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All examples of lake charr (Salvelinus namaycush) diversity occur within the largest, deepest lakes of North
America (i.e. > 2000 km2). We report here Rush Lake (1.3 km2) as the first example of a small lake with two lake
charr morphs (lean and huronicus). Morphology, diet, life history, and genetics were examined to demonstrate
the existence of morphs and determine the potential influence of evolutionary processes that led to their
formation or maintenance. Results showed that the huronicus morph, caught in deep-water, had a deeper body,
smaller head and jaws, higher eye position, greater buoyancy, and deeper peduncle than the shallow-water lean
morph. Huronicus grew slower to a smaller adult size, and had an older mean age than the lean morph. Genetic
comparisons showed low genetic divergence between morphs, indicating incomplete reproductive isolation.
Phenotypic plasticity and differences in habitat use between deep and shallow waters associated with variation in
foraging opportunities seems to have been sufficient to maintain the two morphs, demonstrating their important
roles in resource polymorphism. Rush Lake expands previous explanations for lake charr intraspecific diversity,
from large to small lakes and from reproductive isolation to the presence of gene flow associated with strong
ecological drivers. Published 2016. This article has been contributed to by US Government employees and their
work is in the public domain in the USA, Biological Journal of the Linnean Society, 2016, 00, 000–000.

KEYWORDS: diet – genetic differentiation – geometric morphometrics – life history – resource polymor-
phism.

INTRODUCTION

Two important themes predominate research on spe-
ciation: the mechanism(s) (e.g., ecological vs. non-eco-
logical divergence) and its geographic context (e.g.,
allopatry vs. sympatry) (Rundle & Nosil, 2005;

Hendry, 2009; Hendry et al., 2009). Processes creat-
ing population divergence leading to speciation are
usually identified after species have formed (e.g., sis-
ter species) (Beheregaray & Sunnucks, 2001; Bolnick
& Fitzpatrick, 2007). The processes involved are com-
plex and can comprise many different scenarios (Run-
dle & Nosil, 2005). One way to investigate such
complexity is to study processes that occur in systems
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in which speciation may be in progress (Orr & Smith,
1998). In this context, scenarios from incipient ecolog-
ical species represent opportunities to investigate the
framework of adaptive divergence and gene flow
(Bush, 1994; Sk�ulason & Smith, 1995; Hendry, 2009).

Where intraspecific diversity is observed, the vari-
ous levels of ecological and genetic divergence
involved have been difficult to disentangle and the
mechanisms at work have been challenging to iden-
tify correctly (Rundle & Nosil, 2005; Hendry, 2009).
Understanding the role of ecological drivers in the
formation of new species while concurrent selective
pressures operate within populations was thought to
be straight forward, but empirical evidence has con-
founded the development of a generalized conceptual
model for speciation (Hendry, 2009). In this context,
the investigatation of ongoing evolutionary processes
on populations that have recently invaded novel
habitats or when ecological shifts have occurred (e.g.,
variation in climate or resource availability), pro-
vides opportunities in which adaptive divergence and
initial speciation mechanism(s) can be identified. The
observation of ecological divergence within a recent
time scale (Thompson, 1998; Kinnison & Hendry,
2001; Hairston et al., 2005; Kinnison & Hairston,

2007) provides examples defined as ‘contemporary’ or
‘rapid evolution’ adaptations to novel environments
(Hendry, Nosil & Rieseberg, 2007).

Geologically young lakes on receding glacial fronts
tend to be fish species poor and typically have
diverse habitats available for colonization (Sk�ulason
& Smith, 1995; Smith & Skulason, 1996; Pielou,
2008). Such semi-isolated and physically variable
environments often act to select for generalist geno-
types that can adjust their morphology, physiology,
and behaviour to exploit the wide range of available
environmental conditions (Bamber & Henderson,
1988; Beheregaray & Sunnucks, 2001). This adapt-
ability allows populations to invade and use multiple
niches within newly emerging post-glacial freshwater
systems, shifting from generalists to multiple special-
ists (Kawecki, 1998; Bush & Butlin, 2004; Elmer,
2016). In northern hemisphere post-glacial lakes, fish
taxa show some of the most remarkable examples of
sympatric resource polymorphisms among verte-
brates (Tables 1 and 2). Resource polymorphism the-
ory seeks to explain how variation generated by
differences in resource use in the presence of diver-
gent selection can ultimately explain the evolution of
species (Bush, 1994). Within post-glacial lake

Table 1. Polymorphism in native lake charr populations (Canada and USA), known to date, and the nature of their

freshwater diversification

Localities

Surface

area (km2)

Max. depth

(m)

No. of

morphs Nature of divergence

Ecological drivers

strength

Reproductive

isolation

Superior 82 100 406 4 Depth segregation:

shallow-water vs.

profundal; insectivory,

piscivory

Strong Present

Great Bear Lake 31 153 446 4 No depth segregation;

weak benthic vs pelagic

and insectivory, piscivory

Unknown Present

Great Slave Lake 27 200 614 2 Depth segregation:

shallow-water vs.

profundal

Strong Unknown

Mistassini 2335 183 2 Depth segregation:

shallow-water vs.

profundal

Strong Partial

Rush 1.3* ~86 2 Depth segregation:

shallow-water vs.

profundal; insectivory,

piscivory

Strong Not detected*

*Represents the present study and the novelty of Rush Lake when compared with lake charr diversification model (i.e.,

first case of lake charr diversification within small lakes).

Table is a synthesis of the following sources: General: Eshenroder (2008), Muir et al. (2015), Superior: Krueger & Ihs-

sen (1995), Moore & Bronte (2001), Harvey, Schram & Kitchell (2003), Goetz et al. (2010, 2011), Muir et al. (2014),

Great Bear Lake: Blackie, Weese & Noakes (2003), Alfonso (2004), Chavarie et al. (2013, 2015, 2016a, b), Harris et al.

(2015), Great Slave Lake: Zimmerman et al. (2006, 2009), Hansen et al. (2016), Mistassini: Zimmerman et al. (2007),

Hansen et al. (2012), Marin (2015).
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ecosystems, the most common mode of resource poly-
morphism in fishes is associated with benthic vs.
pelagic habitats, although other mechanisms of
intraspecific divergence are possible, but less com-
mon (e.g., littoral–profundal resource axis, Tables 1
and 2) (Mcphee, Noakes & Allendorf, 2012; Præbel
et al., 2013; Hooker et al., 2016).

In contrast with the highly variable Arctic charr
(Salvelinus alpinus), which have readily radiated
into benthic and pelagic morphs in many small and
large lakes throughout the holarctic (Snorrason
et al., 1994; Jonsson & Jonsson, 2001; Klemetsen,
2010), all reported examples of lake charr (Salveli-
nus namaycush) diversity occur within the largest,

Table 2. Polymorphism in a selected list of post-glacial fishes to compare the nature of their sympatric divergence in

terms of trophic ecology or movement patterns. Small lakes were defined by surface area < 500 km2 and large lakes as

≥ 500 km2 (Tilzer & Serruya, 2012); small and large lakes categories represent the presence (n ≥ 1 = Yes) or absence

(No) of intraspecific divergence within those habitats

Species

Localities

(native range)

Small

lakes

Large

lakes

No. of lacustrine

morphs Habitat types Nature of divergence

Lake charr Canada, USA No* Yes 2–4 Lakes, sea (barely

present)

Insectivory, piscivory,

profundal, and

migration

Arctic charr Holoarctic Yes Yes 2–4 Lakes, rivers, sea Benthic, pelagic,

profundal, insectivory,

piscivory, and

migration

Brook charr Canada, USA Yes Yes 2 Lakes, rivers, sea Benthic, pelagic, and

migration

Brown trout West Palearctic Yes No 2 Lakes, rivers, sea Benthic, pelagic,

insectivory, piscivory

and migration

Lake whitefish spp. Holoarctic Yes Yes 2–4 Lakes, rivers, sea

(barely present)

Benthic, pelagic,

profundal insectivory,

piscivory, and

migration

Threespine stickleback Holoarctic Yes No 2 Lakes, rivers, sea Benthic and pelagic,

Migration

Sunfish spp. Canada, USA,

Non-native

(e.g., Japan)

Yes No 2 Lakes, rivers Benthic and pelagic

Perch spp. Holoarctic Yes Yes 2 Lakes, rivers Benthic and pelagic

*indicates that the present study of Rush Lake was not included in this table. Lake charr were unusual in con-

trast with other post-glacial fishes in regards to the lack of reported divergence in small lakes until the present

study.

Table is a synthesis of the following sources: 2 + spp review: Robinson & Wilson (1994), Sk�ulason & Smith (1995),

Smith & Skulason (1996), Robinson & Parsons (2002), Klemetsen et al. (2003), Klemetsen (2013), lake charr (Salveli-

nus namaycush): Zimmerman et al. (2006, 2007), Eshenroder (2008), Goetz et al. (2010), Swanson et al. (2010), Chavarie

et al. (2013, 2016a, b), Muir et al. (2014, 2015), Harris et al. (2015), Marin (2015), Arctic charr (Salvelinus alpinus):

Snorrason et al. (1994), Sk�ulason et al. (1999), Jonsson & Jonsson (2001), Adams & Huntingford (2002), Alekseyev et al.

(2002), Sinnatamby, Reist & Power (2013), Woods et al. (2013), brook trout (Salvelinus fontinalis): Imre, McLaughlin

& Noakes (2002), Proulx & Magnan (2004), Fraser & Bernatchez (2005), Bertrand, Marcogliese & Magnan (2008), Mor-

inville & Rasmussen (2008), brown trout (Salmo trutta): Jonsson (1985, 1989), Pakkasmaa & Piironen (2001), Stelkens

et al. (2012), lake whitefish spp. (Coregonus lavaretus & Coregonus clupeiformis): Amundsen, Bøhn & V�aga (2004),

Bernatchez (2004), Kahilainen & Østbye (2006), Østbye et al. (2006), Harrod, Mallela & Kahilainen (2010), Præbel et al.

(2013), Kahilainen et al. (2014), threespine sticklebacks (Gasterosteus aculeatus): Taylor & McPhail (1986), Schluter

& McPhail (1992), Schluter (1995), Østbye et al. (2016), sunfish spp. (Lepomis macrochirus & Lepomis gibbosus):

Robinson & Wilson (1996), Parsons & Robinson (2006), Berchtold et al. (2015), and perch spp. (Perca fluviatilis & Perca

flavescens): Svanb€ack & Ekl€ov (2002, 2006), Kocovsky & Knight (2012), Faulks et al. (2015), Stepien, Behrmann-Godel

& Bernatchez (2016).
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deepest lakes of North America (i.e., > 2000 km2;
Table 1) (Goodier, 1981; Krueger & Ihssen, 1995;
Zimmerman, Krueger & Eshenroder, 2006, 2007;
Chavarie, Howland & Tonn, 2013). Distances among
habitats in bathymetrically complex large lakes, in
association with divergent reproductive behaviours
(e.g., spawning time), can function as sympatric
semi-isolating barriers to gene flow (Nosil, 2008;
Muir et al., 2012a), allowing over time the accumula-
tion of adaptations within diverging populations.
Typically, depth is the main niche axis defining
lake charr differentiation, thought to have occurred
in sympatry post-glacially, with individuals diverg-
ing to occupy shallow and profundal environments,
and partitioning prey resources within and between
those habitats (Hubbs & Lagler, 1949; Zimmerman
et al., 2006, 2007; Eshenroder, 2008; Chavarie et al.,
2013; Harris et al., 2015). Cases of polymorphism in
lake charr independent of depth exist, with radia-
tion within shallow waters involving a weak ben-
thic–pelagic gradient combined with differential
resource use (e.g., piscivorous vs. insectivorous),
nonetheless, these are known only from large lakes
(Brown et al., 1981; Goodier, 1981; Chavarie et al.,
2013, 2016a, b, c; Harris et al., 2015). Differences in
phenotypic plasticity, behaviour, assortative mating,
and philopatry have been hypothesized to account
for why Arctic charr diversify in small lakes
whereas lake charr do not (Eshenroder, 2008).

One potential exception that challenges the hypoth-
esis that freshwater lake charr only differentiates
(i.e., either originate or be maintained) in large lakes
(Eshenroder, 2008) comes from a brief historical
account that suggested that co-existing shallow- and
deep-water morphs (Fig. 1) occur in a small (1.3 km2)
postglacial lake, Rush Lake, situated 5 km south of
Lake Superior, near the southern edge of the species
range (Hubbs, 1929). Thus, to determine whether two

lake charr morphs occur within this small lake, we
revisited Rush Lake more than 75 years later to com-
pare the morphology, life history, habitat use, abun-
dance and distribution, trophic ecology, and neutral
genetic diversity of lake charr. Our aim was to
address: (1) if divergence exists between lean (shal-
low-water) and huronicus (deep-water) consistent
with the theory of resource polymorphism and with
Hubbs (1929, 1930) original description. We also
extended our work to investigate: (2) whether the
morphs were ecologically and genetically distinct
units to determine the influence of the evolutionary
processes that led to their formation or maintenance.
A species, such as lake charr, in which past cases of
intraspecific diversity cases have been constrained to
large lakes, would be expected to show strong mecha-
nistic separation to originate and maintain polymor-
phism in such a geographically small system
(Gavrilets & Vose, 2005; Gavrilets et al., 2007).
Finally, we examined: (3) the genetic origin of Rush
Lake morphs in an attempt to evaluate if the two
morphs originated from its nearest neighbour, Lake
Superior, or in sympatry post colonization.

METHODS

STUDY SITE AND FIELD COLLECTIONS

Rush Lake (Fig. 2), is elevated 12 m above and
located < 5 km from Lake Superior. Rush Lake is
small (1.31 km2; ESRI ‘dtl_wat’ series, Redlands, CA,
USA) and contains the deepest habitat among neigh-
bouring lakes in the Huron Mountains in Michigan’s
upper peninsula, USA (max depth ~86 m; data from
this study). The introduction of smallmouth bass
(Micropterus dolomieu) and rainbow smelt (Osmerus
mordax), and the translocation of brook charr
(Salvelinus fontinalis) into several lakes were the
primary faunal changes that have occurred (Christy,
1929). Sample size and methods were restricted due
to the size of the lake and the uniqueness and rarity
of the huronicus population. During 2006, an expedi-
tion was mounted to investigate the lake using non-
lethal sampling (i.e., angling). Nine of the captured
lake charr were typical of the lean morph from Lake
Superior, and an additional four lake charr caught in
deep-water corresponded to Hubbs’ (1929, 1930)
description of S. huronicus. During 2007, the lake
charr morphs were targeted with short-duration
(< 4 h), bottom-set gillnets (lethal sampling; n = 68).
Two types of gillnets were deployed from 10 to
~86 m to ensure collection of lake charr from all
depths. Two sets were made using 183-m long by
1.8-m high nylon gangs with stretch-mesh sizes
ranging from 50.8 to 114.3 mm, in 12.7-mm incre-
ments (Hansen et al., 2012). Twelve sets were made

Figure 1. Lean (A) and huronicus (B) lake charr morphs

sampled from Rush Lake within the present study. Illus-

tration by P. Vecsei.
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using 64-m long by 1.8-m high monofilament gillnets
consisting of stretch-mesh sizes from 57.15 to
127 mm, in 6.35-mm increments (Sandstrom & Les-
ter, 2009). Date, time, GPS location, and minimum
and maximum water depth read from a sounder
were recorded for each net set. During spring 2011,
angling yielded an additional eight lake charr.

Live sampling included collecting a calibrated digi-
tal image of the left side of each fish according to
Muir, Vecsei & Krueger (2012b), measuring total
length (TL mm), and collecting a fin clip stored in
95% non-denatured ETOH for genetic analysis. All
gillnetted fish were photographed, and sampled for
sagittal otoliths and dorsal muscle tissue. Biological

data collected included sex, maturity, weight of the
fish in air (WA g), and in water (Ww g) with the swim
bladder deflated (for estimating buoyancy). Stomachs
were removed and fixed in 10% formalin for gut con-
tent analysis.

TREATMENT OF DATA

Sexes were pooled for all analyses because sexes did
not differ in TL (F = 0.001; P = 0.99), buoyancy
(F = 0.052; P = 0.82), or body shape (F = 0.002;
P = 0.97). Kolmogorov–Smirnov tests were used to
assess normality of error distributions for all vari-
ables and a Levene’s test assessed homogeneity of
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Figure 2. Map of the study area showing Rush Lake. Bathymetric contours in metres; data from this study.
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variance. When transformations were ineffective,
non-parametric tests were used.

MORPHOLOGY

Lake charr (n = 81) were morphologically assessed
and identified according to the methods used by Muir
et al. (2014). Size-free head and body shape (using
centroid sizes; a robust measure of fish size) were
quantified using geometric morphometric methods
(TPS; State University of New York at Stony Brook;
http://life.bio.sunysb.edu/morp; Zelditch et al., 2004).
Twenty sliding semi-landmarks and eight homologous
landmarks were digitized on images to characterize
head shape and 16 homologous and four sliding semi-
landmarks were digitized on whole-body images to
characterize body shape (see Muir et al., 2014 for
landmarks and semi-landmarks). Landmark data
were used to scale each individual and obtain cen-
troid size and partial warp scores using TPSrelw
(http://life.bio.sunysb.edu). Principal component anal-
ysis (PCA), using singular value decomposition on the
correlation matrix, was used to reduce the 26 head
shape and 18 body shape variables; the first four
principal components (PCs) from each of the analyses
were retained for assignment analyses and to sum-
marize morphological variation using IMP software
(http://www3.canisius.edu/≃sheets/morphsoft.html).

A combination of Bayesian cluster analyses
(MCLUST; Fraley & Raftery, 2009) and a visual
identification by two experienced lake charr biolo-
gists (A. M. Muir & C. C. Krueger) assigned each
individual to a morph. Disagreement between the
visual and model assignments were settled using
decision rules described in Muir et al. (2014). Recon-
ciled assignments of lake charr to morphs is referred
to as the overall group assignment, for all subse-
quent analyses. Canonical variate analyses and Jack-
nife validation procedures were conducted on both
body and head shape data with CVAGen V. 8 from
the IMP software (http://www3.canisius.edu/~sheets/
). Single-factor permutation multivariate analysis of
variance (MANOVA) with 10 000 permutations was
performed with CVAGen to test whether body and
head shape differed between morphs.

GENETIC DIVERSITY

Total genomic DNA was extracted using a silica-based
method (Elphinstone et al., 2003) and 20 microsatel-
lite loci were genotyped for population genetic analy-
ses (Supporting Information, Table S1). MICRO-
CHECKER 2.2.3 (Van Oosterhout et al., 2004) was
used to assess scoring errors and the presence of null
alleles for each lake charr morph. Hardy–Weinberg
Equilibrium (HWE) was tested using ARLEQUIN 3.5

(Excoffier & Lischer, 2010). FSTAT 2.9.3.3 (Goudet,
1995) and ARLEQUIN were used to measure the
number of alleles (A), allelic richness (AR), the number
of private alleles, observed and expected heterozygosity
(HO and HE, respectively). Statistical significance for
differences in A, HO, HE, and AR among morphs was
determined using the independent samples median
test in SPSS 21.0 (IBM SPSS Statistics Inc.). Private
allelic richness, PAR, the number of private alleles
standardized by sample size for each population, was
calculated in HP-RARE (Kalinowski, 2004). Genetic
diversity estimates were compared among lean and
huronicus morphs at Rush Lake, and lean and hum-
per (due to their morphological similarity, see Discus-
sion for more details) morphs in Lake Superior
(sampling sites Isle Royale, Grand Marais, Stannard
Rock, Superior Shoal, Big Reef, and Klondike Reef)
and Lake Mistassini, Qu�ebec (S.M. Baillie & P. Bent-
zen, unpubl. data). Additionally, we compared Rush
Lake lake charr diversity to four small lakes of simi-
lar size (< 6 km2) in the Kogaluk River watershed,
Labrador, Canada, as reported by McCracken et al.
(2013) to provide context in terms of genetic diversity
expected in small vs. large lakes. Standardized sets of
common microsatellite loci were used for all inter-lake
comparisons (Supporting Information, Table S2).

POPULATION GENETIC STRUCTURE

To compare genetic differentiation among lean and
humper morphs from several lakes, we generated
pair-wise FST (Wright, 1965) and RST (Slatkin, 1995)
estimates with 10 000 permutations in ARLEQUIN.
The null hypothesis that alleles were drawn from the
same frequency distribution in both morphs was
tested using the genic differentiation test in GENE-
POP 4.2 (Rousset, 2008). Neighbor-joining (NJ) trees
assessed population clustering (POPULATIONS
v1.2.32; available from http://bioinformatics.org/~try-
phon/populations/). Unrooted trees were based on
Cavalli–Sforza and Edwards chord distance matrix
(Cavalli-Sforza & Edwards, 1967) and visualized
using TREEVIEW v1.6.6 (Page, 1996). To determine
the number of genetic populations, K, we used the
Bayesian clustering method implemented in program
STRUCTURE 2.3.4 (Pritchard, Stephens & Donnelly,
2000; Falush, Stephens & Pritchard, 2007; Hubisz
et al., 2009) and a principal co-ordinates analysis
(PCoA) in GENALEX 6.5 (Peakall & Smouse, 2012).
The program STRUCTURE was used with the admix-
ture model and a priori morph assumptions to esti-
mate the number of genetic populations, K. Burn-in
length was set at 5.0 9 105, followed by 3.0 9 106

randomization steps and ten independent runs were
conducted for each value of K (from K = 1 to K = 10).
The estimated natural log probability of K (ln P(K))
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was generated in STRUCTURE HARVESTER Web
0.6.92 (Earl & vonHoldt, 2012).

LIFE HISTORY

Methods for estimating life history parameters fol-
lowed those described by Hansen et al. (2012), and
summarized here. Sagittal otoliths were used to esti-
mate lake charr (n = 68) age because otolith thin sec-
tions were validated for age estimation of lake charr
to an age of at least 50 years (Campana, Casselman
& Jones, 2008). Length, weight, and age were com-
pared between lean and huronicus morphs using sin-
gle-factor ANOVA (Zar, 1999). Log-transformed
weight-length relationships were compared between
morphs using a general linear model with weight
(grams) as the dependent variable, length (mm) as
the independent variable, morph as a class variable,
and the interaction between length and morph to
compare slopes (Zar, 1999). Growth in length with
age was modelled using two versions of the Von Ber-
talanffy length-age model fit to back-calculated
length-at-age of individual fish (Mooij, Van Rooij &
Wijnhoven, 1999; Quinn & Deriso, 1999):

Lt ¼ L1 1� e�Kðt�t0Þ
� �

þ e

Lt ¼ L1 � L1 � L0ð Þ 1� e� x=L1ð Þ�t
� �

þ e

These models described back-calculated length, Lt,
at-age t as a function of theoretical maximum length
(L∞ = years), instantaneous rate at which Lt

approaches L∞ (K = 1/year), theoretical age-at-zero
length (t0 = years), early growth rate
(x = L∞ 9 K = mm/year; (Gallucci & Quinn, 1979),
length-at-age = 0 (L0 = mm), and additive error (e).
Model parameters, L∞, K, t0, L0, and x and their
asymptotic standard errors were compared between
morphs using a non-linear mixed-effect model
(NLME) with a fixed population effect to compare
between morphs, and random individual effects
(Vigliola & Meekan, 2009). Maturity status (depen-
dent variable; immature = 0, mature = 1) at length
and age (independent variables) was estimated using
logistic regression (Hosmer, Lemeshow & Sturdivant,
2000). Length and age at 50% maturity of each
morph was estimated as the ratio of the absolute
value of the intercept, |b0|, to the slope, b1.

HABITAT USE

A Mann–Whitney analysis compared median depth
of capture between morphs to test for differences in
habitat use. Buoyancy between the two lake charr
morphs was compared using a t-test. Buoyancy was

calculated as B = [(Wa�Ww)/Wa]*100 according to
Muir et al. (2014). Buoyancy was also compared
between morphs with the approach used in the
weight-length analysis described above, in which
morph is a class variable, with mass in water as the
dependent variable, and mass in air as the indepen-
dent variable. Fish with high lipid content weigh less
in water at a given mass, a characteristic associated
with reduced swimming costs in fishes without swim
bladders (Corner, Denton & Forster, 1969; Bone,
1972; Eastman, 1988). High lipid content also occurs
in vertically migrating fishes whose swim bladders
are compressed after rapid descents (Alexander,
1972; Krause, Eshenroder & Begnoche, 2002)

ABUNDANCE AND DISTRIBUTION

Abundance of lake charr morphs was estimated by a
combination of acoustic methods, gillnet sampling,
and angling. The acoustic approach assumed all large
acoustic targets below the thermocline were lake
charr and strata surface areas were measured without
error. The first assumption is likely valid given that
Rush Lake contains no other large-bodied, deep-water,
pelagic fishes (Hubbs, 1930). Two whole lake night
acoustic surveys were conducted on 27 and 29 August
2007. In total, 18 and 20 parallel transects, separated
by 150 m, were completed per survey. Based on bathy-
metric depth of capture of morphs by angling and gill-
netting (≤ 45 m = 74% lean, 26% huronicus;
> 45 m = 3% lean, 97% huronicus), we stratified Rush
Lake into two zones – shallow (≤ 45 m) and deep
(> 45 m) – for the purpose of estimating abundance
(Supporting Information, Table S3).

Acoustic data were collected with a Simrad EY500
split-beam echo sounder, equipped with a 120 kHz,
7.2° (half-power beam width) split-beam transducer,
field calibrated with a standard 23-mm tungsten car-
bide sphere. The pulse duration and ping rate were
fixed at 0.1 ms and 4–5 pings per second,
respectively. The on-axis mark threshold during col-
lection was �70 dB. Survey data were analyzed
using Sonar-Data Echoview software (Version
4.40.71.11366; Sonar-Data Ltd). An automatic bot-
tom tracking algorithm was used to define a bottom
line 0.5 m above the lake bed to exclude bottom
echoes. Further, echoes not meeting single target
detection criteria (Rudstam et al., 2009) were also
excluded. Accepted fish echoes were amalgamated
into fish tracks using the Echoview 4D fish tracking
algorithm. Density calculations were limited to fish
tracks having mean target strength greater than
�35.7 dB (n = 61 and 59 for August 27 and 29,
respectively), equivalent to a TL of 300 mm and lar-
ger (Middel, 2005). We also excluded acoustic infor-
mation in which bathymetric depths were < 7 m
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under the assumption that lake charr would avoid
the warm epilimnion of Rush Lake (water tempera-
ture exceeded 20 °C during late August).

Sample volume of an acoustic beam increases with
depth. To standardize fish density estimates for
increasing sample volume, detected fish were
weighted back to a 1-m wide swath at the surface
using a formula provided by Yule (2000):

Fw ¼ 1=½2 � R � tanð3:6�Þ�

where Fw equals weighted fish, R equals range or
distance beneath the transducer, and 3.6o equals one-
half the nominal transducer beam width. For
example, at 8 m below the 7.2° transducer, the cone
diameter 2�R [tan (3.6o)] is 1.0 m. It follows that a
fish tracked at 8.0 m of range equaled one weighted
fish at the surface (all fish were normalized to a 1-m
transect width). At 40 m below the transducer the
cone diameter is 5.0 m and a fish tracked at this
range equaled 0.20 weighted fish. We summed Fw in
each zone along each transect. Densities (num-
ber�m�2) in the shallow and deep zone of each tran-
sect were estimated by dividing these sums by the
distances traversed (m) within the two bathymetric
strata (depths of 7–45 m and > 45 m, respectively).
Multiplying these densities by 10 000 provided den-
sity estimates with units number�ha�1. Average den-
sities were calculated using transects as sample units.

Observed morph densities in each stratum were
calculated by multiplying average densities for each
survey by morph proportions from gillnet and
angling surveys. Observed morph abundance by
strata was calculated by multiplying observed morph
densities by the surface area of Rush Lake where
bathymetric depths were 7–45 m (92.05 ha) and
> 45 m (19.7 ha), estimated from a hypsographic
curve. A bootstrap approach (n = 1000 iterations)
was used to estimate 95% confidence intervals (95%
CI) of morph density estimates by incorporating
uncertainty in acoustic density estimates and morph
proportions (sensu Yule et al., 2009). Finally,
observed morph abundance estimates (and 95% CIs)
were summed over both zones for each survey.

TROPHIC ECOLOGY

Stomachs
Prey were dissected from each stomach, sorted, and
weighed (� 0.001 g). Prey were pooled into one of
three categories: terrestrial insects, aquatic inverte-
brates, and fish (fish species + fish remains). Due to
their abundance, Mysis diluviana (opossum shrimp),
Diporeia spp. (amphipods), and rainbow smelt were
defined as separate prey categories. Diet composition
was reported by morph using frequency of occurrence

(%O), abundance (%N), and mass (%M) of prey
(Supporting Information, Table S4). To scale the
importance of each prey category, %O, %N, and %M
were used to calculate the relative importance index
(RI) at the morph level (lean vs. huronicus) but also
at the individual level, in which %O was excluded
(George & Hadley, 1979). Dietary differences between
lake charr morphs were tested with a one-way
ANOSIM with 9999 permutations and a SIMPER
analysis (Anderson & Braak, 2003; see Chavarie
et al., 2016a, b) using PAST 3 (Hammer, Harper &
Ryan, 2001). Within each morph, diet differences were
tested, between depth strata that lake charr were
caught (20–30 m, 30–40 m, and 60–90 m) using ANO-
SIM and SIMPER analysis.

Isotopes
Dorsal muscle tissue from lake charr were collected
for isotopic analysis in August 2007. Tissue samples
were frozen at �20 °C prior to isotopic analysis.
Thawed tissues collected for isotope analysis were
oven-dried at 60 °C for 2 days and homogenized to a
fine powder. Carbon (d13C) and nitrogen (d15N) iso-
topes were analyzed at the University of California-
Davis Stable Isotope Facility on a Europa Hydra 20/
20 continuous-flow isotope-ratio mass spectrometer.
Isotopes were reported as d values representing a
deviation in parts per thousand (&) from a standard,
Pee Dee belemnite (PDB) limestone for d13C and
atmospheric nitrogen for d15N. Nineteen percent of
the samples were analyzed in duplicate; one stan-
dard error of the mean difference between replicates
was 0.39& for d13C and 0.14& for d15N.

To account for variability in carbon signature due
to lipid content, lipids were extracted from a subset
(n = 21) of fish tissue samples using a modified Folch
method (Sweeting, Polunin & Jennings, 2006) and
d13C was reanalyzed. The d13C values for the fish
samples were compared between lipid-extracted sam-
ples and bulk tissue samples. A non-linear relation-
ship between Δ d13C (d13Clipid-extracted – d13Cbulk) and
C:N ratio of untreated samples closely resembled the
Kiljunen et al. (2006) model. To improve the fit, we
re-estimated the parameters D (difference in d13C
between protein and lipids) and I (a constant) with a
non-linear least squares regression (nls function in R
2.15.1; www.r‒project.org). The revised model
(R2 = 0.99, F1,19 = 5397, P < 0.0001) was used to nor-
malize all untreated fish samples for lipid content:

d13C0 ¼ d13Cþ 6:112 	 ½0:005þ ð3:9=ð1þ 287=LÞÞ�;

in which d13C0 is the lipid-corrected value of the sam-
ple, d13C is the observed untreated value of the sam-
ple, and L is the proportional lipid content of the
sample calculated by:
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ðL ¼ 93=½1þ ðð0:246 	 C : NÞ � 0:775�1Þ:

Two separate t-tests compared d13C and d15N
between the lean and huronicus morphs. To test for
form-function relationships in trophic adaptations
(Bock & Von Wahlert, 1965; Lauder, 1981; Cooke &
Terhune, 2015), head shape and body shape PC1,
and body size (centroid size) were regressed against
d13C and d15N using linear regression and slope val-
ues were tested to determine if they differed from 0.
To test for the pertinent relationships, d13C values
were selected because they are known to distinguish
littoral vs. pelagic or nearshore vs. offshore food
webs and d15N are known to distinguish trophic posi-
tion (Fry, 2007).

RESULTS

MORPHOLOGY

Two morphs were identified within our lake charr
collection on the basis of body and head shape
(Supporting Information, Fig. S1). Of the 81 lake
charr captured, 43 were classified as huronicus,
and 38 were classified as lean. Agreement between
body and head model classifications and experts
were between 84 and 86%. For the body shape
measures, the first four PCs accounted for 67% of
lake charr shape variation (Fig. 3a). PC1 (33%
variation) primarily separated lean and huronicus
morphs on the basis of body depth, peduncle depth
and length, and head shape and length. The lean
morph tended to have a much more narrow body,
a pointier and longer head, and a longer narrower
caudal peduncle than the huronicus morph. PC2
(16% variation) discriminated more subtle varia-
tions in anterior-posterior variation in fin inser-
tions and eye position.

For the head shape measures, the first four PCs
accounted for 79 % of lake charr shape variation
(Fig. 3b). Similar to the body shape model, PC1 (42%
variation) accounted for gross differences in head
shape, with leans having a longer, but less deep and
more pointy head, longer maxillae, and a lower more
posterior positioned eye than huronicus. Overall,
huronicus had a deep, short head, with a greater
slope in head profile from the eye to the snout than
the lean morph. Overall, huronicus was more vari-
able in PC2 (19% variation) than leans, with subtle
differences in the position of the eye, maxilla, and
snout shape.

CVA indicated variation in body shape between
huronicus and lean (Axis 1: k = 0.41, P = 0.03; Sup-
porting Information, Fig. S2a) with 65.4% correct
assignments. Permutation MANOVA confirmed body
shape differences between huronicus and lean

(F = 9.62, d.f. = 1, P < 0.01) whereas grouping
explained 81.2 % of total variance. CVA suggested
variation in head shape between huronicus and lean
(Axis 1: k = 0.30, P = 0.01, Supporting Information,
Fig. S2b) with 65.3 % correct assignments. Permuta-
tion MANOVA confirmed head shape differences
between huronicus and lean (F = 16.4, d.f. = 1,
P < 0.01) whereas grouping explained 88.5 % of total
variance.

GENETIC DIVERSITY

Eighteen of 20 microsatellite loci were polymorphic
(two to nine alleles per locus) within each morph
(Supporting Information, Table S2). Lake charr pop-
ulations were in Hardy-Weinberg Equilibrium except
for locus Ssa85 and one instance of a possible null
allele apparent at locus Omm1105 in the huronicus
morph, but not the lean morph (Supporting

Figure 3. PCA ordination of lake charr body shape (A)

and head shape (B) with percentage representing the

variation explained by that component. Outlines drawn

from vector plots represent the body shape variation on

each axis. Morphs were identified by McClust cluster

analysis (Fraley & Raftery, 2009) and overall group

assignment.
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Information, Table S2). A, AR, HE, and HO estimates
did not differ between morphs (all p 
 0.8)
(Table 3). Of 69 alleles sampled, 12 (17%) were pri-
vate. The lean morph had nine private alleles at
seven loci with frequencies ranging from 0.013 to
0.054, whereas the huronicus morph had three pri-
vate alleles at two loci ranging in frequency from
0.010 to 0.011 (Supporting Information, Table S2).
Frequencies of private alleles for Rush Lake leans
were < 0.016 (rare alleles), with the exception of
one allele which was 0.054 (Fig. 4). The average
frequency of private alleles for leans was 0.018 and
for huronicus was 0.010 (Fig. 4). Lake charr in
Rush Lake have 2.5 and 1.5 times lower allelic
richness and expected heterozygosity estimates,
respectively, than conspecifics in nearby Lake
Superior (Table 3). Rush Lake genetic diversity
was less than half that of Lake Mistassini, which
was more diverse than Lake Superior (Table 3).
Furthermore, PAR estimates suggested that less
genetic differentiation occurred between morphs in
Rush Lake than in lakes Superior and Mistassini.
The genetic diversity in Rush Lake was comparable
to small Labrador lakes (Supporting Information,
Table S5).

POPULATION GENETIC STRUCTURE

Both the Rush Lake lean and huronicus were geneti-
cally differentiated from Lake Superior and Lake
Mistassini morphs according to FST and RST esti-
mates, with the exception of three paired-compari-
sons of RST: Stannard Rock leans and Rush Lake
leans, Stannard Rock leans and Rush Lake huroni-
cus, and Grand Marais leans and Rush Lake leans

(Supporting Information, Table S6). Similarly, the
NJ tree indicated that Rush Lake morphs were dis-
tinct from the other two lakes (Fig. 5). The Bayesian
clustering analysis result of P(K) at K = 1 (mean P
(K) = �2159.3; Supporting Information, Fig. S3) on
Rush Lake morphs indicated one genetic population

Table 3. Comparison of mean allelic diversity and genetic equilibria in lean and huronicus lake charr morphs from

Rush Lake to lake charr from (A) Lake Superior based on 18 microsatellite loci common to both datasets, and (B) Lake

Superior and Mistassini based on ten microsatellite common loci. Columns indicate the number of individuals genotyped

(n), mean number of alleles (A), observed heterozygosity (HO), expected heterozygosity (HE), and the P-values of Hardy–
Weinberg Equilibrium tests (HWE). Allelic richness (AR) and private allelic richness (PAR) estimates were based on a

minimum sample size of 34 diploid individuals

Lake – Morph n A AR HO HE PAR HWE

Based on 18 microsatellite loci common Rush lean 38 3.6 3.2 0.39 0.40 0.15 0.60

Rush huronicus 51 3.3 2.9 0.41 0.40 0.12 0.58

Lake Superior lean 201 10.6 7.8 0.55 0.58 1.48 0.36

Lake Superior humper 71 8.6 7.4 0.52 0.57 1.17 0.39

Based on ten microsatellite loci common Rush lean 38 3.3 3.2 0.36 0.38 0.11 0.63

Rush huronicus 51 2.8 2.7 0.39 0.37 0.00 0.64

Lake Superior lean 201 8.1 6.0 0.48 0.50 0.41 0.44

Lake Superior humper 71 7.1 6.0 0.46 0.51 0.57 0.47

Mistassini lean 42 7.7 7.2 0.58 0.60 0.80 0.47

Mistassini Humper 37 7.4 7.3 0.60 0.60 1.09 0.43
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Figure 4. Allelic frequency bubble chart for 20

microsatellite loci genotyped for (A) lean and (B) huroni-

cus lake charr morphs in Rush Lake calculated using

ARLEQUIN (Excoffier & Lischer, 2010). Bubble diameter

corresponds to allelic frequency and alleles shown in red

are private.
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of lake charr occurred in Rush Lake (Pritchard et al.,
2000; Supporting Information, Fig. S4). This result
was supported by PCoA, in which multilocus geno-
types of lean and huronicus lake charr overlapped in
multivariate space (Supporting Information, Fig. S5).
The genic differentiation test revealed two loci
(Sco202 and Sfo334) with different allelic frequency
distributions between morphs, although these differ-
ences were neither significant after sequential Bon-
ferroni correction for multiple tests (Peres-Neto,
1999) nor when loci were pooled.

LIFE HISTORY

The lean morph was longer, younger, lighter in
weight (when shorter than 500 mm), less buoyant,
with a higher early growth rate to a longer average
asymptotic length than huronicus. Leans were signif-
icantly longer and younger than huronicus, but the
two morphs did not differ in overall mean weight
(Table 4; Supporting Information, Figs S6 and S7).
When shorter than 500 mm, leans were lighter than
huronicus because the intercept of the weight-length

0.1

Grand Marais lean (N = 21) 
Grand Marais humper (N = 23) 

Big Reef lean (N = 26)

Rush Lake lean 
(N = 38) 

Rush Lake huronicus (N = 51)

Isle Royale lean (N = 127) 

Isle Royale humper (N = 31) 

Lake Mistassini lean (N = 42)

Lake Mistassini 
humper (N = 37) 

100 

100 

97

52 

64 

Klondike Reef humper (N = 17) 

Stannard Rock lean (N = 27) 

Figure 5. Neighbor-joining tree based on Cavalli-Sforza & Edwards (1967) chord distance model with 100 bootstraps on

ten microsatellite loci from leans and huronicus/humpers from Rush Lake, Lake Superior, and Lake Mistassini. Note:

Perfect agreement with UPGMA tree.
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relationship was greater for huronicus than for leans
(Fig. 6a; Table 4). Leans had higher early growth
rate and reached a longer average asymptotic length
than huronicus (Fig. 6b; Table 4). Only four of 24
leans were immature, so maturity was not signifi-
cantly related to age (Z = 1.58; P = 113) or length
(Z = 1.59; P = 112). Similarly, only one of 44 huroni-
cus were immature, so maturity was not significantly
related to age (Z = 0.14; P = 0.89) or length
(Z = 0.68; P = 499). However, mature leans averaged
11.8 years in age and 432 mm in length, whereas
mature huronicus averaged 16.7 years in age and
393 mm in length (Table 4).

HABITAT USE

Median depth of capture differed between lean and
huronicus morphs (Mann–Whitney U = 23.5,
P ≤ 0.01; Supporting Information, Fig. S8), with lean
charr occurring at shallower depths than huronicus

(median; lean = 28.8 m and huronicus = 85.1 m).
Overall, huronicus (mean = 94.33 � 0.13) were more
buoyant than leans (mean = 94.73 � 0.09; t = �2.65;
d.f. = 66; P = 0.01). Huronicus became more buoyant
as length increased than leans and slopes of relation-
ships between water mass and air mass differed sig-
nificantly between morphs (Fig. 6c; Table 4).

ABUNDANCE AND DISTRIBUTION

Huronicus abundance within Rush Lake was less than
estimated for the lean lake charr morph (Table 5).
Combined lake charr densities in Rush Lake were
estimated to be 30.7 fish�ha�1 (95% CI = 18.7–
42.5�ha�1) on 27 August, and 31.3�ha�1 (95% CI =
15.2–54.1�ha�1) on 29 August 2007. Point estimates of
abundance within each morph were within the 95% CI
of the two surveys, indicating that the two estimates
did not differ statistically. However, when estimated
within depth strata (7–45 m and > 45 m), abundance

Table 4. Total length (TL = mm), weight (g), age (years), intercept and slope of loge-transformed weight–length rela-

tionships (body condition), intercept and slope of wet-weight vs. dry-weight relationships (buoyancy), and average

growth parameters [age-at-length-zero (t0 = years), length-at-age-zero (L0 = mm), early growth rate (x = mm/year),

instantaneous growth rate (K = years�1), and asymptotic length (L∞ = mm)] for two lake charr morphs captured in

Rush Lake

Parameter Lean Huronicus F-ratio P

Demography TL Estimate 430 393 7.6 ≤ 0.01*
SE 10.8 8.0

Range 333–525 335–641
Weight Estimate 687 580 1.7 0.2

SE 65.6 48.4

Range 250–1,410 340–2,160
Age Estimate 11.7 16.8 22.1 ≤ 0.01*

SE 0.9 0.6

Range 7–18 10–31
Condition Intercept Estimate 16.6 11.8 30.2 ≤ 0.01*

SE 1.0 0.620

Slope Estimate 3.8 3.0 16.6 ≤ 0.01*
SE 0.2 0.1

Buoyancy Intercept Estimate 5.2 6.5 13.0 ≤ 0.01*
SE 1.3 1.2

Slope Estimate 0.05 0.04 6.2 0.02*
SE 0.002 0.002

Growth t0 Estimate �0.9 0.8 0.02 0.9

SE �0.06 0.08

L0 Estimate 47 44 13.3 ≤ 0.01*
SE 3.4 2.4

x Estimate 68 53 14.7 ≤ 0.01*
SE 3.1 2.2

K Estimate 0.1 0.1 0.1 0.8

SE 0.008 0.005

L∞ Estimate 590 474 54.2 ≤ 0.01*
SE 19.5 13.4

Significant results (P < 0.05) are highlighted by ‘*’.
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and density significantly differed between morph with
lean char more abundant in shallow waters and
huronicus more abundant in deep waters.

TROPHIC RESOURCE USE

Relative importance index (using %O, %N, %M of
prey) differed between morphs. Mysis and aquatic

invertebrates were more important as prey for
huronicus whereas fishes were more important as
prey for leans (ANOSIM: R = 0.47, P < 0.001)
(Fig. 6d). Stomach contents of the lean and huroni-
cus morphs mainly differed in Mysis, rainbow smelt,
aquatic invertebrates, and fish with SIMPER-calcu-
lated contributions to morph diet differences of
32.51%, 26.57%, 19.76%, and 19.66%, respectively.

Figure 6. Weight-length relationships (A), length-age relationships (B), and relationships between mass in water and

air (i.e., buoyancy) (C) for huronicus (solid dots, solid line) and lean (open dots, dashed line), whereas relative impor-

tance (%) of diet composition in non-empty stomachs (D) of lean (n = 24) and huroicus (n = 37) lake charr morphs in

Rush Lake. Aquatic invertebrates (other than Mysis and Diporeia) included oligochaetes, larval Diptera, and Ephe-

meroptera and fish included unidentified remains fishes (N.B., list of possible prey fishes available in lake from methods

section).
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Relative importance index of stomach contents dif-
fered according to the depth strata where huronicus
were caught (ANOSIM: R = 0.62, P < 0.001) whereas
leans showed no diet differences related to their cap-
ture depth (ANOSIM: R = 0.07, p = 0.17). Huronicus
caught in 60–90 m differed in their relative impor-
tance index from huronicus caught in 20–30 m and
30–40 m (P < 0.03), but not between depth strata of
20–30 m and 30–40 m (P > 0.05). Fish and rainbow
smelt were more abundant in huronicus stomachs
caught in shallower depth strata whereas Mysis and
aquatic invertebrates were more important in the
deep depth strata. Huronicus stomach contents
mainly differed in Mysis, rainbow smelt, fish, and
aquatic invertebrates with SIMPER-calculated con-
tributions to depth strata diet differences of 37.84%,
23.8%, 20.32%, and 13.39%, respectively.

The lean morph occupied a slightly higher trophic
position (d15N = 9.1) than the huronicus morph
(d15N = 8.8; T = 1078; P = 0.007); although statisti-
cally different, the difference may not be biologically
significant. The lean morph also had a more littoral
signal (mean d13C = �26.95) whereas huronicus had
a more pelagic offshore signal (mean d13C = �27.65;
T = 6.31; P < 0.01) (Fig. 7; Supporting Information,
Fig. S9). The slope of the body shape vs. d13C did not
differ from zero (r2 = 0.14; t = 1.54, P = 0.13). In
comparison, both head shape (r2 = 0.36; t = 2.85,
P = 0.005) and body size (r2 = 0.28; t = 2.43,
P = 0.018; Fig. 7) were correlated with d13C values.
No relationships were found for d15N (Supporting
Information, Fig. S10).

DISCUSSION

This study, which integrated information on lake
charr morphology, life history, habitat use, popula-
tion abundance, diet, and genetics, supports Hubbs’

(1929, 1930) contention that two distinct lake charr
morphs occur in Rush Lake. Our findings quantify
and expand understanding of this unusual, contem-
porary case in a small lake. As described by Hubbs,
lake charr populations in Rush Lake include two co-
existing morphs, a large-bodied, shallow-water lean
morph and a plump-bodied deep-water morph, the
huronicus. Our evidence of morphological and ecolog-
ical differentiation found between lean and huroni-
cus morphs from Rush Lake was consistent with the
hypothesis that foraging selection pressures differ
along the niche axis of shallow- vs. deep-water habi-
tats. This niche axis has been identified as a main
driver of lake charr differentiation in multiple lakes
in North America (Zimmerman et al., 2006, 2007,
2009; Muir et al., 2014, 2015). Although depth is not
as common axis of divergence than benthic vs. pela-
gic for most fish species, morph diversification has
been associated with depth and foraging opportuni-
ties and observed across a range of fish taxa (e.g.,
Salmonidae, Cichlidae) and geographic locations
(e.g., Africa, North America, Europe) (Jonsson & Jon-
sson, 2001; Turner et al., 2001; Mcphee et al., 2012;
Siwertsson et al., 2013a; Skoglund, Knudsen &
Amundsen, 2013; Hooker et al., 2016; Turgeon et al.,
2016).

Morphological differences between morphs high-
light their differential habitat use in association with
differing foraging opportunities. Huronicus having a
deeper body, higher buoyancy, deeper depth at which
the morph occurred, and deeper peduncle stands in
contrast to the lean morphology. Body shape and
buoyancy variations are probably related to depth
distributions and swimming tactics, with the deep-
water morph using hydrostatic lift to enhance verti-
cal migration (Videler, 1993; Henderson & Anderson,
2002; Blake, 2004). In contrast, the shallow-water
morph likely relies more on hydrodynamic lift, char-
acteristics linked to cruising movements of pelagic

Table 5. Density (number�ha�1) and abundance of lake charr morphs in Rush Lake estimated during night time August

2007 acoustic surveys. The 95% confidence intervals (95% CI) were estimated with a bootstrap (see Methods section for

details). Lake-wide estimates equal the sum of morph estimates for water depths ≤ 45 and > 45 m calculated for two

summer surveys

Date Stratum

Density (95% CI) Abundance (95% CI)

Lean Huronicus Lean Huronicus

August 27 7–45 m 18.5 (11.3–24.9) 6.5 (3.9–8.9) 1740 (1067–2339) 611 (367–838)
> 45 m 0.9 (0.1–1.9) 26.1 (16.1–39.6) 18 (2–37) 514 (317–780)
lake–wide 18.7 (11.4–25.3) 12.0 (7.3–17.2) 1758 (1069–2376) 1125 (684–1618)

August 29 7–45 m 19.4 (9.2–34.1) 6.8 (3.1–12.0) 1824 (868–3209) 640 (289–1132)
> 45 m 0.8 (0.0–1.7) 23.6 (13.7–36.1) 16 (2–33) 465 (270–710)
Lake-wide 19.6 (9.3–34.5) 11.7 (5.9–19.6) 1840 (870–3242) 1105 (559–1842)
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predators (Webb, 1984; Pakkasmaa & Piironen,
2001; Gillespie & Fox, 2003).

The head shape of each morph matched their feed-
ing strategy as indicated by the d13C signature,
implying adaptation associated with feeding activity

(Monta~na & Winemiller, 2013; Berchtold et al., 2015;
Østbye et al., 2016). Differences in head morphology
related to resource use could influence foraging effi-
ciency associated with particular prey and/or envi-
ronments (Adams, Woltering & Alexander, 2003;
Kahilainen et al., 2007; Cochran-Biederman & Wine-
miller, 2010; Svanb€ack & Schluter, 2012). Longer
head, longer maxillae, and a more posterior eye posi-
tion of the lean morph relative to the huronicus
morph should provide a wider lateral field of view,
useful for piscivorous feeding (Proulx & Magnan,
2004; Keeley, Parkinson & Taylor, 2005, 2007; Jan-
hunen, Peuhkuri & Piironen, 2009). The huronicus
morph with limited gape and eye position should be
optimized for low-light vison, and adapted as a verti-
cal migrating predator feeding on Mysis, its main
prey (Hrabik et al., 2006; Muir et al., 2014).

Differences in life-history strategies among ecologi-
cally specialized morphs have been repeatedly
observed elsewhere and Rush Lake is no exception
(Sandlund et al., 2013; Woods et al., 2013; Chavarie
et al., 2016a, b). Rush Lake lake charr displayed
trade-offs in degree of juvenile and adult growth
rates (i.e. fast vs slow), probably linked to the
exploitation of different resources and environments,
with differences pronounced to the extent that
morphs could be assigned based on their life-history
traits alone (Schluter, 1995; Fraser, Huntingford &
Adams, 2008; Jonsson & Jonsson, 2014). Huronicus’
slower growth, smaller adult size, and older mean
age than the lean morph was similar to deep-water
lake charr elsewhere and linked to small-sized prey
and possibly lower feeding rates (Burnham-Curtis &
Bronte, 1996; Hansen et al., 2012; Muir et al., 2015).
The piscivorous feeding of the lean morph would
likely provide more energy intake for growth result-
ing in a greater size at maturity than huronicus
(Jonsson et al., 1999; Jonsson & Jonsson, 2001; Snor-
rason & Sk�ulason, 2004). Age and body size are criti-
cal drivers of maturation, and both are linked in a
relationship known as the maturation reaction norm
(Heino, Dieckmann & Godø, 2002; Hutchings, 2011;
Morbey & Shuter, 2013). In salmonids, gonad devel-
opment is dependent on body size, and consequently,
could provide a threshold that differentially triggers
development between morphs (Wright, 2007; John-
ston & Post, 2009; Morbey & Shuter, 2013). A lack of
immature fish in our sample did not allow us to
detect differences in length and age-at-maturity
between morphs. However, in this instance, the
trade-off identified was not in the age- and length-at-
maturity but in life span itself. The huronicus morph
by having greater longevity than the lean morph,
could have a potential fitness, in terms of lifelong
egg deposition potential, equivalent to the lean
morph despite huronicus’ smaller average body size.

Figure 7. Linear function with a 95% confidence interval

for the first principal component of body shape (A) and

head shape (B) explaining 33% and 42% of the variation

in shape between morphs, respectively, and centroid size

(the size component from the geometric analysis of body

shape) (C) associated with carbon (d13C) isotope signa-

tures for lean (open dots) and huronicus (solid dots) lake

charr morphs from Rush Lake. Morphs were identified by

McClust cluster analysis (Fraley & Raftery, 2009) and

overall group assignment. Head shape and body size

slopes differed significantly from 0 (P ≤ 0.05) but not the

body shape slope (P > 0.05).
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Our results indicated that, despite morphological
and ecological differences between the lake charr
morphs in Rush Lake, reproductive isolation was
lacking or incomplete. The apparent lack of genetic
divergence at neutral loci examined between lake
charr morphs in Rush Lake when compared to the
more genetically diverse populations in Lake Supe-
rior and Lake Mistassini (Krueger et al., 1989; Page,
Scribner & Burnham-Curtis, 2004; Baillie et al.,
2015, 2016), leads to two competing explanations for
the origin and maintenance of two morphs in Rush
Lake: (1) sympatric evolution within Rush Lake, or
(2) differentiation elsewhere with subsequent colo-
nization of Rush Lake followed by post-colonization
weakening of reproductive barriers. Weak genetic
differentiation can be due to the population being in
early phases of divergence, porous isolating mecha-
nisms, or a combination of these processes. Although
differentiation in the face of gene flow is thought to
be difficult and prevents the development of strong
reproductive isolation, sympatric differentiation
events might be more frequent than expected
(Briggs, 1999; Johannesson, 2001; Nosil, 2008). Sym-
patric differentiation with gene flow is feasible under
particular conditions that include assortative mating,
divergent selection against hybrids, or habitat isola-
tion, but homogenization is likely to happen unless
strongly reinforced by some isolation processes (Gav-
rilets & Vose, 2005; Niemiller, Fitzpatrick & Miller,
2008; Nosil, 2008).

Nonetheless, both proposed mechanisms (sym-
patric differentiation and differentiation elsewhere
followed by colonization) explaining the origin and
maintenance of Rush Lake polymorphism, have a
common denominator through phenotypic plasticity.
If Rush Lake represents an early stage of sympatric
differentiation in which phenotypic plasticity is oper-
ating on a single gene pool, the population could be
evolving and forming two phenotypic clusters (Sk�ula-
son, Snorrason & Jonsson, 1999; Svanb€ack, Pineda-
Krch & Doebeli, 2009; Bird et al., 2012). In the alter-
native scenario, that Rush Lake were colonized by
two forms and reproductive barriers have weakened
or collapsed, the expression of phenotypic plasticity
of a single gene pool would explain the maintenance
of morphological and ecological differences between
lean and huronicus. Reproductive barriers can be
reversible, especially when a change in ecological
conditions happen, precipitating a collapse back to
continuous adaptive variation without reproductive
isolation or discontinuous adaptive variation with
minor reproductive isolation (Hendry, 2009).

A theoretical scenario of the evolution of lake charr
divergence in Rush Lake was introduced in the sci-
entific literature by Behnke (1972) and Eshenroder
(2008) who both hypothesized that huronicus

originated from nearby Lake Superior. Their reason-
ing arose from the observation that Rush Lake was
the only example of a small lake with co-existing
morphs and because huronicus appears to be analo-
gous to the humper morph found in nearby Lake
Superior (Eschmeyer, 1955; Rahrer, 1965; Krueger
& Ihssen, 1995). Humper-like morphs in Lake Supe-
rior and Lake Mistassini have been described as a
deep-water morph that specializes on Mysis dilu-
viana, with morphological characteristics such as a
small body size, small head, narrow peduncle,
moderate eye size situated dorsally on the head, and
life-history characteristics such as a long life span
(Zimmerman et al., 2007; Eshenroder, 2008; Muir
et al., 2015). The combination of these ecological,
morphological, and life-history characteristics were
consistent with this study’s description of the huron-
icus morph in Rush Lake. Eshenroder (2008)
presented a conceptual model for the origin of lake
charr morphs and offered the hypothesis that lean
and huronicus morphs of Rush Lake diverged within
proglacial Lake Duluth and were isolated from
present day Lake Superior during lowering water
levels and isostatic rebound.

Despite the uncertainty about the origin (i.e., sym-
patric vs. allopatric divergence) and mechanism(s)
involved in maintenance (i.e., natural selection or sex-
ual selection vs. drift or founder effect) (Taylor, 1999),
parallel sympatric pairs of lake charr, associated with
ecological divergence, have been maintained in multi-
ple North American lakes (Zimmerman et al., 2006,
2007; Chavarie et al., 2013, 2015; Muir et al., 2015).
In the face of gene flow, large lakes, such as Lake
Superior, Lake Mistassini, Great Slave Lake, and
Great Bear Lake, are more likely to provide reproduc-
tive isolating barrier(s) through isolation by geo-
graphic distance and lake bathymetry than do small
lakes (Krueger & Ihssen, 1995; Page et al., 2004;
Goetz et al., 2010; Harris et al., 2015). Rush Lake,
with its small size, would seem unlikely to generate
and maintain such intraspecific diversity for lake
charr, although isolation by distance is not essential
for sympatric intraspecific diversity to occur. For
example, intraspecific diversity within small systems
has been reported for Arctic charr, threespine stickle-
back (Gasterosteus aculeatus), whitefish (Coregonus
spp.), and cichlids (Schluter & McPhail, 1992; Barlu-
enga et al., 2006; Kahilainen & Østbye, 2006;
Gardu~no-Paz et al., 2012). Consistent with its small
lake size, genetic diversity and divergence were com-
parable with other single-morph lake charr that
inhabited small lakes in Labrador (McCracken et al.,
2013), and contrasted with the higher genetic diver-
sity and divergence observed in large lakes (i.e., Lake
Superior and Lake Mistassini). One of the few empiri-
cal examples of sympatric speciation within a small
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lake demonstrated that ecological speciation through
divergent habitat preferences and resource partition-
ing was possible if assortative mating through behav-
ioral isolation was present (Barluenga et al., 2006;
Gavrilets et al., 2007). Thus, although isolation by dis-
tance is not an essential component to generate and
maintain intraspecific diversity, reproductive isolation
should be sufficient to ensure some level of separation,
which emphasizes the unusual character of Rush Lake
example of intraspecific diversity. Although Bayesian
clustering analysis and distance measures of neutral
loci indicated that Rush Lake lean and huronicus
morphs were not genetically divergent, the lack of
non-neutral markers in the analyses may have pre-
vented us from detecting multiple genetic populations
(Putman & Carbone, 2014). This uncertainty is re-
enforced by the statement made by (Hubbs, 1929,
1930) about an apparent temporal reproductive segre-
gation between the two morphs, although no specific
detailed information on the morph’s spawning beha-
viour was described by Hubbs. The presence of the pri-
vate alleles might also indicate weakly restricted gene
flow but uncertainty remains as it might also be an
artefact of sampling. Genomic sequencing would be an
interesting next step to look for areas under selection
(i.e., linked to trophic morphologies) combined with a
telemetry study to examine timing and location of
spawning and reproductive behaviour.

Differences in habitat use associated with variation
in foraging opportunities alone could have been suffi-
cient to act as ecological drivers (i.e., via a reduction of
intraspecific competition; Sk�ulason & Smith, 1995) to
maintain two morphs in Rush Lake. Ecological and
evolutionary processes often act concurrently and
their congruent response can be rapid and at a fine
scale (Hairston et al., 2005; Kristjansson et al., 2011;
Kristj�ansson et al., 2012; Richardson et al., 2014). The
direct relationship found herein between morphology
and ecological characters provided evidence that local
environmental variation contributed to maintaining
morphological differentiation of lake charr, with forms
related to function (trophic ecology and habitat use
related to depth) (see Kristjansson et al. (2011) for
another example). In environments where ecological
drivers, such as depth in association with foraging
opportunities, remain relatively constant, the expres-
sion of morphological traits could be stable over time if
individual lake charr show high depth fidelity
(Svanb€ack & Ekl€ov, 2006; Chavarie et al., 2015;
Faulks et al., 2015). Thus, the presence of the two
morphs in Rush Lake could be a bimodal response to
feeding environments. Morphs appeared to be simi-
larly abundant lake-wide within Rush Lake (Table 5).
Elsewhere, co-existing lake charr morphotypes, such
as the Lake Superior siscowet (deep-water morpho-
type) dominates the lean- or shallow-water trout by a

factor of ten in abundance (Bronte et al., 2003). Thus,
both shallow and deep habitats in Rush Lake seem to
offer ‘ecological opportunity’ settings that could sus-
tain the population abundances of the morphs in this
lake (Wellborn & Langerhans, 2015).

Phenotypic plasticity and/or trait heritability, thus,
may play important roles in resource polymorphism,
especially in a genus such as Salvelinus that shows
prominent plasticity (Klemetsen, 2010, 2013; Muir
et al., 2015; Elmer, 2016). Patterns of phenotypic
variations are repeatedly associated with particular
lake environments and selection pressures (Robinson
& Parsons, 2002; Schluter et al., 2004; Snorrason &
Sk�ulason, 2004) for which, in lake charr, depth and
foraging opportunities appear to be two common dri-
vers. Distinct ontogenetic trajectories or phenotypic
plasticity, even in the absence of reproductive isola-
tion, can maintain polymorphisms (Grant & Grant,
1994; Svanb€ack & Persson, 2004; Bird et al., 2012).
The whole temporal process of differentiation can be
generally viewed as a continuum from individual
variation without reproductive isolation, to popula-
tion-wide phenotypic and genotypic differentiation
associated with complete reproductive isolation (Hen-
dry et al., 2009; Præbel et al., 2013). However, some
convincing recent examples have showed that diver-
gence in the face of continuous or recurrent gene
flow is possible (Niemiller et al., 2008; Nosil, 2008).
Such circumstances could be applicable to a genus,
such as Salvelinus, with recurring hybridization
among its species (Behnke, 2010) and that does not
strictly follow the Linnaean definition of a species.
Examples have recently demonstrated that migration
between divergent populations acted as both homoge-
nizing and diversifying forces (e.g., walking-stick
insect (Timema cristinae); Nosil, Crespi & Sandoval,
2003). Such reinforcement was most likely if migra-
tion was sufficiently high, but low enough to avoid
the erosion of phenotypic differentiation (Nosil et al.,
2003). Migration reinforcing a high level of pheno-
typic variation within a population and promoting
maintenance of ecological differentiation (as may be
the case in this study) (Nonaka et al., 2015), may
explain the ‘charr problem’ in which phenotypes and
genotypes vary considerably within and across locali-
ties and even within a life-time (Nordeng, 1983;
Michaud, Power & Kinnison, 2008).

The question still remains as to why Rush Lake is
the only known small lake that sustains multiple
lake charr morphs? If depth and foraging opportuni-
ties alone can function as an ‘island’ promoting and
maintaining rapid adaptive divergence post coloniza-
tion (e.g., Losos et al., 2000; Robinson & Parsons,
2002), why would Rush Lake be the only example
that sustains a deep-water morph (to our knowledge)
of a small lake among thousands in North America?
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For example, 1781 lake charr lakes occur within the
Province of Ontario, of which 25 have a maximum
depth > ~86 m (Carl et al., 1990); despite intensive
sampling across these lakes, no deep-water lake
charr morphs have been found to date in these lakes
(N. Lester, Pers. Comm.). If the explanation that
huronicus originated from Lake Superior is correct,
then the answer might simply be that Rush Lake
was close to a source of a humper-like, deep-water
morph and the lake contained deep-water habitats
that were suitable for the humper morph with suffi-
ciently strong ecological drivers to maintain the
morph as a separate ecological entity. Other small
lake charr lakes in North America might have only
one or none of those circumstances occurring.

CONCLUSION

Striking examples of intraspecific pairs and parallel
adaptive radiation have been observed in post-glacial
lakes throughout circumpolar areas (Sk�ulason &
Smith, 1995; Schluter, 1996; Snorrason & Sk�ulason,
2004). In North America, processes contributing to
freshwater sympatric variation have been largely
studied for three-spined stickleback (McPhail, 1993;
Barrett, Rogers & Schluter, 2009; Taugbøl et al.,
2014), lake whitefish (Lu & Bernatchez, 1999; Siw-
ertsson et al., 2013b; Adams et al., 2016), and Arctic
charr (Adams, Wilson & Ferguson, 2008; Reist,
Power & Dempson, 2013; Knudsen et al., 2016).
Examples of sympatric intraspecific diversity in lake
charr documented over the past 15 years have illus-
trated how polymorphism in lake charr has been
underestimated and the processes contributing to it
remain poorly understood. Recent discoveries, such
as this study, are expanding our understanding of
the ecology, life history, and genetics of lake charr
morphs in recently de-glaciated lakes across North
America. The co-existence of deep- and shallow-water
morphs in Rush Lake is a new addition and unique
exception, that expands previous explanations for
lake charr diversity from large to small lakes. Con-
cordant patterns of morphological and life-history
differentiation between streamlined lean and plump-
bodied huronicus from Rush Lake reflected the influ-
ence of foraging opportunities along the niche axis of
shallow- vs. deep-water habitats, with these ele-
ments likely being the main ecological drivers main-
taining two lake charr morphs. Trade-offs in shallow
vs. deep-water foraging environments may serve to
maintain the phenotypic expression of these poly-
morphisms even in the absence of the reproductive
isolation. This study advances our understanding of
the conditions that facilitate divergence in the face of

gene flow, which might be more common than previ-
ously thought (Nosil, 2008).

Ecological drivers in Rush Lake likely have
remained relatively stable over time. If these ecologi-
cal drivers were associated with high depth-fidelity of
individual lake charr, the expression of lean and
huronicus would be similarly maintained over time.
However, the stability of ecological drivers may be
jeopardized by the presumed recent invasion of rain-
bow smelt into Rush Lake. Rainbow smelt were not
observed in Hubbs surveys in the 1920s and were
unknown in contemporary times to landowners famil-
iar with the fish fauna in the lake. This species was
first detected by our study and their invasion is
thought to be recent. The invasion of rainbow smelt
may ecologically disrupt the partitioning of resources
and the ecological barriers by homogenizing lake
charr diets with the opportunity to shift from an inver-
tebrate to a fish-feeding ecology by huronicus into
shallower-water habitats. The potential disruption of
the trophic gradient might lead to the collapse of the
morph-pair in Rush Lake, as seen in other species
after the introduction of an exotic species (e.g., stickle-
backs, Taylor et al., 2006). The lean and huronicus
morphs in Rush Lake are as morphologically and eco-
logically distinctive as any shallow- and deep-water
lake charr pair previously described, and yet are
genetically homogenous at selectively neutral genetic
loci. Their presence suggests that they are a function-
ally important component of a diverse food web struc-
ture in Rush Lake with unknown consequences for the
stability of the lake ecosystem as a whole.
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SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article:

Figure S1. BIC scores according to number of cluster from McClust for body shape in (a) and head shape in
(b).
Figure S2. CVA of lake charr body shape (a) and head shape (b). Morphs were identified by McClust cluster
analysis (Fraley & Raftery, 2009) and overall group assignment.
Figure S3. Bar plots of Bayesian genetic clustering analysis for two Rush Lake lake charr morphs (STRUC-
TURE).
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Figure S4. The mean of estimated natural log probably of the data (K [P(K)]) was calculated in program
STRUCTURE HARVESTER Web 0.6.92 (Earl & vonHoldt, 2012).
Figure S5. Population structure in Rush Lake lake charr as visualized through principal components (PC)
analysis of multilocus genotypes (GENALEX) (Peakall & Smouse, 2006; Peakall & Smouse, 2012).
Figure S6. Length frequency of huronicus (solid bars) and lean (open bars) lake charr captured in Rush Lake.
Figure S7. Age frequency of huronicus (solid bars) and lean (open bars) lake charr captured in Rush Lake.
Figure S8. Frequency (%) of huronicus (solid bars) and lean (open bars) lake charr captured (nets and
angling) in Rush Lake.
Figure S9. Stable isotopes signatures � SE of huronicus (solid circle) and lean (open circle) lake charr in (a)
and morphs divided by their depth of capture in (b).
Figure S10. First principal component of body shape (a) and head shape (b) explaining 33% and 42% of the
variation in shape between morphs, respectively, and centroid size (the size component from the geometric
analysis of body shape) (c) associated with nitrogen (d15N) isotope signatures for lean (open dots) and huroni-
cus (solid dots) lake charr morphs from Rush Lake.
Table S1. Microsatellite loci (n = 20) used in this study.
Table S2. Allelic diversity and genetic equilibria in (a) lean and (b) huronicus lake charr morphs from Rush
Lake.
Table S3. Density (number�ha-1) and abundance of lake charr morphs in Rush Lake estimated by day and
night August 2007 acoustic surveys.
Table S4. Diet composition of lake charr morphs in Rush Lake collected in late August 2007.
Table S5. Comparison of genetic diversity of lake charr in Rush Lake and lakes of a similar small size in Lab-
rador (McCracken et al. 2013).
Table S6. Pair-wise comparisons of FST (Wright 1965; below diagonal) and RST (Slatkin, 1995; above diagonal)
using ten microsatellite loci among lean and humper lake charr at Rush Lake (RU), Lake Mistassini (MI), and
four locations within Lake Superior: Isle Royale (IR), Big Reef (BR), Stannard Rock (SR), Grand Marias (GM).
Asterisks mark values that remained significant after correction for multiple tests (SGoF+ 3.8) (Carvajal-
Rodriguez & de U~na-Alvarez, 2011).
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