, javax.servlet.*, javax.servlet.
jsp.*, and javax.servlet.http.*. These packages can be assumed to be
available by default with every JSP. The import attribute is currently only defined
for use when the value of the language directive is java.

session The session attribute indicates that the page requires participation in
an HTTP session. If true, then the implicit scripting variable session references
the current/new session for the page. If false, then the page does not participate
in a session and the session implicit scripting variable is unavailable, and any

JSP SYNTAX AND SEMANTICS 127

falkner.ch3.qxd 8/21/03 7:06 PM Page 127

reference to it within the body of the JSP page is illegal and results in a fatal trans-
lation error. The default value of the session attribute is true.

buffer The buffer attribute specifies the buffering model for the initial out
implicit scripting variable to handle content output from the page. If the
attribute’s value is none, then there is no buffering and output is written directly
through to the appropriate ServletResponse PrintWriter. Valid values for the
attribute are sizes specified in kilobytes, with the kb suffix being mandatory. If a
buffer size is specified, then output is buffered with a buffer size of at least the
specified, value. Depending upon the value of the autoFlush attribute, the con-
tents of this buffer are either automatically flushed or an exception is thrown
when overflow would occur. The default value of the buffer attribute is 8kb.

autoFlush The autoFlush attribute specifies whether buffered output should
be flushed automatically when the buffer is filled, or whether an exception
should be raised to indicate buffer overflow. A value of true indicates automatic
buffer flushing and a value of false throws an exception. The default value of
the autoFlush attribute is true. It is illegal to set the autoFlush attribute to
false when the value of the buffer attribute is none.

isThreadSafe The isThreadSafe attribute indicates the level of thread safety
implemented in the page. If the value is false, then the JSP container shall dis-
patch multiple outstanding client requests, one at a time, in the order they were
received, to the page implementation for processing by having the generated
Servlet implement SingleThreadModel. If the attribute’s value is true, then the
JSP container may choose to dispatch multiple client requests to the page simul-
taneously. The default value of the isThreadSafe attribute is true.

isErrorPage The isErrorPage attribute indicates if the current JSP page is
intended to be an error page for other JSP. If true, then the implicit scripting
variable exception is defined, and its value is a reference to the offending
Throwable object. If the isErrorPage attribute value is false, then the
exception implicit variable is unavailable, and any reference to it within the body
of the JSP page is illegal and will result in a fatal translation error. The default
value of the isErrorPage attribute is false.

errorPage The errorPage attribute defines a relative URL to a resource in the
Web Application to which any Java programming language Throwable object
thrown but not caught by the page implementation is forwarded for error pro-
cessing. The Throwable object is transferred to the error page by binding the object
reference to request scope with the name javax.servlet.jsp.jspException.

128 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 128

If the value of the autoFlush attribute is true, and if the contents of the
initial JspWriter have been flushed to the ServletResponse output stream, then
any subsequent attempt to dispatch an uncaught exception from the offending
page to an errorPage may fail.

contentType The contentType attribute defines the character encoding for the
JSP page, and for the response of the JSP page and the MIME type for the
response of the JSP page. The default value of the contentType attribute is
text/html with ISO-8859-1 character encoding for regular JSP syntax and UTF-
8 encoding for JSP in XML syntax.

pageEncoding The pageEncoding attribute defines the character encoding for
the JSP. The default value of the pageEncoding attribute is ISO-8859-1 for regular
JSP and UTF-8 for JSP in XML syntax.

isScriptingEnabled The isScriptingEnabled attribute determines if
scripting elements are allowed for use. The default value (true) enables scriptlets,
expressions, and declarations. If the attribute’s value is set to false, a translation-
time error will be raised if the JSP uses any scriptlets, expressions (non-EL), or
declarations. This attribute is helpful for creating ‘scriptless’ JSP and can also be
set using the web.xml scripting-enabled element.

isELEnabled The isELEnabled attribute determines if JSP EL expressions used
in the JSP are to be evaluated. The default value of the attribute is true, meaning
that expressions, ${...}, are evaluated as dictated by the JSP specification. If the
attribute is set to false, then expressions are not evaluated but rather treated as
static text.

The page directive is by default set to accommodate the most common use of
JSP: to make dynamic HTML pages. When creating a simple JSP, it is rarely
needed to specify any of the page directive attributes except in cases where extra
code libraries are needed for scripting elements or when producing XML
content, which is happening more and more.

<%@ include %> and <jsp:include />
The include directive is used to include text and/or code at translation time of a
JSP. The include directive always follows the same syntax, <%@ include

file="relativeURL" %>, where the value of relativeURL is replaced with the file
to be inserted. Files included must be part of a Web Application. Since include
directives take place at translation time, they are the equivalent of directly

JSP SYNTAX AND SEMANTICS 129

falkner.ch3.qxd 8/21/03 7:06 PM Page 129

including the source code in the JSP before compilation and do not result in per-
formance loss at runtime.

Server-side includes are a commonly used feature of JSP. Includes allow the
same repetitious bit of code to be broken out of multiple pages and have one
instance of it included with them all. A good example to use is including a
common header and footer with multiple pages of content. Usually this tech-
nique is used to keep a site’s navigation and copyright information correct and
maintainable for all individual pages on the site. As an example take the following
two files, header.jsp and footer.jsp.

The header.jsp file (Listing 3-7) includes information that is to appear at the
top of a page. It includes site navigation and other miscellaneous information.
This header also tracks how many people have visited the site since the last time
the Web Application was reloaded by reusing code from PageCounter.jsp.

Listing 3-7 header.jsp

<%! int pageCount = 0;

void addCount() {

pageCount++;

}

%>

<% addCount(); %>

<html>

<head>

<title>Header/Footer Example</title>

</head>

<body>

<center>

<h2>Servlets and JSP the J2EE Web Tier</h2>

Book Support Site -

Sites Source code

This site has been visited <%= pageCount %> times.

</center>

The footer.jsp file (Listing 3-8) includes information that is to appear at
the very bottom of a page. It includes copyright information, disclaimers, and
any other miscellaneous information.

Listing 3-8 footer.jsp

<center>

130 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 130

Copyright © 2003

</center>

</body>

</html>

By themselves header.jsp and footer.jsp do not do much, but when com-
bined with some content, a full page can be generated. For this example the
content does not matter. Arbitrarily make up a JSP, but be sure to include
header.jsp at the top of the page and footer.jsp at the bottom. Listing 3-9 pro-
vides an example of such a page.

Listing 3-9 content.jsp

<%@ include file="header.jsp" %>

Only the content of a page is unique. The same header and footer

are reused from header.jsp and footer.jsp by means of the include

directive

<%@ include file="footer.jsp" %>

Save all three files, header.jsp, footer.jsp, and content.jsp, in the base
directory of the jspbook Web Application and browse to http://127.
0.0.1/jspbook/content.jsp. All three files are mashed together at translation
time to produce a Servlet that includes the contents of header.jsp, content.jsp,
and footer.jsp in the appropriate order. Figure 3-6 shows a browser rendering
of the output.

JSP SYNTAX AND SEMANTICS 131

Figure 3-6 Browser Rendering of content.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 131

So what is the advantage of this approach over combining header.jsp,
content.jsp, and footer.jsp all in one file in the first place? As the files are set
up now, many more content pages can be created that reuse the header and
footer. The header and footer can also be changed at any given time, and the
changes are easily reflected across all of the JSP.

For non-translation-time includes JSP also defines the include action. Like
the include directive, this action is used to include resources with the output of a
JSP, but the include action takes place at runtime. While not as efficient, the
include action automatically ensures that the most recent output of the included
file is used. See the <jsp:include /> section of this chapter for more information
about the include action.

<%@ taglib %>
Custom actions were previously mentioned in this chapter, but are not fully
covered until Chapter 7. Custom actions, also called custom tag libraries, allow a
JSP developer to link bits of markup to customized Java code. The taglib
directive informs a container what bits of markup on the page should be con-

132 JAVASERVER PAGES

Translation-Time Includes

Translation time occurs when a JSP is being translated into a Servlet. The
resulting Servlet does not know or care about what files were used to generate
it. As a result the Servlet is unable to tell when a change has occurred in
included files. The JSP specifications do not specify a mechanism for solving
this problem, but JSP container vendors are free to implement solutions to the
problem.

In cases where an entire site relies on translation-time includes for efficiency,
a simple solution does exist for having changes in translation-time includes
reflected on the entire site. A container relies on having the translated code of
a JSP to compile and deploy a corresponding Servlet. When lacking the code,
a container must re-translate a JSP and compile and deploy the corresponding
Servlet. By forcing a container to re-translate all JSP, it can be ensured that
translation-time includes are properly reflected by JSP that use them.

With Tomcat, JSP translated to Servlet source code can be found in the
TOMCAT_HOME/work directory. Simply delete the contents of this directory to
have Tomcat re-translate all JSP.

falkner.ch3.qxd 8/21/03 7:06 PM Page 132

sidered custom code and what code the markup links to. The taglib directive
always follows the same syntax, <%@ taglib uri="uri" prefix="prefixOfTag"

%>, where the uri attribute value resolves to a location the container understands
and the prefix attribute informs a container what bits of markup are custom
actions.

Further explanation and examples of using the taglib directive can be found
in Chapter 7.

JSP Configuration
Directives are in the simplest sense configuration information for a JSP. The only
problem with using directives for configuration is that they must be specified on
a per-JSP basis. If you have 20 pages, then you will have to edit at least 20 direc-
tives. To simplify the task of doing mass JSP configuration, the jsp-config

element is available for use in web.xml. There are two sub-elements of jsp-

config: taglib and jsp-property-group. The taglib element can be used to con-
figure a custom JSP tag library for use with a JSP. The jsp-property-group
element allows for configuration that is similar to the directives but can be
applied to a group of JSP.

For completeness the taglib element will be covered here and referenced in
the later pertinent chapter about custom JSP tag libraries. Use of the taglib
element is straightforward; first specify a taglib-uri child element, which defines
the prefix custom tags are to use; next specify a taglib-location element, which
defines the location of the custom tag library. For example:

...

<jsp-config>

<taglib>

<taglib-uri>foo</taglib-uri>

<taglib-location>WEB-INF/foo.tld</taglib-location>

</taglib>

</jsp-config>

...

For more on tag libraries see Chapter 7.
The jsp-property-group element is currently of much more relevance

because it is an alternative for much of the functionality offered by the JSP direc-
tives. Basic use of the jsp-property-group element is always the same; first use
a child url-pattern element to define the JSP to apply the properties to:

<jsp-config>

<jsp-property-group>

JSP SYNTAX AND SEMANTICS 133

falkner.ch3.qxd 8/21/03 7:06 PM Page 133

<url-pattern>*.jsp</url-pattern>

...

</jsp-property-group>

</jsp-config>

In the preceding code the configuration will be applied to all files ending in
.jsp which would likely be all of the JSP in the Web Application. In general the
url-pattern element can have any of the values that are valid for use when
deploying Servlets or JSP via web.xml. By itself the url-pattern element does
nothing but match a set of properties to a specific set of JSP. The properties them-
selves must next be specified using more child elements of jsp-property-group.
The jsp-property-group element has the following children elements, which are
all fairly self-descriptive.

el-enabled The el-enabled element configures if the JSP EL is available for
use on the specified JSP. A value of true enables EL use. A value of false disables
it. The functionality is analogous to the page directive’s isELEnabled attribute.

scripting-enabled The scripting-enabled element is analogous to the page
directive’s isScriptingEnabled attribute. A value of false will cause a JSP to
raise a translation error if any scriptlets, expressions (non-EL), or directives are
used. A value of true will enable scripting elements for use.

page-encoding The page-encoding element is analogous to the page
directive’s pageEncoding attribute. An error will be raised if an encoding is set
using the page-encoding attribute and a different encoding is specified using the
pageEncoding attribute of a JSP’s page directive.

include-prelude The include-prelude element can be used to include the
contents of another resource in the Web Application before the contents gen-
erated by a JSP. Effectively the include-prelude element provides a method of
automatically including a header for all JSP that the jsp-property-group is con-
figured for.

include-coda The include-coda element can be used to include the contents
of another resource in the Web Application after the contents generated by a JSP.
Effectively the include-coda element provides a method that automatically
includes a footer for all JSP that the jsp-property-group is configured for.

is-xml The is-xml element can be used to denote if the JSP are XML docu-
ments. JSP authored in XML syntax need not always be explicitly declared as
XML; however, declaring so is helpful for both validating the document and
taking advantage of JSP-XML features such as UTF-8 encoding.

134 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 134

Overall, the jsp-property-group element should be very intuitive to use.
The only new functionality that has been introduced is due to the include-
prelude, include-coda, and is-xml elements. Both include-prelude and
include-coda are also very straightforward to use. In use, the two elements
replace the need for header and footer includes using the JSP include directive or
custom action. The is-xml element is new, but do not worry if it is unclear as to
what the element is doing. Later on in this chapter JSP in XML syntax is
addressed properly.

Application-Wide Headers and Footers
It is very common to build a Web Application that includes the same header and
footer on every page. In these cases there are many methods that you can use to
go about achieving the functionality, but arguably the easiest is to use the
include-prelude and include-coda elements. Compared to manually including
the header and footer on each page, as in Listing 3-9, little is gained, but it is
slightly helpful to use the include-prelude and include-coda elements for two
reasons. First, inclusion of the header and footer pages are consolidated to one
single point, web.xml. The names or locations of the header and footer resources
can easily be changed for any given reason. When using the include directive or
action, this will not be the case. A change will be a slight bit more of a hassle, but
it can still be done. The second benefit to using the include-prelude and
include-coda elements is that pages of a Web Application only have to focus on
content, nothing else. Granted, remembering to include a header and footer is
not a difficult task, but it is a task all the same.

Using the include-prelude and include-coda elements for application-
wide headers and footers is easy, and always done in a similar fashion as illus-
trated in Listing 3-10.

Listing 3-10 Application-Wide Header and Footer Files

<jsp-config>

<jsp-property-group>

<url-pattern>*.jsp</url-pattern>

<include-prelude>/header.jsp</include-prelude>

<include-coda>/footer.jsp</include-coda>

</jsp-property-group>

</jsp-config>

As shown, the jsp-property-group is configured to apply to all JSP files;
however, the configuration could be extended to include other resources if

JSP SYNTAX AND SEMANTICS 135

falkner.ch3.qxd 8/21/03 7:06 PM Page 135

needed. The important point to see is that the configuration is being applied to
everything of importance. Next, the include-prelude element and include-
coda element are used to include a header and footer, respectively. The locations
given are /header.jsp and /footer.jsp, but any other resource can be used.

Standard JSP Actions
Actions provide a convenient method of linking dynamic code to simple mark-
up that appears in a JSP. The functionality is identical to the scripting elements
but has the advantage of completely abstracting any code that would normally
have to be intermixed with a JSP. Actions that are designed to be simple to use
and work well help keep a JSP efficient and maintainable.

There are two types of actions available for use with JSP: standard and
custom. All actions follow the same syntax, <prefix:element {attribute=

"value"}* />, where the complete action is an XML-compatible tag and includes
a given prefix, element, and a set of attributes and values that customize the
action. Standard actions are completely specified by the JSP specification and are,
by default, available for use with any JSP container. Custom actions are a mech-
anism defined by the JSP specification to enhance JSP by allowing JSP developers
to create their own actions. The functionality of custom actions is not defined by
the JSP specifications, and custom actions must be installed with a Web
Application before being used.

Standard actions are summarized in this section. The standard actions
include functionality that is commonly used with JSP and allow for: easily using
Java Applets, including files at runtime; manipulating JavaBeans; and forwarding
requests between Web Application resources.

<jsp:include/>
JSP complements the include directive by providing a standard action for
including resources during runtime. The syntax of the include action is similar to
an include directive and is as follows: <jsp:include page="page" />, where the
page attribute value is the relative location in the Web Application of the page to
include.

The include action can be used in a JSP the same as the include directive.
Reusing the header.jsp and footer.jsp files from the include directive example
in Listing 3-11 is a JSP that includes a header and footer at runtime.

136 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 136

JSP SYNTAX AND SEMANTICS 137

Figure 3-7 Browser Rendering of runtimeInclude.jsp

Listing 3-11 runtimeInclude.jsp

<jsp:include page="header.jsp" />

Only the content of a page is unique. The same header and footer are

reused from header.jsp and footer.jsp by means of the include

directive.

<jsp:include page="footer.jsp" />

Save the code as runtimeInclude.jsp in the base directory of the jspbook
Web Application and browse to http://127.0.0.1/jspbook/runtimeInclude.
jsp. The same page is shown as with content.jsp. Figure 3-7 shows a browser
rendering of runtimeInclude.jsp.

The end result looks the same, but it is important to distinguish the dif-
ference between the include directive and the include action. An include that
occurs at runtime is always current with the resource it is including. An include
done at translation time is only current with the resource as it was at the time of
translation. A simple example (Listing 3-12) illustrates the point. Edit
footer.jsp to include a small change, a disclaimer.

Listing 3-12 Edited footer.jsp

<center>

Copyright © 2003

<small>Disclaimer: all information on this page is covered by

this disclaimer.</small>

falkner.ch3.qxd 8/21/03 7:06 PM Page 137

</center>

</body>

</html>

Now look at both content.jsp and runtimeInclude.jsp again to see the
change. Figure 3-8 shows a browser rendering of runtimeInclude.jsp (http://
127.0.0.1/jspbook/runtimeInclude.jsp). The page reflects the updates to
footer.jsp automatically. This holds true for any update done to a resource that
is included via the include action. However, content.jsp (http://127.0.0.1/
jspbook/content.jsp) does not appear to reflect the change. It still looks iden-
tical to the pages that appeared in both Figure 3-6 and Figure 3-7 previously.

Runtime versus translation-time includes is the reason for the inconsistency.
The content.jsp file was translated into a Servlet that included the exact con-
tents of both header.jsp and footer.jsp before the edit was made to
footer.jsp. To have the changes reflected, content.jsp must be re-translated to
use the new footer.jsp. The runtimeInclude.jsp Servlet does not need to be
re-translated because it relies on an include footer.jsp at runtime. The analogy
to the Servlet API is that runtimeInclude.jsp uses RequestDispatcher
include() method calls to access both header.jsp and footer.jsp, but
content.jsp does not. The code for content.jsp was generated by directly
including the code for header.jsp and footer.jsp before compiling the Servlet.

The difference between the include directive and include action is important
to understand because it affects performance and consistency. A JSP that uses

138 JAVASERVER PAGES

Figure 3-8 Updated Rendering of runtimeInclude.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 138

include directives has the same performance as if an include was never used, but
the drawback is that this JSP will not automatically reflect updates to the
included file. A JSP that uses include actions will always reflect the current
content of an included page, but it suffers a slight performance loss for doing so.

<jsp:plugin/>, <jsp:fallback/>, <jsp:params/>, and <jsp:param/>
JSP has very strong Java ties. JSP was originally designed as a technology Java
developers would easily be able to use. For this reason it is common to see JSP
being used in conjunction with the many other Java technologies that currently
exist. One of the prominent uses of Java is still Java Applets. A Java Applet is a Java
application, run with many restrictions, that executes in a client’s Web browser
through a Java-supporting plug-in. Java Applets are not heavily tied with the JSP
and Servlet specifications and will not be covered in this book.

The JSP specifications define custom actions for easily generating the proper
custom code needed to embed a Java Applet in an HTML page. The Applet-
related actions are: plugin, fallback, and params. The plugin action represents
one Applet that should be embedded in an HTML page. The plugin action
allows for the following attributes:

type The type attribute identifies the type of the component: a Bean or an
Applet. A bean is a component built to match the original intentions of the
JavaBean specifications. An Applet is the commonly seen client-side Java func-
tionality browsers implement via the Java plug-in.

code The code attribute specifies either the name of the class file that contains
the Applet’s compiled subclass or the path to get the class, including the class file
itself. It is interpreted with respect to the codebase attribute.

codebase The codebase attribute specifies the base URI for the Applet. If this
attribute is not specified, then it defaults the same base URI as for the current JSP.
Values for this attribute may only refer to subdirectories of the directory con-
taining the current document.

align The align attribute determines the location of the Applet relative to
where it is being displayed. Valid values are bottom, middle, and top.

archive The archive attribute specifies a comma-separated list of URIs for
JAR files containing classes and other resources that are to be loaded before the
Applet is initialized. The classes are loaded using an instance of an AppletClass
Loader with the given codebase. Relative URIs for archives are interpreted with

JSP SYNTAX AND SEMANTICS 139

falkner.ch3.qxd 8/21/03 7:06 PM Page 139

respect to the Applet’s codebase. Preloading resources can significantly improve
the performance of Applets.

height The height attribute defines the height in either pixels or percent that
the window displaying the Applet should use. This value can be set at runtime via
an expression if needed.

hspace The hspace attribute determines the amount of whitespace to be
inserted horizontally around the Applet.

jreversion The jreversion attribute identifies the spec version number of the
JRE the component requires in order to operate; the default is 1.2.

name The name attribute specifies a name for the Applet instance, which makes
it possible for Applets on the same page to find and communicate with each
other.

vspace The vspace attribute determines the amount of whitespace to be
inserted vertically around the Applet.

width The width attribute defines the width in either pixels or percent that the
window displaying the Applet should use. This value can be set at runtime via an
expression if needed.

The fallback action is used to provide notification to a client should the
client’s browser not be able to use the Java plug-in. The fallback action allows
for an arbitrary text message to be included as its body, and must be a sub-tag to
the plugin action. Text included in the fallback action is presented to a client
should their browser fail to support the Java plug-in.

The params action is used to set parameters for the code being embedded by
the plugin action. The params action requires one-to-many sub param actions. A
param action has two attributes, name and value, that define a name and value,
respectively, for a parameter. When using a params action with a plugin action,
the param action must be a sub-tag of the plugin action.

Combining the plugin, fallback, params, and param actions, a fully cus-
tomized Java Applet can easily be embedded in an HTML page. Using all the
actions together is best shown through an example. Listing 3-13 embeds an
Applet, FooApplet.class, in an HTML page that is generated by a JSP.

Listing 3-13 AppletExample.jsp

<html>

<head>

<title>Applet Example</title>

140 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 140

</head>

<body>

<jsp:plugin

type="applet"

code="FooApplet.class"

height="100"

width="100"

jreversion="1.2">

<jsp:fallback>

Applet support not found, can't run example.</jsp:fallback>

</jsp:plugin>

</body>

</html>

It is important to remember where everything takes place when using Applets
and JSP. JSP executes on the server-side; Applets execute on the client-side. The
result of AppletExample.jsp is going to be a plain HTML document with a ref-
erence to FooApplet.class. The actual code for FooApplet.class is downloaded
by a Web browser by issuing a second request to the Web server from which the
HTML came. A JSP does not send the Applet code inside the HTML page it gen-
erates, nor does the Applet code get executed on the Web server it came from. To
further demonstrate this point, Listing 3-14 provides the code for FooApplet.
java.

Listing 3-14 FooApplet.java

import javax.swing.*;

import java.awt.*;

public class FooApplet extends JApplet {

public void init() {

JLabel label = new JLabel("I'm an Applet.");

label.setHorizontalAlignment(JLabel.CENTER);

getContentPane().add(label, BorderLayout.CENTER);

}

}

Compile the preceding code and place both FooApplet.class and Applet
Example.jsp in the base directory of the jspbook Web Application. (Do not place
FooApplet.class in the /WEB-INF/classes/com/jspbook folder. To use the
Applet, a client must be able to download it. Placing the code in the /WEB-INF
directory prevents any client from doing so.) After placing the two files, browse
to http://127.0.0.1/jspbook/AppletExample.jsp. If your browser supports

JSP SYNTAX AND SEMANTICS 141

falkner.ch3.qxd 8/21/03 7:06 PM Page 141

142 JAVASERVER PAGES

Figure 3-9 Browser Running FooApplet.class

the Java plug-in version 1.2, it will load the example Applet. Figure 3-9 shows
what the Applet looks like when run by a Web browser.

Should your browser not support the Java plug-in, the fallback message is
displayed. Depending on the specific browser, it may also try to automatically
download and install the Java plug-in.

The plugin action is designed to be easy to use, but it brings up several
important points. The key point of this section is that the plugin action makes it
easy to embed an existing Java Applet in an HTML document generated by a JSP.
The plugin can optionally also include the fallback, params, and param actions
as subtags to customize the Applet. Additional points brought up from this func-
tionality were where Applets execute versus JSP and where to place Applet code
in a Web Application. The two points are worth further explanation and are dis-
cussed in the remainder of this section.

To best clarify what the plugin action does, it is helpful to show the HTML
source code generated by the action. The source code generated by Applet
Example.jsp is listed in Listing 3-15 with the lines generated by the plugin
action highlighted.

Listing 3-15 Output of AppletExample.jsp

<html>

<head>

<title>Applet Example</title>

</head>

<body>

<object classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

width="100" height="100"

falkner.ch3.qxd 8/21/03 7:06 PM Page 142

JSP SYNTAX AND SEMANTICS 143

5. http://www.w3.org/TR/html4/

codebase="http://java.sun.com/products/plugin/1.2.2/jinstall-1_2_2-

win.cab#Version=1,2,2,0">

<param name="java_code" value="FooApplet.class">

<param name="type" value="application/x-java-applet">

<COMMENT>

<embed type="application/x-java-applet;" width="100" height="100"

pluginspage="http://java.sun.com/products/plugin/"

java_code="FooApplet.class" >

<noembed>

</COMMENT>

Applet support not found, can't run example.

</noembed></embed>

</object>

</body>

</html>

The code is a little cryptic but is certainly not the binary of FooApplet.class.
What is highlighted is just a perfectly valid use of the HTML object element as
defined by the HTML 4.0 specification5. The HTML object element is a more
generic form of the now deprecated applet element that was designed to allow
Applets to be referenced from HTML. The object element defines all the necessary
information a browser needs to download the FooApplet.class file along with
loading the appropriate browser plug-in to execute it. After reading the object
element, the browser generates a completely new HTTP request for the Foo
Applet.class. The URL is a combination of information specified by the object
tag, but ends up being http://127.0.0.1/jspbook/FooApplet.class.

The URL a Web browser uses to download an Applet is the reason that Applet
code should not be placed under the /WEB-INF/classes directory. Code in these
directories is meant solely for use on the server-side and is not accessible by
outside clients. By placing the Applet’s code in the base directory alongside
AppletExample.jsp, a Web browser is free to download and use it.

<jsp:forward/>
JSP provide an equivalent to the RequestDispather.forward() method by use of
the forward action. The forward action forwards a request to a new resource and
clears any content that might have previously been sent to the output buffer by

falkner.ch3.qxd 8/21/03 7:06 PM Page 143

the current JSP. Should the current JSP not be buffered, or the contents of the
buffer already be sent to a client, an IllegalStateException is thrown. The
forward action uses the following syntax: <jsp:forward url="relativeURL"/>,
where the value of relativeURL is the relative location in the current Web
Application of the resource to forward the request to. Optionally the forward
action may have param actions used as subelements to define request parameters.
Where applicable, the param action values override existing request parameters.

<jsp:forward/> and <jsp:include/> parameters
Both the JSP forward and includes actions can optionally include parameters.
The mechanism for doing this is the JSP param action. The param action may only
appear in the body of either the forward or include actions and is used to define
parameters. The syntax of the param action is as follows:

<jsp:param name="parameter's name" value="parameter's value"/>

The parameter is a key/value pair with the name attribute specifying the name
and value attribute specifying the value. The values are made available to the for-
warded or included resource via the HttpServletRequest getParameter()

method, for instance, if the forward action was authored as the following:

<jsp:forward page="examplePage.jsp">

<jsp:param name="foo1" value="bar"/>

<jsp:param name="foo2" value="<%= foo %>"/>

</jsp:forward>

The fictitious page examplePage.jsp would have two additional request
parameters set for it: foo1 and foo2. The value of foo1 would be ‘bar’ and the
value of foo2 would be the string representation of whatever the foo variable
was. In the case where a parameter specified by the param action conflicts with an
existing parameter, the existing parameter is replaced.

JavaBean Actions
As with Applets, JavaBeans are commonly used Java objects, and JSP provides
default support for easily using them. The <jsp:useBean />, <jsp:getProperty
/>, and <jsp:setProperty /> actions all relate to JavaBeans, but will not be fully
covered in this chapter. Unlike Applets, JavaBeans are much more commonly
used with Servlet and JSP projects. Later chapters rely on JavaBean knowledge,
and JavaBeans are explained in depth in this book. Chapter 5 introduces,

144 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 144

explains, and shows examples of JavaBeans and the custom JSP actions for using
them.

Tag File Actions
A set of JSP standard actions exist for use with custom tags. These actions are
<jsp:attribute/>, <jsp:body/>, <jsp:doBody/>, and <jsp:invoke/>. Chapter
7 covers these actions in depth.

Whitespace Preservation
Servlets provide direct control over calls to the PrintWriter object responsible
for sending text in a response. JSP do not. JSP abstracts calls to the PrintWriter
object and allows for template text to be authored as it should be presented to a
client. Whitespace, while usually not important, is preserved as it appears in a JSP.
This preservation can be seen by looking at the HTML source code generated by
a JSP in any of this chapter’s examples.

Whitespace preservation is also the reason some seemingly unaccountable
formatting is included with JSP output. Take, for example, the following JSP
(Listing 3-16) that is a slight modification of HelloWorld.jsp.

Listing 3-16 HelloDate.jsp

<%@ page import="java.util.Date"%>

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1>Hello World!</h1>

The current date/time is: <%= new Date() %>.

</body>

</html>

Save HelloDate.jsp in the base directory of the jspbook Web Application
and browse to http://127.0.0.1/jspbook/HelloDate.jsp. The page looks very
similar to HelloWorld.jsp but now includes a date. In order to import the
java.util.Date class, the page directive is used. Figure 3-10 shows a browser
rendering of the results.

The code is a perfectly valid HTML document and looks fine when rendered
as HTML. However, you’ll notice that the formatting that surrounds the page
directive was retained. There is an unneeded new line where the page directive

JSP SYNTAX AND SEMANTICS 145

falkner.ch3.qxd 8/21/03 7:06 PM Page 145

was used. This can be verified by looking at the HTML source code that was gen-
erated as highlighted in Listing 3-17.

Listing 3-17 HelloDate.jsp HTML Source Code Sent to a Browser

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1>Hello World!</h1>

The current date/time is: Sun Apr 07 19:33:11 EDT 2002.

</body>

</html>

It is important to understand that formatting is retained by the JSP. In most
cases, especially HTML, extra whitespace formatting does not matter. However,
there are situations where whitespace and other extra formatting are of signifi-
cance, particularly if using XML. In these cases there is an easy fix. Do not use
extra formatting around JSP elements. Besides making things a little prettier,
there is no need for it. For example, HelloDate.jsp can remove the unneeded
whitespace if written as shown in Listing 3-18.

Listing 3-18 HelloDate.jsp Removing Unneeded Whitespace

<%@ page import="java.util.Date"%><html>

<head>

<title>Hello World!</title>

</head>

146 JAVASERVER PAGES

Figure 3-10 Browser Rendering of HelloDate.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 146

<body>

<h1>Hello World!</h1>

The current date/time is: <%= new Date() %>.

</body>

</html>

Attributes
There are two methods for specifying attributes in JSP elements: runtime values
and translation time or static values. A static value is a hard-coded value that is
typed into a JSP before translation time. There have been countless examples of
static values; take for instance the include action <jsp:include page="header.
jsp"/>. In this example the page attribute has a static value of header.jsp. Every
time the JSP is visited, the include action tries to include this file. However, not
all attribute values are required to be static. Some attributes can have a runtime
value. A runtime value means an expression can be used to dynamically create the
value of the attribute. In the preceding example of the include action, the fol-
lowing might appear:

<jsp:include page="<%= request.getParameter('file')%>"/>

In this case the value is dynamic and determined at runtime. This would be
useful if there was a need to customize which page was included each time the
JSP was visited.

Most basic uses of JSP do not rely on runtime values for attributes. Runtime
values are much more helpful when used with JSP custom actions and will be
further covered in Chapter 7 with custom tags and in Chapter 6 with the JTSL.

Comments
JSP allows for a developer to include server-side comments that are completely
ignored when generating a response to send to a client. The functionality is very
similar to HTML comments; however, the JSP comments are only available for
viewing on the server-side. A JSP comment must have a start, <%--, an end, --%>,
and comment information between. These comments are useful for providing
server-side information or for “commenting out” sections of JSP code. Listing 3-
19 shows an example of two comments: one to provide some information and
another to comment out a bit of code.

Listing 3-19 JSPComment.jsp

<%@ page import="java.util.Date" %>

<html>

JSP SYNTAX AND SEMANTICS 147

falkner.ch3.qxd 8/21/03 7:06 PM Page 147

148 JAVASERVER PAGES

<title>Server-side JSP Comments</title>

<body>

<%-- A simple example of a JSP comment --%>

<%--

Code commented out on <%= new Date() %>.

--%>

</body>

</html>

Save JSPComment.jsp in the base directory of the jspbook Web Application
and browse to http://127.0.0.1/jspbook/JSPCcomment.jsp. A blank page is
displayed because all the code on the JSP is commented out. Upon further exam-
ination of the source code that was generated by the JSP, it can be shown that
none of the commented information was sent in the content of the response
(Listing 3-20).

Listing 3-20 Output of JSPComment.jsp

<html>

<title>Server-side JSP Comments</title>

<body>

</body>

</html>

In addition to server-side JSP comments, more types of comments are
available for use. With scriptlets and declarations, both of the Java comments are
available for use. A line of embedded code can be commented out using //, or a
chunk of code may be commented out by use of a block comment with a starting
/* and end*/.

HTML/XML comments <!-- --> do not prevent text from being sent by a
JSP. HTML/XML comments usually do not get rendered by a Web browser, but
the information is passed on to the client-side. By changing JSPComment.jsp to
use HTML/XML comments, the JSP output clearly illustrates the difference
(Listing 3-21).

Listing 3-21 XMLComment.jsp

<%@ page import="java.util.Date" %>

<html>

<title>Server-side JSP Comments</title>

<body>

falkner.ch3.qxd 8/21/03 7:06 PM Page 148

<!-- A simple example of a JSP comment -->

<!--

Code commented out on <%= new Date() %>.

-->

</body>

</html>

Save XMLComment.jsp in the base directory of the jspbook Web Application
and browse to http://127.0.0.1/jspbook/XMLComment.jsp. A Web browser still
displays a blank page, but only because the HTML/XML comments are ignored
on the client-side. Listing 3-22 shows the output of xmlcomment.jsp.

Listing 3-22 Output of xmlcomment.jsp

<html>

<title>Server-side JSP Comments</title>

<body>

<!-- A simple example of a JSP comment -->

<!--

Code commented out on Sun Mar 10 20:23:01 EST 2002.

-->

</body>

</html>

Unlike with JSPComment.jsp, XMLComment.jsp does send the comments to
the client to deal with. Additionally JSP elements included inside the
XML/HTML comments are still evaluated on the server-side. This example
shows that when a chunk of code is to be commented out, it should be done with
a JSP comment. However, should a comment be sent to a client, then the HTML-
style comment can be used.

Quoting and Escape Characters
When authoring a JSP, it might be desirable to send text to a client that is equal
in part or whole to a JSP element. This results in a conflict with the code’s
intended purpose and how the container will interpret code. To represent the
literal value of JSP elements, in part or whole, escape characters must be used. JSP
uses the following escape characters:

• A single-quote literal, ', is escaped as \'. This is only required
should the literal be needed inside a single-quote delimited
attribute value.

JSP SYNTAX AND SEMANTICS 149

falkner.ch3.qxd 8/21/03 7:06 PM Page 149

• A double-quote literal, ", is escaped as \". This is only required
should the literal be needed inside a single-quote delimited
attribute value.

• A back-slash literal, \, is escaped as \\.

• A %> is escaped as %\>.

• A <% is escaped as <\%.

The entities ' and " are available to represent single and double
quotes, respectively.

The preceding examples should be fairly straightforward, but the following
brief example is given for completeness. The code in Listing 3-23 shows how JSP
identifies escape values that the JSP container normally interprets as elements.

Listing 3-23 EscapeCharacters.jsp

<% String copy="2000-2003"; %>

<html>

<title>Server-side JSP Comments</title>

<body>

Scriptlets: <\% <i>script</i> %>

Expressions: <\%= <i>script</i> %>

Declarations: <\%! <i>script</i> %>

<center>

<small>Copyright ©

<%= copy + " Single-Quote/Double-Quote Ltd, \'/\"" %>

</small>

</center>

</body>

</html>

Save EscapeCharacters.jsp in the base directory of the jspbook Web
Application and browse to http://127.0.0.1/jspbook/EscapeCharacters.jsp.
A small page appears with a brief explanation of some of the JSP elements. Figure
3-11 shows a browser rendering of the output from the JSP. The literal values are
properly shown to a client instead of being misinterpreted by the JSP container.

Implicit Objects
JSP uses scripting elements as an easy method of embedding code within tem-
plate text, but we have yet to show how to directly manipulate a request, response,
session, or any of the other objects used with Servlets in Chapter 2. These objects
all still exist with JSP and are available as implicit objects. The JSP implicit objects

150 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 150

are automatically declared by a JSP container and are always available for use by
scripting elements. The following is a list of the JSP implicit objects that are rec-
ognizable from Chapter 2.

config The config implicit object is an instance of a javax.servlet.
ServletConfig object. Same as with Servlets, JSP can take advantage of initial
parameters provided in a Web Application Deployment Descriptor.

request The request implicit object is an instance of a javax.servlet.http.
HttpServletRequest object. The request implicit object represents a client’s
request and is a reference to the HttpServletRequest object passed into a
HttpServlet’s appropriate service method.

response The response implicit object is an instance of a javax.servlet.
http.HttpServletRequest object. The response implicit object represents a
response to a client’s response and is a reference to the HttpServlet
Response object passed into a HttpServlet’s appropriate service method.

session The session implicit object is an instance of a javax.servlet.http.
HttpSession object. By default JSP creates a keep session context with all clients.
The session implicit object is a convenience object for use in scripting elements
and is the equivalent of calling the HttpServletRequest getSession() object.

application The application implicit object is an instance of a javax.
servlet.ServletContext object. The application implicit object represents a
Servlet’s view of a Web Application and is equivalent to calling the Servlet
Config getServletContext() method.

IMPLICIT OBJECTS 151

Figure 3-11 Browser Rendering of EscapeCharacters.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 151

Using any of the JSP implicit objects is as easy as assuming they already exist
within a scripting element. With the objects listed previously, all of the Servlet
examples in previous chapters can be replicated in JSP. Take, for example, the
ShowHeaders Servlet (Listing 2-8 in Chapter 2). The ShowHeaders Servlet dis-
played a small HTML page listing all the HTTP request headers sent by a client.
The Servlet relied on the HttpServletRequest getHeaderNames() and get
Header() methods. After translating this Servlet into a JSP, the code appears as
Listing 3-24.

Listing 3-24 ShowHeaders.jsp

<%@ page import="java.util.*"%>

<html>

<head>

<title>Request's HTTP Headers</title>

</head>

<body>

<p>HTTP headers sent by your client:</p>

<%

Enumeration enum = request.getHeaderNames();

while (enum.hasMoreElements()) {

String headerName = (String) enum.nextElement();

String headerValue = request.getHeader(headerName);

%>

<%= headerName %>: <%= headerValue %>

<% } %>

</body>

</html>

Save the preceding code as ShowHeaders.jsp in the base directory of the
jspbook Web Application and browse to http://127.0.0.1/jspbook/Show
Headers.jsp. The results are identical to the previous Servlet at http://127.0.
0.1/jspbook/ShowHeaders. Figure 3-12 shows what the output of ShowHeaders.
jsp looks like when rendered by a Web browser.

Repeating Servlet code examples and translating them into JSP isn’t the goal
of this chapter. The preceding example is intended to clearly show how to use the
implicit objects and how they can be used to achieve all the functionality of a
Servlet. The scriptlets in the preceding JSP show this by using the request
implicit object as if it had previously been declared by the JSP.

152 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 152

IMPLICIT OBJECTS 153

Figure 3-12 Browser Rendering of ShowHeaders.jsp

<%

Enumeration enum = request.getHeaderNames();

while (enum.hasMoreElements()) {

String headerName = (String) enum.nextElement();

String headerValue = request.getHeader(headerName);

%>

It is important to note that in no place was an object named request declared
for use by the JSP. It was just used. The JSP container automatically and appro-
priately declares the implicit objects when translating the JSP into a Servlet.

JSP defines a few more implicit objects to accompany the aforementioned.
The ones not listed do not directly map to Servlet equivalents. The additional
implicit objects are pageContext, page, out, and exception, which are all
explained in the following sections.

pageContext
The pageContext implicit scripting variable is an instance of a javax.servlet.
jsp.PageContext object. A PageContext object represents the context of a single
JavaServer Page including all the other implicit objects, methods for forwarding
to and including Web Application resources, and a scope for binding objects to
the page. The PageContext object is not always helpful when used by itself
because the other implicit objects are already available for use. A PageContext

falkner.ch3.qxd 8/21/03 7:06 PM Page 153

object is primarily used as a single object that can easily be passed to other objects
such as custom actions. This is useful since the page context holds references to
the other implicit objects.

Request Delegation
The pageContext implicit object provides the equivalent of the include and
forward directives for providing JSP request delegation. Scriptlets can use the fol-
lowing PageContext methods to provide JSP request delegation:

forward(java.lang.String relativeUrlPath)

The forward() method is used to redirect, or ‘forward’, the current
ServletRequest and ServletResponse to another resource in the Web
Application. The relativeUrlPath value is the relative path to a resource in the Web
Application:

include(java.lang.String relativeUrlPath)

The include() method causes the resource specified to be processed as part
of the current ServletRequest and ServletResponse being processed.

The forward() and include() methods can be used to include or forward a
ServletRequest and ServletResponse to any resource in a Web Application.
The resource can be a Servlet, JSP, or a static resource. The functionality is iden-
tical to that previously mentioned for Servlet request delegation.

Page Scope
In addition to the request, session, and application scopes, JSP introduces the page
scope. The PageContext object provides the getAttribute(), setAttribute(),
and removeAttribute() methods for binding objects to the current page. Objects
bound in page scope only exist for the duration of the current page. Page scope
objects are not shared across multiple JSP, and page scope is intended only for
passing objects between custom actions and scripting elements. When using JSP
to JSP communication, the request scope is still the appropriate scope to use.

out
The out implicit object is an instance of a javax.servlet.jsp.JspWriter object
and is used to send content in a response. The JspWriter object emulates some
of the functionality found in the java.io.PrintWriter and java.io.Buffered
Writer objects to provide a convenient method of writing text in a buffered

154 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 154

fashion. The out implicit object can be configured on a per JSP basis by the page
directive.

Buffering
The initial JspWriter object is associated with the PrintWriter object of the
ServletResponse in a way that depends on whether the page is or is not buffered.
If the page is not buffered, output written to this JspWriter object will be written
through to the PrintWriter directly. But if the page is buffered, the PrintWriter
object will not be created until the buffer is flushed, meaning operations like
setContentType() are legal until the buffer gets flushed. Since this flexibility
simplifies programming substantially, buffering is the default for JSP pages.

By using buffering, the issue is raised about what happens when the buffer is
exceeded. Two possibilities exist:

Flush the Buffer One straightforward option is to simply flush the buffer once
it is full. Content that would normally overflow the buffer now would not
because the buffer writes extra content to a client. The drawback to this approach
is that HTTP headers cannot be changed once content has been sent to a client.
Headers always appear at the beginning of a HTTP response so they must be
finalized before any content is flushed by the buffer.

Throw an Exception Flushing the buffer is not a good approach when strict
control needs to be kept over when content is sent to a client. In cases like this,
exceeding the buffer is a fatal error. Doing so causes an exception to be thrown.

Both approaches are valid, and thus both are supported by JSP. The
behavior of a page is controlled by the autoFlush attribute, which defaults to
true. In general, JSP that need to be sure correct and complete data has been
sent to their client may want to set autoFlush to false. On the other hand, JSP
that do not need strict control can leave the autoFlush attribute as true, which
is commonly the case when sending HTML to a browser. The two types of
buffer uses are best suited for different needs and should be considered on a per
use basis.

JspWriter and Response Committed Exceptions
A far too common and misunderstood error when using JSP is the
IllegalStateException exception with “response already committed” given as
the exception’s message. This error arises after a JspWriter has sent some infor-
mation to a client and a JSP tries to do something assuming no content has been

IMPLICIT OBJECTS 155

falkner.ch3.qxd 8/21/03 7:06 PM Page 155

sent. Avoiding this exception is easily done but requires that when a developer
programs, he or she is conscious of how the JspWriter object works. The fol-
lowing are the two primary culprits of the aforementioned exception.

Manipulating Headers With JSP, manipulation of the HTTP response
headers is only allowed before the actual content of the response is sent. When
phrased like this, it should seem quite intuitive, but far too often a JSP developer
will ask why an IllegalStateException is thrown when they are changing
header information. An easy fix for this problem is to either increase the buffer
size by increasing the value of the page directive buffer attribute or simply
moving problematic code to the top of the JSP. Moving header-changing code
before content-generating code usually ensures there are no buffer conflicts when
editing HTTP header information.

Forwarding When forwarding between JSP, complete control of the Servlet
Request and ServletResponse objects is given to the forwarded JSP. This allows
for the forwarded page to have complete control over generating the appropriate
response. Unlike Servlets, JSP automatically calls the HttpServletRequest
getWriter() method to get a suitable object for writing information to a client.
Forwarding between two JSP ensures calling this method twice, which in a
normal Servlet would throw an exception. However, JSP bends this rule slightly
by taking advantage of the JspWriter buffer. Should a JSP forward a request to
another JSP after content has been sent to the buffer but before the response has
been committed to a client, then everything is fine. The buffered data is simply
discarded and the new JSP can freely create a response to a client. Should a JSP
commit a response to a client and then forward the request to a different JSP, an
exception occurs.

Committing a response and then forwarding a request always throws an
IllegalStateException. The problem can be solved by either including all
information in one JSP, not committing the response, or including the desired
JSP rather than forwarding to it. An inclusion reuses the JspWriter object of the
page doing the include.

Understand and avoid the above two problems. The cryptic error commonly
plagues new JSP developers. Solving the problem is easy if the JspWriter object
and associated buffer are properly understood.

config
The normal JSP deployment scheme automatically done by a container works,
but nothing stops a JSP developer from declaring and mapping a JSP via the Web

156 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 156

IMPLICIT OBJECTS 157

Application Deployment Descriptor, web.xml. A JSP can be manually deployed in
the same fashion as a Servlet by creating a Servlet declaration in web.xml and
replacing the servlet-class element with the jsp-page element. After being
declared, the JSP can be mapped to a single or set of URLs same as a Servlet.

As an example, if it was necessary to remove the ShowHeaders Servlet and
map ShowHeaders.jsp to the/ShowHeaders path in addition to the automatically
defined /ShowHeaders.jsp path, the task could be accomplished with the fol-
lowing entries in web.xml.

<servlet>

<servlet-name>ShowHeaders</servlet-name>

<jsp-file>/ShowHeaders.jsp</jsp-file>

</servlet>

<servlet-mapping>

<servlet-name>ShowHeaders</servlet-name>

<url-pattern>/ShowHeaders</url-pattern>

</servlet-mapping>

The only change was replacing the previous line, <servlet-class>com.
jspbook.ShowHeaders</servlet-class>, with the jsp-file element and the
location of the JSP.

Initial Configuration Parameters
Through use of the jsp-file element, a JSP can be mapped using a custom entry
in web.xml. All of the child elements of the servlet element are still valid, and
initial parameters can be defined. In Chapter 2 the InternationalizedHello-
World Servlet, Listing 2-3, was used to demonstrate the functionality of initial
parameters. Listing 3-25 is a quick rehash of the example, but in JSP form.

Listing 3-25 InternationalizedHelloWorld.jsp

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1><%=config.getInitParameter("greeting")%></h1>

</body>

</html>

The code is nothing spectacular. What is important to notice is the JSP relies
on an initial parameter named “greeting”. Without the initial parameter, the JSP

falkner.ch3.qxd 8/21/03 7:06 PM Page 157

would not function correctly, but a container will automatically deploy the page
anyhow. Save the code as InternationalizedHelloWorld.jsp in the base
directory of the jspbook Web Application and browse to http://127.0.0.1/
jspbook/InternationalizedHelloWorld.jsp. A page appears that says “null”.
Figure 3-13 shows a browser rendering of the output. By default a JSP has no
initial parameters, and a JSP container doesn’t validate that initial parameters are
properly defined before deploying a JSP. The result is a HelloWorld example that
says nothing.

To fix the JSP, an entry in web.xml needs to be made so the “greeting” initial
parameter can be defined. Add the following elements to web.xml.

<servlet>

<servlet-name>InternationalizedHelloWorldJSP</servlet-name>

<jsp-file>/InternationalizedHelloWorld.jsp</jsp-file>

<init-param>

<param-name>greeting</param-name>

<param-value>Bonjour!</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>InternationalizedHelloWorldJSP</servlet-name>

<url-pattern>/InternationalizedHelloWorld.jsp</url-pattern>

</servlet-mapping>

The servlet element defines a Servlet deployment for the Servlet generated
from InternationalizedHelloWorld.jsp, and the servlet-mapping element
maps the URL pattern /InternationalizedHelloWorld.jsp to the JSP. Inside
the servlet element, the needed “greeting” initial parameter is given to make the
JSP display a “Hello World” message. Reload the jspbook Web Application and

158 JAVASERVER PAGES

Figure 3-13 InternationalizedHelloWorld.jsp without Initial Parameters

falkner.ch3.qxd 8/21/03 7:06 PM Page 158

browse back to http://127.0.0.1/jspbook/InternationalizedHelloWorld.
jsp. This time the JSP displays the appropriate hello message. Figure 3-14 shows
a browser rendering of the output.

page
The page implicit object represents the current class implementation of the page
being evaluated. If the scripting language of the page is java, which by default it
is, the page object is equivalent to the this keyword of a Java class.

JSP in XML Syntax
JSP comes in two different varieties of syntax. The original, or classic, JSP uses a
free-form syntax. With JSP 1.2, another XML-compliant form of JSP syntax, JSP
Documents, was introduced. Both syntaxes provide the same functionality and
take advantage of all the features of JSP. The reason the second syntax was intro-
duced was to keep JSP current with the widespread adoption of XML. XML-
compliant JSP can be created and manipulated using any existing XML tool.
Classic JSP requires a specialized parser built to specifically understand the
unique syntax of JSP.

Since the introduction of XML-compliant JSP, there have been no significant
moves in the JSP community toward supporting the new syntax. The majority of
JSP developers, books, and tools still largely use the classic JSP. Reasons for this
are partly due to the fact that JSP documents are new, but are largely related to
the fact that JSP XML syntax is not easy to use. In some senses the first release of
the JSP XML syntax was very half-baked in an odd way. It is too strict. The syntax

JSP IN XML SYNTAX 159

Figure 3-14 InternationalizedHelloWorld.jsp with Parameters

falkner.ch3.qxd 8/21/03 7:06 PM Page 159

does not lack compliance to XML rules, nor does it lack functionality. It is just
too restrictive and cryptic for the average JSP developer to use.

The best way to illustrate the original flaw in JSP XML syntax is by showing
a small example. This page is a simple version of what can be expected to be seen
in most JSP. Listing 3-26 is the version of the page in the classic JSP syntax.

Listing 3-26 ClassicJSP.jsp

<html>

<head>

<title>A Simple Page in Classic JSP</title>

</head>

<body>

<h1>A Title</h1>

<% String text = "bold text";

String link = "http://www.jspbook.com";

if (true) { %>

Here is bold text: <%= text %>

<% } %>

A link to a <a href="<%= link %>">website.

</body>

</html>

Everything above should be recognizable. It is a page that uses a few scriptlets
and expressions. Listing 3-27 shows the same code in a JSP Document.

Listing 3-27 JSPDocument.jsp

<?xml version="1.0"?>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page">

<html>

<head>

<title>A Simple Page in XML Compatible JSP</title>

</head>

<body>

<h1>A Title</h1>

<jsp:scriptlet>

String text = "bold text";

String link = "http://www.jspbook.com";

if (true) {

</jsp:scriptlet>

Here is bold text:

<jsp:expression>text</jsp:expression><![CDATA[
]]>

<jsp:scriptlet>}</jsp:scriptlet>

<![CDATA[A link to a

160 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 160

<jsp:expression>link</jsp:expression>

<![CDATA[">website.]]>

</body>

</html>

</jsp:root>

The first point to notice is that the page gets bigger. This is always a minor
drawback to using any form of XML. A little bit of space inefficiency is paid for
compliance to XML document structuring rules. The space itself is not of
concern in this case, but what should be a concern is that the JSP can no longer
use free-form text. The JSP scripting elements must be expanded into full tags,
and noncompliant HTML must be surrounded by a special XML syntax,
<![CDATA[]]>. This is tedious to author and makes a page hard to maintain
without a special XML reading and writing tool.

JSP Documents are not all bad. The idea behind them is a good one. XML,
when used as intended, can be a very helpful thing. Custom XML documents can
be incredibly easy to understand and are easily manipulated by countless XML
tools that currently exist. The only drawback is that HTML is not XML. JSP is
largely promoted as a tool that makes dynamic HTML generation easy. This is
not a restriction of JSP, but it is arguably the most common use of the technology.
The question to answer is, “To what extent is XML compatibility needed in your
code?” If JSP need to be manipulated easily by other code, then XML is a good
choice. The other question to ask is, “Are you only using JSP to simplify creating
dynamic HTML?” If so, then it is a better choice to use the original JSP syntax.

In previous versions of JSP, the majority of users were geared toward using
JSP for creating dynamic HTML. This is largely due to the fact that HTML has
been the dominant technology on the Web, and this explains very much why JSP
was originally created to simplify the task of creating it. However, HTML is no
longer the most popular technology to use. XML, while not perfect, adequately
fills the deficiencies of many technologies, including HTML, and has gained huge
momentum, which is shown by industry-wide use. Currently, one of the best
approaches to managing content is to either store it or communicate it via XML.
Using XML for these purposes allows information to easily be shared and main-
tained in a meaningful manner. Because of this great flexibility, the trend has
been to move away from more limited technologies, such as HTML, and toward
XML. JSP reflects these changes as it too has changed to better incorporate XML
for use in the J2EE Web Tier.

Understanding JSP documents is important. XML use will only continue to
grow in the future, and it is important to understand what flexibility JSP has for
interacting with it. Understanding how to author JSP documents is also easy as

JSP IN XML SYNTAX 161

falkner.ch3.qxd 8/21/03 7:06 PM Page 161

162 JAVASERVER PAGES

long as you understand a few simple conversion rules between classic JSP and JSP
in XML syntax.

XML Rules
XML rules is quite the pun. XML does rule as a technology for authoring and
sharing information on the Internet, but XML does have some important rules
one must follow when using it. JSP Documents automatically inherit these rules.
It does little good to directly explain JSP in XML syntax if regular XML syntax is
not understood. However, this book is not about XML. It is about JSP and
Servlets. A full tutorial on XML is not given in this book. Only the basics are
explained to help get through the majority of the JSP in XML syntax use cases. If
you are planning on extensively using XML with JSP and do not yet know much
about XML, this book is not a substitute for an XML guide. To accompany this
text, either read through the XML specifications, http://www.w3.org/ XML, or
pick up a good book on XML.

JSP Documents
Aside from understanding the XML rules needed to author JSP in XML syntax,
there are only a few simple conversions between regular JSP and JSP Documents.
Not all pieces of regular JSP syntax are in an XML-incompatible form. JSP
actions and custom actions are already in XML-compatible syntax. They are used
identically in a JSP Document as used in regular JSP. The rest of JSP, namely
scripting elements and directives, need to be converted to an XML form.

JSP Document Declaration
The JSP Document must be completely encapsulated by a root XML element,
root. This element needs to also have the JSP namespace, jsp, pre-appended
along with a declaration for the namespace. In general, a JSP Document always
resembles Listing 3-28.

Listing 3-28 Declaration of a JSP Document

<?xml version="1.0"?>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page">

// JSP Document contents

</jsp:root>

The content encapsulated by the JSP Document is the content of the JSP.

falkner.ch3.qxd 8/21/03 7:06 PM Page 162

JSP IN XML SYNTAX 163

Scripting Elements
All scripting elements must be converted for use in a JSP Document. The
scripting element syntax classic JSP uses directly conflicts with XML syntax.
Instead of using <% %>, <%= %>, and <%! %>, for scriptlets, expressions, and decla-
rations, use <jsp:scriptlet></jsp:scriptlet>, <jsp:expression></jsp:

expression>, and <jsp:declaration></jsp:declaration>, respectively.
This conversion in most cases is quite simple. Refer back to the first classic

JSP versus JSP Document example, Listing 3-25 and Listing 3-26. Here is a
section of the code from the classic JSP example that uses scriptlets and expres-
sions.

<% String text = "bold text";

String link = "http://www.jspbook.com";

if (true) { %>

Here is bold text: <%= text %>

<% } %>

A link to a <a href="<%= link %>">website.

Highlighted are the scriptlets and expressions. The conversion to JSP in XML
syntax is the following:

<jsp:scriptlet>

String text = "bold text";

String link = "http://www.jspbook.com";

if (true) {

</jsp:scriptlet>

Here is bold text:

<jsp:expression>text</jsp:expression><![CDATA[
]]>

<jsp:scriptlet>}</jsp:scriptlet>

<![CDATA[A link to a

<jsp:expression>link</jsp:expression>

<![CDATA[">website.]]>

The straight change from classic scripting elements to JSP Document

equivalents should be easily seen. Any text search and replace tool

can easily accomplish the job. The more difficult part is checking

to make sure the conversion results in a valid XML document. In the

preceding case, it didn’t. The example specifically included one of

the most common errors that occurs when using JSP Documents. In a

classic JSP, it is perfectly valid to use an expression or

scriptlet right in the middle of template text: A link to a <a

href="<%= link %>">website.

falkner.ch3.qxd 8/21/03 7:06 PM Page 163

164 JAVASERVER PAGES

In the trivial conversion to a JSP Document, this initially becomes the fol-
lowing:

A link to a <a href="

<jsp:expression>link</jsp:expression>

">website.

However, the above code is not XML because the document is no longer well
formed. The template text was being treated as XML. Embedding an expression
tag for an attribute value is not allowed. To solve this problem, the conversion has
to also include a specific encapsulation of the template text with XML CDATA sec-
tions or represent the problematic content with entities.

<![CDATA[A link to a

<jsp:expression>link</jsp:expression>

<![CDATA[">website.]]>

CDATA sections were used in the preceding snippet. It is a choice of personal
preference choosing to use CDATA sections or entities when handling offending
code. The point is, that converting straight between <% %> and <jsp:scriptlet>
</ jsp:scriptlet> is trivial. What matters most is making sure a well-formed
XML document is created. If not, replace offending code with entities or CDATA
sections.

Directives
Recall that JSP directives always follow the format <%@directive {attribute=

"value"}* %> ,where directive is the directive’s name and attributes is a set of
attributes with specified values. Like the scripting elements, this syntax does not
comply with XML and needs to be converted. Unlike scripting elements the con-
version is always trivial. JSP Documents use directives same as classic JSP but
with the following syntax: <jsp:directive.directive {attribute="value"}

*/>. The conversion is just a straight swap and includes the same directive and
attribute values.

For clarity, Listing 3-29 shows a brief example of a JSP in classic syntax,
which uses a page and include directive.

Listing 3-29 JSPDocumentDirectives.jsp

<%@page errorPage="ErrorPage.jsp"%>

<%@include file="header.jsp"%>

falkner.ch3.qxd 8/21/03 7:06 PM Page 164

SUMMARY 165

<h1>A Title</h1>

<p>Some text.</p>

<%@include file="footer.jsp"%>

Converting the preceding code to XML syntax is as easy as doing a direct
replacement of the directives. In general, this will always be the case with direc-
tives (Listing 3-30).

Listing 3-30 JSPDirectives.jsp

<?xml version="1.0"?>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page">

<jsp:directive.page errorPage="ErrorPage.jsp"/>

<jsp:directive.include file="header.jsp"/>

<h1>A Title</h1>

<p>Some text.</p>

<jsp:directive.include file="footer.jsp"/>

</jsp:root>

Encapsulating Template Text
One of the unaccountably ridiculous requirements of the original JSP in XML
syntax is to require JSP Documents to surround template text with <jsp:text>
elements. There are no XML requirements mandating this. This requirement was
intended to be a feature for aiding JSP parsers but greatly complicates authoring
template text in JSP Documents.

Summary
This chapter is an introduction to JavaServer Pages (JSP). JSP is a complementary
technology to Servlets that provides an incredibly efficient way of developing a
text-producing Servlet. Unlike Servlets, JSP is not authored in a Java 2-compliant
syntax, but JSP is translated to and managed by a container same as a Servlet.
After authoring a JSP, there is no need to manually deploy the JSP to a URL
extension via web.xml. A container automatically deploys a JSP, but a web.xml
entry can still be used to provide initial parameters or arbitrary URL extensions
for a JSP.

A JSP is divided into two main parts: template text and dynamic elements.
Template text consists of everything that would normally appear in print() or
println() calls of a Servlet. Dynamic elements are special bits of syntax defined
by the JSP specifications. A dynamic element is not treated directly as text but is
instead evaluated by a container to perform some custom functionality.

falkner.ch3.qxd 8/21/03 7:06 PM Page 165

JSP elements are broken down into three main categories: scripting ele-
ments, directives, and actions. Scripting elements are a method of directly
embedding code between template text. Directives are a method of giving a JSP
container configuration information at translation time. Actions are used to link
XML-compatible tags to custom code that is not included in the JSP. The JSP
specifications define a few default actions, but there also exists a method for
binding custom code to custom actions. Custom actions are one of the more
powerful features of JSP and are left for full coverage in Chapter 7.

There are two different syntax styles available for authoring JSP. The first is
the classic JSP syntax and has been available since the original release of JSP. This
classic syntax is what the majority of this book uses and is what is commonly
considered the easiest syntax to author JSP. The alternative JSP syntax is available
for situations where it is helpful to have a JSP be authored as an XML-compliant
document. Both syntax styles provide the same functionality. Converting
between the two types of JSP syntax is usually a trivial task.

166 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 166

