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a b s t r a c t

The New World blackbirds (Icteridae) are among the best known songbirds, serving as a model clade in
comparative studies of morphological, ecological, and behavioral trait evolution. Despite wide interest in
the group, as yet no analysis of blackbird relationships has achieved comprehensive species-level sam-
pling or found robust support for most intergeneric relationships. Using mitochondrial gene sequences
from all �108 currently recognized species and six additional distinct lineages, together with strategic
sampling of four nuclear loci and whole mitochondrial genomes, we were able to resolve most relation-
ships with high confidence. Our phylogeny is consistent with the strongly-supported results of past stud-
ies, but it also contains many novel inferences of relationship, including unexpected placement of some
newly-sampled taxa, resolution of relationships among major clades within Icteridae, and resolution of
genus-level relationships within the largest of those clades, the grackles and allies. We suggest taxonomic
revisions based on our results, including restoration of Cacicus melanicterus to the monotypic Cassiculus,
merging the monotypic Ocyalus and Clypicterus into Cacicus, restoration of Dives atroviolaceus to the
monotypic Ptiloxena, and naming Curaeus forbesi to a new monotypic genus, Anumara. Our hypothesis
of blackbird phylogeny provides a foundation for ongoing and future evolutionary analyses of the group.

� 2013 Elsevier Inc. All rights reserved.
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1. Introduction

The New World blackbirds (Icteridae) are among the best
known and studied songbirds, both through exemplar species such
as the Red-winged Blackbird (Agelaius phoeniceus) and collectively
as a model clade in numerous studies of morphological, ecological,
and behavioral trait evolution. The size of the family (�108
species) and its variability along several dimensions of general the-
oretical interest makes Icteridae especially attractive for compara-
tive studies. Topics that have been investigated comparatively in
blackbirds include mating systems (Searcy et al., 1999), brood par-
asitism (Lanyon, 1992), sexual size dimorphism (Webster, 1992),
sexual dichromatism (Irwin, 1994; Hofmann et al., 2008a, 2008b;
Friedman et al., 2009), plumage pattern divergence (Omland and
Lanyon, 2000; Price and Whalen, 2009), chemical bases of plumage
color (Hofmann et al., 2006, 2007, 2008a, 2008b; Friedman et al.,
2011), ultraviolet and structural color (Eaton, 2006; Shawkey
et al., 2006), ecological correlates of plumage color (Johnson and
Lanyon, 2000) and female song (Price, 2009; Price et al., 2009),
86

87

88
song divergence (Price and Lanyon, 2002b, 2004a; Price et al.,
2007), migration (Kondo and Omland, 2007), biogeographic history
(Sturge et al., 2009), and ecological niche divergence (Eaton et al.,
2008).

Knowledge of phylogeny is a prerequisite for comparative
analysis and the basis for systematic classification, but past analy-
ses of blackbird relationships lacked comprehensive species-level
sampling and failed to find robust support for most intergeneric
relationships. The first molecular phylogenies of Icteridae with
broad taxonomic sampling provided revolutionary insights into
relationships within the family (Lanyon, 1994; Freeman and Zink,
1995; Lanyon and Omland, 1999) and its subgroups (Johnson and
Lanyon, 1999; Omland et al., 1999; Price and Lanyon, 2002a,
2004a; Barker et al., 2008). Those findings were a huge advance
over the diffuse hypotheses of relationship presented in taxonomic
reviews based on informal evaluation of the external anatomy of
museum skins (e.g. Ridgway, 1902; Hellmayr, 1937; Blake, 1968)
or very limited molecular sampling (e.g. Sibley and Monroe,
1990). Sequence-based molecular studies, for the first time,
brought together large numbers of informative characters with
objective analytical methods to resolve relationships among most
species and clades, tasks for which morphological characteristics
e). Mol.
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had proven to be weakly informative (e.g. Björklund, 1991) or
even—in combination with informal and speculative methods of
inference—misleading (e.g. Beecher, 1950, 1951).

In contrast to the other diverse families within the New World
nine-primaried oscine clade—namely, the tanagers (Thraupidae),
cardinal-grosbeaks (Cardinalidae), New World sparrows (Ember-
izidae), and wood-warblers (Parulidae)—among which many spe-
cies and genera have recently been shuffled, the constitution of
Icteridae has been unaffected by results from molecular phyloge-
netic studies (e.g. Burns, 1997; Klicka et al., 2000, 2007; Burns
et al., 2002, 2003; Lovette and Bermingham, 2002; Yuri and
Mindell, 2002; Klein et al., 2004; Alström et al., 2008; Lovette
et al., 2010; Barker et al., 2013). Apparently, features that have
traditionally been used to recognize blackbirds such as bill shape
(e.g. casque of maxilla; see Webster, 2003), morphology related
to gape-feeding by many species (Beecher, 1951; Orians, 1985),
and general similarities in shape, plumage, voice, display, and
ecology, have led to their accurate diagnosis. The only contrary
assertions have been the following: (1) placement of Spiza in
Icteridae (Beecher, 1951; Raikow, 1978), which was immediately
disputed (see e.g. Tordoff, 1954) and is not currently supported
(e.g. molecular evidence places Spiza deep within the Cardinalidae;
Klicka et al., 2007); (2) unsubstantiated suggestions of affinity
between Compsothraupis loricata and Icteridae (Jaramillo and
Burke, 1999); and (3) lack thereof for Amblycercus (Fraga, 2011).
Comprehensive genus-level multi-locus molecular sampling of
the nine-primaried oscines strongly supports the monophyly of
Icteridae (Barker et al., 2013) as traditionally defined.

Although molecular phylogenetic studies of Icteridae (e.g.
Lanyon, 1992, 1994; Freeman and Zink, 1995; Lanyon and Omland,
1999) did not lead to its redefinition, they shed considerable light
on relationships within the family, including recognition of constit-
uent clades and discovery that several genera—Molothrus, Agelaius,
Cacicus, and Psarocolius—as then defined, were not monophyletic.
Lanyon and Omland (1999) found that Icteridae comprises five
deeply-divergent lineages: the meadowlarks and allies (Sturnella,
Dolichonyx, Xanthocephalus); cup-nesting caciques (Amblycercus);
caciques and oropendolas (Cacicus, Psarocolius, Clypicterus, Ocya-
lus); orioles (Icterus); and a large set of genera collectively referred
to as the grackles and allies (e.g. Agelaius, Quiscalus, Molothrus).
However, they were unable to resolve basal divergences among
those lineages. Similarly, Johnson and Lanyon (1999) found strong
support for several groups within the grackles and allies clade,
including cowbirds (Molothrus), marsh blackbirds (Agelaius), and
grackles (Quiscalus), but poor support for the relationships among
those lineages. Among the more surprising findings of these stud-
ies was a clade of South American endemics (‘‘group 1’’ of Johnson
and Lanyon, 1999) within the grackles and allies, composed largely
of morphologically and ecologically enigmatic genera together
with species that had been thought to be members of genera out-
side that clade (e.g., Molothrus, Agelaius). Subsequent studies have
explored relationships within the basal icterid clades, especially the
orioles (e.g. Omland et al., 1999; Jacobsen et al., 2010) and caciques
and oropendolas (Price and Lanyon, 2002a, 2004a). Until recently
(Barker et al., 2013; this study), none has aimed to resolve relation-
ships among the basal icterid clades or major groups within the
grackles and allies (but see Powell et al., 2013) with additional se-
quence or taxon sampling. Past phylogenies of Icteridae have not
been comprehensive, and except within the orioles (Allen and Om-
land, 2003; Jacobsen et al., 2010; Jacobsen and Omland, 2011) and
some meadowlarks (Barker et al., 2008), they have relied solely
upon mitochondrial DNA. Therefore, a revision of the phylogeny
of Icteridae, using new methods and additional data, is in order.

The overall goal of the present study was to infer phylogenetic
relationships among all �108 species of New World blackbirds
(Icteridae) using both mitochondrial and nuclear DNA sequences.
Please cite this article in press as: Powell, A.F.L.A., et al. A comprehensive specie
Phylogenet. Evol. (2013), http://dx.doi.org/10.1016/j.ympev.2013.11.009
Key objectives were as follows: (1) sample all currently-recognized
species not included in previous studies; (2) robustly resolve rela-
tionships among major clades within Icteridae; (3) robustly resolve
relationships among the grackles and allies, especially within a
phenotypically and ecologically diverse clade of South American
endemics, which previous studies failed to resolve with confi-
dence; (4) compare patterns of relationship found in previous
mitochondrial studies to results from nuclear loci, and (5) suggest
taxonomic revisions based on our results. Preliminary results from
this project (i.e. phylogenies inferred from less comprehensive
versions of our dataset) have already informed studies of female
song (Price, 2009; Price et al., 2009) and plumage color evolution
(Friedman et al., 2011).
2. Methods

2.1. Taxon and character sampling

Our analyses encompassed 114 ingroup and four outgroup taxa
(Table 1). Sampling within Icteridae included all species currently
recognized by taxonomic authorities (Dickinson, 2003; Remsen
et al., 2012; Gill and Donsker, 2012) or in prominent references
(Jaramillo and Burke, 1999; Fraga, 2011) except that we did not ob-
tain samples of Psarocolius b. bifaciatus, Agelaioides badius fringilla-
rius and Molothrus aeneus armenti (see also Dugand and
Eisenmann, 1983) and we chose not to include samples of Psaroco-
lius angustifrons alfredi (see Section 4.4) and Agelaius phoeniceus
gubernator (see Dufort and Barker, 2013). About 10% of the sam-
pled taxa had not been included in previous molecular phylogenies
of Icteridae, including three meadowlarks (Sturnella militaris, S. loy-
ca, S. defilippii), three caciques and oropendolas (Cacicus koepckeae,
Psarocolius cassini, P. guatimozinus), an oriole (Icterus jamacaii), and
three members of the grackles and allies subfamily (Dives atrovio-
laceus, Curaeus forbesi, Macroagelaius subalaris). We included more
than one sample of a species if, in past studies, some of its subspe-
cies appeared to be deeply divergent and geographically distinct
lineages. Outgroups were selected based on results of recent
molecular analyses of New World nine-primaried oscines with
comprehensive genus-level sampling (Barker et al., 2013) and con-
sisted of Icteria virens, Teretistris fernandinae, Seiurus aurocapillus,
and Oreothlypis gutturalis.

Our molecular sampling design was informed by simulations
and empirical phylogenetic studies (especially Wiens, 2005,
2006; Wiens et al., 2005; Wiens and Morrill, 2011) that found that
incomplete data matrices, when properly assembled, can yield ro-
bust results. Our dataset included many more characters than pre-
vious studies, but practical limitations on obtaining all loci of
interest from all taxa necessitated that most taxa be represented
by a subset of characters. We aimed to sample strategically the
types of loci most likely to be useful for resolving relationships in
greatest need of additional study. To that end, our dataset com-
prised three overlapping ‘‘scaffolds’’ (Wiens, 2006)—two mito-
chondrial genes from >100 taxa, four nuclear loci from 46 of
those taxa, and whole mitogenomes from 23 taxa—to which we
opportunistically added other sequences as available (Table 1).
This structure resulted in a substantial number of characters being
shared among taxa, even though, overall, most characters were
missing for most taxa. As a percentage of the complete data matrix,
more characters were shared among more taxa than in less conser-
vative, yet analytically successful, ‘‘sparse supermatrix’’ analyses
(e.g. Thomson and Shaffer, 2010).

The set of 46 taxa (Table 1) from which we sequenced four nu-
clear loci (5266 bp total) included at least one representative from
26 of 28 ingroup genera (lacking only Hypopyrrhus and Clypicterus)
and all four outgroup species. From each of those taxa, we
s-level molecular phylogeny of the New World blackbirds (Icteridae). Mol.
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Table 1
Taxa, specimens, and GenBank sequences used in phylogenetic analyses of New World blackbirds (Icteridae). Samples from multiple specimens of a given taxon were combined to form chimaeric sequences for analyses. Bolded text
indicates the subset of taxa included in 46-taxon analyses. If tissue and skin specimens of the same individual are housed at different institutions, both are listed (tissue in parentheses). Loci or sets of loci not collected for a given
specimen are indicated with a dash.

Taxon English namea Voucher specimen or
tissueb

Collecting locality mtDNA sample
description

GenBank numbers of mtDNA
samples

GenBank numbers of nucDNA loci (ACO1-I9,
FGB-I5, MB-I2, RAG1)

Clypicterus oseryi Casqued Oropendola LSUMZ 120394 Peru: Loreto ND2, Cyt b AF472408, AF472383 KF810987, –, KF810968, –
Psarocolius decumanus Crested Oropendola FMNH 324065 Peru: Madre de Dios ND2, Cyt b AF472400, AF472375 KF810988, KF810953, KF810969, KF810938

CUMV-Bird 52534 (MACN-
Or-ct 1130)

Argentina: Jujuy COX1 FJ028159 –

none Panama 16S AY283889 –
Psarocolius viridis Green Oropendola USNM 609202 Guyana ND2, Cyt b AY117726, AY117698 –

USNM 639199 Guyana: Cuyuni-Mazaruni COX1 JQ175997 –
Psarocolius atrovirens Dusky-green

Oropendola
FMNH 324106 Peru: Cuzco ND2, Cyt b AF472391, AF472366 –

Psarocolius a.
angustifrons

Russet-backed
Oropendola

LSUMZ 120397 Peru: Loreto ND2, Cyt b AF472389, AF472364 –

Psarocolius wagleri Chestnut-headed
Oropendola

LSUMZ B27280 Costa Rica: Cartago ND2, Cyt b AF472394, AF472369 KC007919, KC007643, KC007727, KC007834

Psarocolius montezuma Montezuma
Oropendola

LSUMZ 164424 Panama: Colón ND2, Cyt b AF472403, AF472378 KC007921, KC007645, KC007729, KC007836

Psarocolius cassini Baudo Oropendola ANSP 147013 Colombia: Choco Cyt b KF810925 –
Psarocolius bifasciatus

yuracares
Olive Oropendola FMNH 324076 Peru: Madre de Dios ND2, Cyt b AF472404, AF472379 –

Psarocolius guatimozinus Black Oropendola LSUMZ B48620 Panama: Darién Cyt b KF810926 –
Ocyalus latirostris Band-tailed

Oropendola
ANSP 177928 (LSUMZ
B3625)

Peru: Loreto ND2, Cyt b AF472407, AF472382 KC007920, KC007644, KC007728, KC007835

Cacicus cela cela Yellow-rumped
Cacique

KUMNH 88289 (USNM
B04259)

Guyana: Berbice ND2, COX1, Cyt b AY117731, JQ174227,
AY117703

–

Cacicus cela vitellinus Yellow-rumped
Cacique

LSUMZ 163850 Panama: Colón ND2, Cyt b AY117732, AY117704 –

Cacicus haemorrhous Red-rumped Cacique USNM 621068 Guyana ND2, Cyt b AY117733, AY117705 –
USNM 586489 Guyana: Barima-Waini COX1 JQ174230 –

Cacicus uropygialis
uropygialis

Subtropical Cacique LSUMZ B6093 Ecuador: Morona-Santiago ND2, Cyt b AY117736, AY117708 –

Cacicus uropygialis
microrhynchus

Scarlet-rumped
Cacique

STRI PACUR-PC99 Panama ND2, Cyt b AY117738, AY117710 –

USNM 608010 Panama: Bocas del Toro COX1 JQ174233 –
Cacicus uropygialis

pacificus
Pacific Cacique ANSP 182884 Ecuador: Esmeraldas ND2, Cyt b AY117735, AY117707 –

Cacicus chrysopterus Golden-winged
Cacique

USNM 620761 Argentina ND2, Cyt b AY117740, AY117712 –

MACN-Or-ct 987 Argentina: Jujuy COX1 FJ027255 –
Cacicus chrysonotus

chrysonotus
Southern Mountain
Cacique

LSUMZ 103278 Bolivia: La Paz ND2, Cyt b AY117745, AY117717 –

Cacicus chrysonotus
leucoramphus

Northern Mountain
Cacique

ANSP 182883 Ecuador: Imbabura ND2, Cyt b AY117743, AY117715 –

Cacicus sclateri Ecuadorian Cacique ANSP 177931 (LSUMZ
B103568)

Peru: Loreto ND2, ND2–COX3, Cyt b AY117746,
KF810923,AY117718

KC007922, KC007646, KC007730, KC007837

Cacicus koepckeae Selva Cacique LSUMZ B48621 Peru: Loreto Cyt b KF810927 –
Cacicus solitarius Solitary Cacique FMNH 324089 Peru: Cuzco ND2, Cyt b AY117747, AY117719 KF810989, –, KF810970, –

MACN-Or-ct 1403 Argentina: Corrientes COX1 FJ027264 –
Cacicus melanicterus Mexican Cacique UWBM 52185 Mexico: Oaxaca ND2, Cyt b AY117749, AY117721 KF810990, –, KF810971, –
Amblycercus h.

holosericeus
Yellow-billed Cacique KUMNH 1928 Mexico: Yucatán ND2, Cyt b AY117722, AY117750 –

USNM 608009 Panama: Bocas del Toro COX1 JQ174007 –

(continued on next page)
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Table 1 (continued)

Taxon English namea Voucher specimen or
tissueb

Collecting locality mtDNA sample
description

GenBank numbers of mtDNA
samples

GenBank numbers of nucDNA loci (ACO1-I9,
FGB-I5, MB-I2, RAG1)

Amblycercus
holosericeus
australis

Yellow-billed Cacique LSUMZ 98900 Peru: Puno ND2, ND2–COX3, Cyt b AF472411, KF810921,
AF472386

KC007923, KC007647, KC007731, KC007838

Icterus icterus Venezuelan Troupial LSUMZ B11328 Puerto Rico ND2, Cyt b AF099335, AF099296 –
LSUMZ B48559 Guyana COX1 KF810934 –

Icterus croconotus Orange-backed
Troupial

FMNH 324092 Peru: Madre de Dios ND2, Cyt b AF099336, AF089031 –

USNM 632494 Guyana: Upper Takutu-
Upper Essequibo

COX1 JQ175139 –

Icterus jamacaii Campo Troupial LGEMA 2742 Brazil: Piaui COX1 JN801752 –
Icterus pectoralis Spot-breasted Oriole MMNH 42544 USA: Florida ND2, Cyt b AF099348}, AF099304 –

KUMNH 109733 El Salvador: La Paz COX1 DQ432954 –
Icterus graceannae White-edged Oriole ANSP 181810 Ecuador: Loja ND2, Cyt b AF099329, AF089030 –
Icterus mesomelas Yellow-tailed Oriole LSUMZ 109279 Panama: Darién almost whole JX516068 KF810991, KF810954, KF810972, KF810939
Icterus cayanensis Epaulet Oriole MPEG 40.357 Brazil: Rondônia ND2, Cyt b AF099316, AF089027 –

USNM 625332 Guyana COX1 JQ175135 –
Icterus chrysocephalus Moriche Oriole FMNH 339734 Venezuela: Sucre ND2, Cyt b AF099317, AF099279 –

USNM 625748 Guyana COX1 JQ175138 –
Icterus pyrrhopterus Variable Oriole FMNH 334608 Bolivia: Santa Cruz ND2, Cyt b AF099319, AF099280 –

USNM 614726 Argentina: Entre Ríos COX1 JQ175136 –
Icterus bonana Martinique Oriole STRI MA-IBO2 Martinique ND2, COX1, ATP8–ATP6,

Cyt b
AF109445, AF109429,
AF109413, AF099277

–

Icterus laudabilis St. Lucia Oriole STRI SL-ILA4 St. Lucia ND2, COX1, ATP8–ATP6,
Cyt b

AF109455, AF109439,
AF109423, AF099298

–

Icterus oberi Montserrat Oriole STRI MO-IOB4 Montserrat ND2, COX1, ATP8–ATP6,
Cyt b

AF109447, AF109431,
AF109415, AF099303

–

Icterus dominicensis Hispaniolan Oriole AMNH NKK1112 Dominican Republic Cyt b, CR AY216867, AY211217 –
Icterus portoricensis Puerto Rican Oriole STRI PR-IDO1 Puerto Rico ND2, COX1, ATP8–ATP6,

Cyt b
AF109451, AF109435,
AF109419, AF099288

–

Icterus melanopsis Cuban Oriole MNHNCu 4/8/92 Cuba ND2, Cyt b AF099324, AF099286 –
Icterus northropi Bahama Oriole BNT REF024 Bahamas: Andros ND2, Cyt b AF099325, AF099287 –
Icterus prosthemelas Black-cowled Oriole KUMNH 89517 Mexico: Campeche ND2, COX1, ATP8–ATP6 AF109448, AF109432,

AF109416
–

MMNH 42542 Mexico: Yucatán Cyt b AY211213 –
Icterus spurius Orchard Oriole NCSM USA: Colorado ND2 AF099352 –

USNM 626504 USA: Florida COX1 DQ432955 –
FMNH 381975 USA: Illinois Cyt b, CR AY211198, AY211230 –

Icterus fuertesi Ochre Oriole MMNH 42538 Mexico: Veracruz ND2, Cyt b, CR AF099351, AY211215,
AY211219

–

Icterus cucullatus Hooded Oriole BB-BEHB25 unknown – – KF810992, KF810955, KF810973, KF810940
FMNH 341931 USA: California ND2, Cyt b AF099323, AF099284 –
UWBM 48323 USA: Arizona COX1 DQ433692 –

Icterus wagleri Black-vented Oriole MZFC QRO-216 Mexico: Querétaro ND2, Cyt b AF099353, AF099308 –
Icterus maculialatus Bar-winged Oriole INIREB SRF-387 Mexico: Chiapas ND2, Cyt b AF099340, AF099299 –
Icterus parisorum Scott’s Oriole FMNH 341943 USA: California ND2, Cyt b AF099347, AF089035 KC007924, KC007648, KC007732, KC007839

FMNH 334367 USA: Arizona COX1 DQ432953 –
Icterus auricapillus Orange-crowned Oriole FMNH 261843 Colombia: Boyacá Cyt b KF810928 –
Icterus chrysater Yellow-backed Oriole UWBM 69019 Nicaragua: Chinandega ND2, Cyt b AF099321, AF099281 –
Icterus graduacauda Audubon’s Oriole LSUMZ B-4023 USA: Texas ND2, Cyt b AF099330, AF099291 –
Icterus galbula Baltimore Oriole UMMZ 226382 USA: Michigan 12S, ND2–COX1, COX2–

ATP6
AF447237, AF447287,
AF447337

–

FMNH 350604 USA: Illinois Cyt b, CR AY607656, AY607621 –
ROM 1B-131 Canada: Ontario COX1 EU525431 –

Icterus abeillei Black-backed Oriole MZFC 9657 Mexico: Querétaro ND2 AF099311 –
MZFC keo-48 Mexico: Michoacán Cyt b, CR AY607617, AY607602 –
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Icterus bullockii Bullock’s Oriole MBMC jk95–095 USA: Oregon ND2, Cyt b EF529839, EF529950 –
UWBM 59056 USA: Washington COX1 DQ433689 –
UWBM 55975 USA: Washington CR AY611475 –

Icterus pustulatus Streak-backed Oriole UWBM 52129 Mexico: Chiapas ND2, Cyt b AF099349, AF099305 –
MZFC keo38 Mexico: Jalisco CR AY611477 –

Icterus leucopteryx Jamaican Oriole FMNH 331145 Jamaica: Trelawny ND2, COX1, ATP8–ATP6 AF109443, AF109427,
AF109411

–

FMNH 33144 Jamaica: Trelawny Cyt b AF089032 –
Icterus auratus Orange Oriole UAM 7222 Mexico: Yucatán ND2, Cyt b AF099312, AF099276 –
Icterus nigrogularis Yellow Oriole STRI TR-INI1 Trinidad ND2, COX1, ATP8–ATP6,

Cyt b
AF109456, AF109440,
AF109424, AF099302

–

USNM 627066 Guyana COX1 JQ175145 –
Icterus gularis Altamira Oriole FMNH Mexico: Oaxaca ND2, Cyt b AF099332, AF099293 –

UWBM 52191 Mexico: Oaxaca COX1 DQ433697 –
Nesopsar nigerrimus Jamaican Blackbird FMNH 331150 Jamaica: Portland whole JX516054 KC007925, KC007649, KC007733, KC007840
Gymnomystax

mexicanus
Oriole Blackbird FMNH 339743 Venezuela: Falcón whole JX516075 KC007926, KC007650, KC007734, KC007841

Macroagelaius subalaris Colombian Mountain
Grackle

LACM 40973 Colombia: Santander Cyt b KF810929 –

Macroagelaius imthurni Golden-tufted
Mountain Grackle

FMNH 339783 Venezuela: Bolívar whole JX516073 KC007938, KC007663, KC007747, KC007854

Hypopyrrhus
pyrohypogaster

Red-bellied Grackle ICN 33977 (IAvH 2078) Colombia: Antioquia ND2, Cyt b AY572450, AY572451 –

Lampropsar tanagrinus Velvet-fronted
Grackle

ANSP 177921 (LSUMZ
B103505)

Peru: Loreto almost whole JX516057 KC007937, KC007662, KC007746, KC007853

Gnorimopsar chopi Chopi Blackbird FMNH 334679 Bolivia: Santa Cruz whole JX516055 KC007935, KC007660, KC007744, KC007851
Curaeus curaeus Austral Blackbird AMNH 826156 Chile: Magallanes whole JX516070 KC007934, KC007659, KC007743, KC007850
Curaeus forbesi Forbes’s Blackbird MPEG 72143 CPE-II 040 Brazil: Pernambuco ND2–COX3, Cyt b KF810920, KF823980 KF810993, KF810956, KF810974, KF810941
Amblyramphus

holosericeus
Scarlet-headed
Blackbird

FMNH 334662 Bolivia: El Beni whole JX516063 KC007933, KC007658, KC007742, KC007849

Agelasticus
xanthophthalmus

Pale-eyed Blackbird FMNH 324094 Peru: Madre de Dios whole JX516059 KF810994, –, KF810975, –

Agelasticus cyanopus Unicolored Blackbird FMNH 334636 Bolivia: El Beni whole JX516076 KC007929, KC007653, KC007737, KC007844
Agelasticus thilius Yellow-winged

Blackbird
FMNH 334615 Bolivia: Oruro whole JX516069 KF810995, KF810957, KF810976, KF810942

Chrysomus ruficapillus Chestnut-capped
Blackbird

FMNH 330775 Brazil: Rio Grande do Sul whole JX516056 –

Chrysomus
icterocephalus

Yellow-hooded
Blackbird

FMNH 339772 Venezuela: Sucre whole JX516060 KF810996, KF810958, KF810977, KF810943

Xanthopsar flavus Saffron-cowled
Blackbird

FMNH 330747 Brazil: Rio Grande do Sul whole JX516065 KC007928, KC007652, KC007736, KC007843

Pseudoleistes guirahuro Yellow-rumped
Marshbird

FMNH 330795 Brazil: Rio Grande do Sul whole JX516071 KF810997, KF810959, KF810978, KF810944

Pseudoleistes virescens Brown-and-yellow
Marshbird

FMNH 330796 Brazil: Rio Grande do Sul whole JX516066 KC007932, KC007657, KC007741, KC007848

Oreopsar bolivianus Bolivian Blackbird FMNH 334687 Bolivia: El Beni whole JX516058 KC007936, KC007661, KC007745, KC007852
Agelaioides badius Baywing FMNH 330801 Brazil: Rio Grande do Sul whole JX516074 KC007942, KC007667, KC007751, KC007858
Molothrus rufoaxillaris Screaming Cowbird FMNH 330805 Brazil: Rio Grande do Sul ND2, ND2–COX3, Cyt b AF109961, KF810924,

AF089044
KF810999, KF810960, KF810979, KF810945

none Argentina: Formosa CR EU199785 –
Molothrus oryzivorus Giant Cowbird FMNH 324097 Peru: Madre de Dios Cyt b AF089060 KF810998, KF810961, KF810980, KF810946

LSUMZ 134021 Bolivia: Pando 12S, ND2, ND6–CR AF407089, AF407046,
AF407132

–

USNM 587829 Guyana COX1 JQ175403 –
Molothrus aeneus Bronzed Cowbird BB-73 James Mexico: Puebla whole JX516067 –
Molothrus bonariensis Shiny Cowbird LSUMZ 113963 Peru: Lambayeque 12S, ND2, ND6 AF407090, AF407047,

AF407133
–

MACN-Or-ct 3062 Argentina: Buenos Aires COX1 FJ027842 –
FMNH 334768 Puerto Rico Cyt b AF089043 –

(continued on next page)
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Table 1 (continued)

Taxon English namea Voucher specimen or
tissueb

Collecting locality mtDNA sample
description

GenBank numbers of mtDNA
samples

GenBank numbers of nucDNA loci (ACO1-I9,
FGB-I5, MB-I2, RAG1)

none Argentina: Buenos Aires CR DQ683553 –
Molothrus ater Brown-headed

Cowbird
FMNH 350707 USA: Chicago – – KC007943, KC007668, KC007752, KC007859

UMMZ none USA: Michigan 12S, ND2–COX1, COX2–
ATP6

AF447241, AF447291,
AF447341

–

BIOUG:SPP1681–70648 Canada: Ontario COX1 DQ434680 –
MBMC jk 96–016 USA: Minnesota Cyt b EF529951 –

Dives atroviolaceus Cuban Blackbird FMNH 375251 Cuba: Pinar del Río Cyt b KF810930 –
Dives dives Melodious Blackbird MBMC 7100 Honduras: Copán whole JX516061 KC007939, KC007664, KC007748, KC007855
Dives warczewiczi Scrub Blackbird LSUMZ 113959 Peru: Lambayeque ND2, Cyt b AF109962, AF089021 KF811000, KF810962, KF810981, KF810947
Agelaius phoeniceus Red-winged Blackbird BB-96 Tordoff USA: Minnesota whole JX516062 –

FMNH 341893 USA: Louisiana – – KC007930, KC007654, KC007738, KC007845
Agelaius assimilis Red-shouldered

Blackbird
MNHNCu Cuba Cyt b AF089004 –

Agelaius tricolor Tricolored Blackbird LSUMZ 130833 USA: California ND2, Cyt b AF109949, AF08911 KF811001, KF810963, KF810982, KF810948
USNM 632199 USA: California COX1 JQ173923 –

Agelaius humeralis Tawny-shouldered
Blackbird

none Cuba ND2, Cyt b AF109947, AF089006 –

Agelaius xanthomus Yellow-shouldered
Blackbird

BB-SML 86–1 Puerto Rico ND2, Cyt b AF109948, AF089012 KF811002, KF810964, KF810983, KF810949

Euphagus carolinus Rusty Blackbird FMNH 333317 USA: Illinois ND2, Cyt b AF109950, AF089023 KF811003, KF810965, KF810984, KF810950
ROM 1B-3617 Canada: Ontario COX1 AY666525 –

Euphagus
cyanocephalus

Brewer’s Blackbird FMNH 342000 USA: California whole JX516072 –

FMNH 341985 USA: California – – KC007941, KC007666, KC007750, KC007857
Quiscalus quiscula Common Grackle FMNH 341733 USA: Illinois whole JX516064 KC007940, KC007665, KC007749, KC007856
Quiscalus lugubris

lugubris
Carib Grackle FMNH 339797 Venezuela: Falcón ND2, Cyt b AF109952, AF089054 –

USNM 627469 Guyana: Mahaica-Berbice COX1 JQ176090 –
Quiscalus lugubris

contrusus
Carib Grackle USNM 612608 St. Vincent ND2, COX1, Cyt b FJ389553, JQ176089,

FJ389562
–

STRI SV-QLU2125 St. Vincent ATP8–ATP6 AF132427 –
Quiscalus mexicanus Ec Great-tailed Grackle MBMC JMD1014 USA: Texas ND2, Cyt b FJ389555, FJ389564 –

UWBM 52154 Mexico: Chiapas COX1 DQ434032 –
Quiscalus mexicanus Wc Great-tailed Grackle FMNH 341975 USA: California ND2, Cyt b AF109954, AF089056 KF811004, KF810966, KF810985, KF810951
Quiscalus major Boat-tailed Grackle FMNH 341918 USA: Louisiana ND2, Cyt b AF109953, AF089055 –

USNM 626311 USA: Florida COX1 DQ433156 –
Quiscalus palustris Slender-billed Grackle USNM 194170 Mexico: Estado de México Cyt b FJ389557 –
Quiscalus nicaraguensis Nicaraguan Grackle MBMC 4375 Nicaragua: Tipitapa ND2, Cyt b FJ389549, FJ389558 KF811005, KF810967, KF810986, KF810952
Quiscalus niger Greater Antillean

Grackle
FMNH 331153 Jamaica: Trelawny ND2, Cyt b AF109955, AF089057 –

Sturnella militaris Red-breasted Blackbird FMNH 339777 Venezuela: Falcón ND2, Cyt b KF810937, KF810931 –
USNM 625917 Guyana COX1 JQ176296 –

Sturnella superciliaris White-browed
Blackbird

FMNH 334657 Bolivia: Santa Cruz Cyt b AF089038 KC007846, FJ154707, KC007655, KC007739

LSUMZ B9630 Bolivia: Pando 12S, ND2–COX1, COX2–
ATP6

AF447239, AF447289,
AF447339

–

USNM 635873 Uruguay: Atigas COX1 JQ176299 –
NRM 947221 Paraguay ND3 JN715497 –

Sturnella bellicosa Peruvian Meadowlark ANSP 178118 Ecuador: Bolívar ND2, Cyt b FJ154660, AF089062 FJ154708, –, –, –
Sturnella defilippii Pampas Meadowlark AMNH 816591 Argentina: Buenos Aires Cyt b KF810932 –
Sturnella loyca Long-tailed

Meadowlark
MACN-Or 68357 Argentina: Buenos Aires ND2, Cyt b KF810936, KF810933 –

AMNH DOT-13514 Argentina: Río Negro COX1, CR FJ028336, JN417869 –, JN417982, –, –
Sturnella magna Eastern Meadowlark FMNH 339780 Venezuela: Falcón Cyt b AF089063 FJ154709, –, –, –
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UMMZ 227823 USA: Louisiana 12S, ND2–COX1, COX2–
ATP6

AF447257, AF447307,
AF447357

–

ROM SMM 88–1 Canada: Ontario COX1 AY666282 –
Sturnella lilianae Lilian’s Meadowlark FMNH 393903 Mexico: Sonora ND2, Cyt b FJ154691, FJ154636 FJ154725, –, –, –

ROM JCB5473 USA: Texas COX1 AY666267 –
Sturnella neglecta Western Meadowlark FMNH 341967 USA: California ND2, Cyt b FJ154698, FJ154651 –

ROM 1B-1038 Canada: Ontario COX1 EU525529 –
FMNH 330040 USA: California – – KC007931, KC007656, KC007740, KC007847

Xanthocephalus
xanthocephalus

Yellow-headed
Blackbird

LSUMZ 126564 USA: California ND2, COX1, COX1–
COX3, Cyt b

KC007584, KF810935,
KF810922, AF089067

KC007927, KC007651, KC007735, KC007842

Dolichonyx oryzivorus Bobolink FMNH 334721 Bolivia: Santa Cruz – – FJ154706, KC007669, KC007753, KC007860
UMMZ 234583 USA: Michigan 12S, ND2–COX1, COX2–

ATP6, Cyt b
AF447226, AF447276,
AF447326, AF447367

–

BIOUG: LMA 8101–91770 Canada: Ontario COX1 DQ434587 –

Outgroups:
Icteria virens Yellow-breasted Chat UWBM CDS4131 (STRI

USIVI 4131)
USA: Washington ND2–ATP6, Cyt b GU932138, AF383028 GU931924, GU932031, GU932352, KC007812

LSUMZ B3892 USA: Louisiana 12S AF447236 –
Seiurus aurocapilla Ovenbird STRI-PRSAU1 Puerto Rico: Patillas ND2–ATP6, Cyt b GU932043, GU932365 GU931829, GU931936, GU932257, KC007800

UMMZ 224992 USA: Michigan 12S AF447254 –
Oreothlypis gutturalis Flame-throated

Warbler
LSUMZ B26458 Panama: Chiriquí ND2–ATP6, Cyt b GU932041, GU932363 GU931827, GU931934, GU932255, KC007792

Teretistris fernandinae Yellow-headed
Warbler

ANSP-B5548 (STRI CUTFE
5548)

Cuba: Guantánamo ND2–ATP6, Cyt b GU932143, AF382999 GU931929, GU932036, GU932357, KC007804

a Following Gill and Donsker (2012) or Jaramillo and Burke (1999).
b Specimens with ‘‘BB’’ codes are unvouchered; all other codes are museum catalog numbers. Abbreviations: ANSP = Academy of Natural Sciences of Drexel University; AMNH = American Museum of Natural History;

BIOUG = Biodiversity Institute of Ontario; BNT = Bahamas National Trust; CUMV = Cornell University Museum of Vertebrates; FMNH = Field Museum of Natural History; IAvH = Instituto Alexander von Humbolt; ICN = Instituto de
Ciencias Naturales, Universidad Nacional de Colombia; INIREB = Instituto de Historia Natural, San Cristóbal de las Casas, Chiapas, Mexico; KUMNH = University of Kansas Natural History Museum; LACM = Natural History Museum
of Los Angeles County; LGEMA = Universidade de Sao Paulo, Departamento de Botanica; LSUMZ = Louisiana State University Museum of Natural Science; MACN = Museo Argentino de Ciencias Naturales, Bernardino Rivadavia;
MBMC = Marjorie Barrick Museum of Natural History; MNHNCu = Museo Nacional de Historia Natural Cuba; MMNH = James Ford Bell Museum of Natural History; MPEG = Museu Paraense Emílio Goeldi; MZFC = Museo de
Zoología de la Facultad de Ciencias, Universidad Nacional Autónoma de México; NCSM = North Carolina State Museum of Natural Sciences; NRM = Swedish Museum of Natural History; ROM = Royal Ontario Museum;
STRI = Smithsonian Tropical Research Institute; UAM = University of Alaska Museum; UMMZ = University of Michigan Museum of Zoology; USNM = Smithsonian Institution, National Museum of Natural History;
UWBM = University of Washington, Burke Museum of Natural History and Culture.

c Eastern and western lineages of Quiscalus mexicanus are treated as separate taxa.
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sequenced one protein-coding autosomal gene, two autosomal in-
trons, and one sex-linked (Z chromosome) intron. Those loci were,
respectively, recombination activating gene 1 (RAG1), myoglobin
intron 2 (MB-I2), b-fibrinogen intron 5 (FGB-I5), and aconitase 1 in-
tron 9 (ACO1-I9). We also sequenced MB-I2 and ACO1-I9 from four
additional taxa (including Clypicterus) and added ACO1-I9 or FGB-
I5 sequences of another four taxa that were available in GenBank
(Table 1).

How comprehensively the mitochondrial genome was repre-
sented in our dataset varied considerably among taxa (Table 1).
We obtained sequences of the cytochrome b gene (1143 bp) for
all 118 taxa in our study except Icterus jamacaii, for which we only
had COX1 sequence from GenBank. Cytochrome b was the only
gene that we sequenced from nine rarely-collected or extinct spe-
cies that were sampled using DNA from toe-pads of museum skins.
For all other taxa, we also obtained ND2 gene sequences (1041 bp).
Preliminary phylogenetic analyses indicated that within the South
American endemic clade our initial mitochondrial and nuclear
dataset was unable to resolve any but a few trivial relationships,
so we turned to more extensive mitochondrial sampling as a
source of additional signal. We utilized whole mitochondrial gen-
ome sequences (�16,775 bp) of 23 species (20 of them within
our 46-taxon set; Table 1). For five other ingroup taxa in the 46-
taxon set and for the four outgroups, we obtained sequences of a
�5000 bp fragment encompassing ND2, COX1, COX2, ATP8, ATP6,
and several tRNA genes. Further, we filled in remaining missing
sequence for each taxon to the extent possible using GenBank
records, provided we could be confident of their taxonomic identi-
ties. Most additional mitochondrial sequences were from the
COX1, ATP6, and 12S rRNA genes. Whenever possible, all nuclear
and mitochondrial gene sequences were obtained from the same
specimen; for 45 taxa, we assembled chimaeric sequences from
two or more individuals (Table 1).

2.2. Laboratory procedures and sequence preparation

Genomic DNA was extracted from frozen tissue and toe-pad
samples as described in Powell et al. (2008) or with conventional
phenol/chloroform methods (e.g. as in Lanyon, 1994). To avoid
contamination, we processed toe-pad specimens in a lab not other-
wise used for extraction or amplification of avian DNA. Target DNA
fragments were amplified via the polymerase chain reaction (PCR).
See the following references for details of primers and cycling
parameters: cytochrome b and ND2 (Barker et al., 2008; Powell
et al., 2008); whole mitogenomes and large fragments (Powell
et al., 2013); RAG1 (Barker et al., 2002); and MB-I2, FGB-I5, and
ACO1-I9 (Barker et al., 2008, 2013). Purification of PCR products,
sequencing, sequence editing, and alignment were as described
in Powell et al. (2013) except that some products were sent to
Beckman Coulter Genomics (Danvers, MA) for sequencing.

2.3. Data partitioning and phylogeny inference

To probe for misleading effects of character and taxon sampling
on phylogeny inference, we assembled the following datasets for
analysis and comparison: (1) concatenated (to analyze with stan-
dard phylogenetic inference) and (2) unconcatenated (to analyze
with species tree methods) nuclear sequences of the 46 taxa for
which all four loci were sampled; (3) concatenated nuclear se-
quences of the 54 taxa with any nuclear data; (4) cytochrome b,
(5) combined ND2 and cytochrome b, and (6) full mitochondrial
alignments of the 46-taxon and (7–9) 117 or 118-taxon sets. Based
on results from those datasets, we assembled the following data-
sets for our final analyses: (10) concatenated and (11) unconcate-
nated combined nuclear and full mitochondrial alignments of the
46-taxon sample; and (12) concatenated combined nuclear and full
Please cite this article in press as: Powell, A.F.L.A., et al. A comprehensive specie
Phylogenet. Evol. (2013), http://dx.doi.org/10.1016/j.ympev.2013.11.009
mitochondrial alignments of all 118 taxa. To maximize sequence
coverage for Molothrus in the 46-taxon analyses of combined nu-
clear and mitochondrial loci, we utilized a chimaeric sequence
composed of the mitogenome of M. aeneus with the nuclear se-
quences of M. ater.

All datasets were partitioned for analysis. Partitioning was
accomplished by finely dividing each dataset according to a priori
categories (such as gene and codon position), then using Partition-
Finder 1.0.1 (Lanfear et al., 2012)—set to assess all models with the
greedy algorithm under the Bayesian information criterion (BIC;
Schwarz, 1978)—to find an optimal scheme for grouping subsets
according to similarities in evolutionary tendencies. The most com-
plicated datasets were the full-length mitochondrial alignments. As
described in Powell et al. (2013), alignment positions of those data-
sets were sorted into 48 initial subsets according to all possible
combinations of the following categories: noncoding/coding, hea-
vy/light template strand, protein/RNA-coding, gene identity (done
for rRNA and protein-coding genes only), codon position, and
paired/unpaired bases in RNA secondary structure. Initial subdivi-
sion of nuclear markers was limited to separation by locus and,
for RAG1, codon position. On occasion, PartitionFinder returned
an inappropriately complicated model that led to spurious param-
eter estimates for a data subset. To reassess those cases, or when we
needed to identify best models for individual data blocks, we used
the BIC in jModelTest 2 (Darriba et al., 2012). We used the v2 test of
homogeneity of base frequencies across taxa, as implemented in
PAUP� 4.0b10 (Swofford, 2002), and v2 goodness-of-fit tests of indi-
vidual taxa compared to the among-taxon average (Gruber et al.,
2007), to check for overall stationarity of base composition at vari-
able alignment positions within data subsets.

For single-locus and concatenated-loci datasets, we inferred
phylogenetic relationships under maximum likelihood (ML) using
GARLI 2.0 (Zwickl, 2006) and with Bayesian methods using
MrBayes-3.2.1 (Ronquist et al., 2012). We also used Bayesian
methods as implemented in �BEAST 1.7.4 (Drummond et al.,
2012) to infer species trees from our unconcatenated multilocus
46-taxon datasets. Most GARLI analyses were run on the CIPRES
Science Gateway (Miller et al., 2010), where we conducted heuris-
tic searches for ML trees using 50 random starting points (i.e.
searchreps) and evaluated nodal support with 500 bootstrap repli-
cates, each with a single random starting point. Analyses with
MrBayes used Metropolis coupling (four chains with default heat-
ing) and generally ran for 6–12 million generations, sampling every
100 generations, with a burn-in of 10–25%. We found that default
settings in MrBayes yielded unrealistically long tree-length
estimates in partitioned analyses, so following Marshall (2010),
we set a shorter prior on mean branch length (brlenspr = uncon-
strained:exp (100.0)). Analyses using �BEAST ran for 200 million
generations, sampling every 10,000 generations, with a burn-in
of 10%. For all partitions or loci in those analyses, we used a lognor-
mal relaxed clock model of evolutionary rate, with an exponential
prior (mean = 0.1). All mitochondrial partitions in �BEAST analyses
were linked under the same tree model. We used Tracer 1.5 (Ram-
baut and Drummond, 2009) and the AWTY server (Wilgenbusch
et al., 2004) to check that effective sample sizes for parameter esti-
mation in Bayesian analyses were adequate (i.e. >200) and that
estimates of nodal posterior probability had converged.

Because sampling completeness varied substantially among
taxa, we examined the results of the various datasets to assess
their sensitivity to completeness of marker and taxon sampling,
as well as congruence between inferences from nuclear loci and
the mitochondrial genome. We looked for significant differences
between analyses in their support for hypotheses of relationship,
especially instances of strong conflict in pairwise comparisons
(i.e. cases in which each of two incongruent hypotheses of relation-
ship were supported by P70% of bootstrap replicates or P95% of
s-level molecular phylogeny of the New World blackbirds (Icteridae). Mol.
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posterior samples at incompatible nodes). To further investigate
conflict and congruence among the five independent loci used in
this study, we inferred the phylogeny of the 46-taxon set sepa-
rately for each locus under ML with 500 bootstrap replicates, then
compared the bipartitions inferred from each locus to those in-
ferred from each of the other loci at 70% and 90% thresholds of
bootstrap support. For each pairwise comparison of loci, we tallied
instances of strongly supported nodal conflict and congruence, and
examined the extent to which the bipartitions inferred from each
locus matched the nodes of the single best 46-taxon topology in-
ferred from all loci combined.
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3. Results

3.1. Partitions, substitution models, and base composition

Optimal partitioning was achieved using relatively few data
groups. As in Powell et al. (2013), we found that the most salient
categories for mitogenomic partitioning were codon position,
RNA secondary structure pairing, and the coding/noncoding dis-
tinction (Table 2). The best scheme for cytochrome b, for both 46
and 117-taxon analyses, was by codon position. The ND2 plus cyto-
chrome b datasets were partitioned by codon position and by gene
for 3rd positions. Nuclear markers sorted separately from mito-
chondrial data groups. Even though codon position was a signifi-
cant variable within RAG1, the best schemes for the
concatenated datasets utilized only four nuclear data groups (Table
2) because some loci were so similar that they grouped together.

Base composition of variable sites in the nuclear data subsets
did not differ significantly among taxa. The mitochondrial genome
varies regionally (Powell et al., 2013), so testing that locus for sta-
tionarity was complicated by differences in the extent of sampling
across species. No significant deviations were apparent within por-
tions of the alignment with good taxonomic representation and
nearly complete coverage for all sampled taxa (e.g. cytochrome b,
ND2, COX1). As discussed in Powell et al. (2013), the composition
of the mitochondrial genome of Dives dives differed significantly
from the average of the 23 taxa for which we sequenced whole
mitogenomes, but that difference appeared inconsequential for
phylogeny inference because compositional similarity was not cor-
related with tree topology.

3.2. Phylogenies

Analyses of the datasets that we assembled using GARLI, MrBa-
yes, and �BEAST, yielded a set of >20 summary phylogenetic trees.
The primary purpose of most analyses was to investigate sensitiv-
ity of results to sampling and inference methods; consequently,
most trees are not shown, but comparisons among them are de-
scribed below and in Appendix S1. For a given dataset, different
optimality criteria yielded trees without strongly-supported topo-
logical differences and with few differences in assignments of
strong nodal support (see Section 3.7). For simplicity, we refer
mainly to results from ML analyses in Sections 3.3-3.6. A represen-
tative set of trees, including those we consider to be our best esti-
mates of phylogeny, are as follows: 118-taxon analyses of the full
mitochondrial dataset (Fig. 1); 46-taxon analyses of the nuclear
dataset (Fig. 2); 46-taxon analyses of the combined mitochondrial
and nuclear datasets (Fig. 3); and the 118-taxon analyses of the
combined mitochondrial and nuclear datasets (Fig. 4).

3.3. Effects of taxon sampling on phylogeny inference

Taxon addition can sometimes bolster phylogeny inference
(Wiens, 2005; Wiens and Tiu, 2012), but in this study, after prun-
Please cite this article in press as: Powell, A.F.L.A., et al. A comprehensive species-level molecular phylogeny of the New World blackbirds (Icteridae). Mol.
Phylogenet. Evol. (2013), http://dx.doi.org/10.1016/j.ympev.2013.11.009

http://dx.doi.org/10.1016/j.ympev.2013.11.009


Fig. 1. Phylogeny of the New World blackbirds (Icteridae) inferred from mitochondrial DNA sequences of 118 taxa (outgroups not shown). The topology shown here is the
single best tree (�lnL = 112464.25) found under maximum likelihood (ML). Nonparametric bootstrap percentages from ML analysis appear immediately above or below
branches. Filled circles indicate nodes with estimated posterior probabilities of P0.95 in Bayesian analyses of the same concatenated dataset.
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Fig. 2. Phylogeny of the New World blackbirds (Icteridae) inferred from nuclear DNA sequences of 46 taxa (outgroups not shown). The topology shown here is the single best
tree (�lnL = 14620.36) found under maximum likelihood (ML). Nonparametric bootstrap percentages from ML analysis appear immediately above or below branches. Filled
circles indicate nodes with estimated posterior probabilities of P0.95 in Bayesian analyses of the concatenated dataset, and filled squares indicate nodes that also received
posterior probability estimates of P0.95 in species-tree analyses.
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ing trees to include only the taxa in the less comprehensive
analyses, we found little effect on the pattern or number of
strongly-supported nodes. By those measures, ML reconstructions
from the 46 (Fig. 2) and 54-taxon concatenated nuclear-only data-
sets were identical, as were results from the 46 and 118-taxon
datasets of combined nuclear and mitochondrial sequences (Figs.
3 and 4). Only the trees generated exclusively from mitochondrial
data exhibited any differences in topology or assignments of strong
Please cite this article in press as: Powell, A.F.L.A., et al. A comprehensive specie
Phylogenet. Evol. (2013), http://dx.doi.org/10.1016/j.ympev.2013.11.009
support (see Appendix S1), but no discrepancy was an instance of
strongly-supported conflict.

The phylogenetic position inferred for Nesopsar, and confidence
for its placement, depended on data sampling and analytical meth-
od. We were concerned that its unstable placement (e.g. sister to
Agelaius versus sister to all grackles and allies exclusive of Moloth-
rus and Agelaius) might disproportionately shape reconstruction of
basal divergences in the grackles and allies clade. To test for such
s-level molecular phylogeny of the New World blackbirds (Icteridae). Mol.
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Fig. 3. Phylogeny of the New World blackbirds (Icteridae) inferred from mitochondrial and nuclear DNA sequences of 46 taxa (outgroups not shown). The topology shown
here is the single best tree (�lnL = 105577.92) found under maximum likelihood (ML). Nonparametric bootstrap percentages from ML analysis appear immediately above or
below branches. Filled circles indicate nodes with estimated posterior probabilities of P0.95 in Bayesian analyses of the concatenated dataset, and filled squares indicate
nodes that also received posterior probability estimates of P0.95 in species-tree analyses.
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effects, we analyzed the 118-taxon combined full mitochondrial
and nuclear dataset after excluding Nesopsar and found the result-
ing tree topology unchanged apart from its absence. However, ML
bootstrap support for the monophyly of all grackles and allies
exclusive of Agelaius increased to 73% from 52%, and support for
monophyly of the remaining grackles and allies exclusive of Agela-
ius and Molothrus increased to 99% from 95%.
Please cite this article in press as: Powell, A.F.L.A., et al. A comprehensive specie
Phylogenet. Evol. (2013), http://dx.doi.org/10.1016/j.ympev.2013.11.009
3.4. Effects of mitochondrial locus sampling on phylogeny inference

We found that adding sequence, even when unevenly sampled
across taxa, led to addition of strongly-supported nodes, and not to
switches in patterns of strongly-supported relationships. For
example, in the 117 or 118-taxon analyses, the full mitochondrial
dataset yielded a ML tree (Fig. 1) with strong support for 93 of
s-level molecular phylogeny of the New World blackbirds (Icteridae). Mol.
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Fig. 4. Phylogeny of the New World blackbirds (Icteridae) inferred from mitochondrial and nuclear DNA sequences of 118 taxa (outgroups not shown). The topology shown
here is the single best tree (�lnL = 127652.47) found under maximum likelihood (ML). Nonparametric bootstrap percentages from ML analysis appear immediately above or
below branches. Filled circles indicate nodes with estimated posterior probabilities of P0.95 in Bayesian analyses of the same concatenated dataset.
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115 nodes, including all 53 and all but one of 78 strongly-sup-
ported nodes recovered with cytochrome b and the ND2 plus cyto-
chrome b datasets, respectively. Support for the position of
Nesopsar differed by dataset. The ND2 plus cytochrome b dataset
found strong (76% bootstrap) support for the monophyly of all
grackles and allies exclusive of Nesopsar, whereas the full dataset
supported (70% bootstrap) grouping Nesopsar with Dives, Euphagus,
Quiscalus, and the South American endemics. For further details of
effects of mitochondrial locus sampling, see Appendix S1.

3.5. Congruence of inferences from nuclear loci and mtDNA

Our analyses of congruence among individual loci (Table 3) re-
vealed no conflict of the mitochondrial locus with nuclear markers
except FGB-I5, which conflicted with other loci at several biparti-
tions despite its modest resolving power. The nuclear markers with
the highest resolving power, ACO1-I9 and RAG1, were incongruent
at only 1 bipartition. Combined support for nodes of the tree in-
ferred from the 46-taxon full mitochondrial and nuclear dataset
was sometimes higher than might be expected given low or con-
tradictory support from individual loci (Fig. S1). No node with
strong combined support lacked support from at least one locus,
and none exhibited strong conflict with mtDNA, but four nodes re-
ceived strong combined support without strong support from
mtDNA and despite, in two cases, strong conflict between nuclear
markers. Five clades with strong combined nuclear support did not
receive strong support from any single nuclear locus (see Appendix
S1 for more details).

Phylogenies generated from separate 46-taxon mitochondrial
(not shown) and concatenated nuclear datasets (Fig. 2) showed
strong support for a majority of relationships but yielded some-
what different topologies. However, with one exception, differ-
ences occurred at nodes that were poorly supported by at least
one of those two datasets. According to mitochondrial data, Xan-
thocephalus and Dolichonyx are sister taxa (97% bootstrap support)
that compose a clade sister to Sturnella. By contrast, phylogenies
inferred from nuclear data placed Xanthocephalus sister to a
strongly supported (92% bootstrap) Dolichonyx-Sturnella clade.

Placements of the eight taxa with partial data in our 54-taxon
nuclear phylogenies (not shown) were congruent with the tree
from the 118-taxon full mitochondrial alignment (Fig. 1). The nu-
clear data recovered the following relationships: Sturnella bellicosa
and S. loyca with S. superciliaris, thus supporting monophyly of the
red-breasted meadowlarks (83% bootstrap, 100% posterior proba-
bility); Sturnella lilianae and S. magna together (73, 98), and that
pair sister to S. neglecta (99, 100), thus supporting monophyly of
Table 3
Congruence among DNA sequences with respect to inferring the phylogeny of New World
the number of conflicting (bold text, above diagonal) and concordant (below diagonal) bipa
two levels of bootstrap support (90% and 70%). Each of those quantities is also shown
(combinable component) consensus of the trees being compared. In addition, for each locu
resolved at a given support level, and the ratio of those values, are given. Note that the to
because a given bipartition can conflict with multiple loci and multiple bipartitions inferr

Support level Locus Locus N

mtDNA ACO1-I9 FGB-I5 MB-I2 RAG1

90% ML mtDNA – 0 (0) 1 (3.2) 0 (0) 0 (0) 1
ACO1-I9 5 (16.1) – 0 (0) 0 (0) 0 (0) 0
FGB-I5 3 (9.7) 2 (25.0) – 0 (0) 1 (8.3) 2
MB-I2 2 (6.5) 3 (50.0) 2 (40.0) – 0 (0) 0
RAG1 8 (25.0) 2 (14.3) 2 (16.7) 2 (18.2) – 1

70% ML mtDNA – 0 (0) 4 (10.0) 0 (0) 0 (0) 4
ACO1-I9 14 (35.9) – 5 (20.0) 1 (4.5) 1 (4.5) 7
FGB-I5 6 (15.0) 4 (16.0) – 0 (0) 2 (10.0) 1
MB-I2 6 (16.2) 4 (18.2) 4 (26.7) – 1 (6.3) 2
RAG1 10 (27.0) 8 (36.4) 3 (15.0) 4 (25.0) – 4

Please cite this article in press as: Powell, A.F.L.A., et al. A comprehensive specie
Phylogenet. Evol. (2013), http://dx.doi.org/10.1016/j.ympev.2013.11.009
the yellow-breasted meadowlarks; Cacicus solitarius and Clypicte-
rus into a poorly-resolved grouping with Ocyalus and Cacicus scla-
teri (90, 100); Cacicus melanicterus outside a well-supported (76,
99) clade containing Psarocolius, Ocyalus, Clypicterus, and all other
Cacicus; and Agelasticus xanthopthalmus with A. cyanopus (99, 100).

3.6. Inferences from separate and combined nuclear and mtDNA
datasets

In our study, mitochondrial data proved superior for resolving
short internodes and relationships among closely-related species,
whereas nuclear data were somewhat better at resolving basal
relationships. A striking feature of the 46-taxon ML analysis of
combined nuclear loci (Fig. 2) was its nearly complete failure to re-
solve robustly relationships within the South American endemic
clade—only one node out of 13 received strong support. By con-
trast, ML analysis of the mitochondrial dataset, which included full
mitogenomic sequences of most species in that clade, recovered 11
well-supported nodes. With respect to the rest of the tree, built
from less comprehensive sampling of the locus, the mitochondrial
dataset performed no better than the nuclear dataset—both data-
sets resolved 24 of 30 nodes with confidence.

To the extent that their strengths were complementary, the nu-
clear and mitochondrial datasets had potential for fusion of their
best qualities (Wiens, 2005, 2006). However, the datasets had
some limitations in common and they did exhibit some conflict
(see Section 3.5). Consequently, the 46-taxon ML phylogeny built
from the combined data (Fig. 3) had 37 strongly-supported nodes
out of 43, a net gain of only two more than the tree from the mito-
chondrial dataset. Similarly, the ML analysis of the combined data-
sets for all 118 taxa (Fig. 4) contained 96 well-supported nodes—
three more than the mitochondrial tree (Fig. 1). The combined
dataset trees were very similar to the mitochondrial trees. They
had strong support at some nodes robustly recovered by nuclear
loci, including the sister relationship of Amblycercus to all other
caciques and oropendolas, the sister relationship of Icterus to the
grackles and allies, and in the case of the 118-taxon tree, robust
placement of Cacicus solitarius as sister to the other caciques
(excepting C. melanicterus and Amblycercus). On the other hand,
the combined dataset trees exhibited lower confidence for some
nodes within the South American blackbirds, and placements of
Xanthocephalus and Nesopsar were as robustly recovered with nu-
clear loci but with poor support due to conflict with the mitochon-
drial signal.

We compared the 46-taxon species-tree from nuclear loci to the
species-tree from the combined dataset and found no significant
blackbirds (Icteridae) using a 46-taxon dataset. For each pairwise comparison of loci,
rtitions in the trees inferred from them under maximum-likelihood (ML) are shown at
(in parentheses) scaled as a percentage of the bipartitions retained in a semistrict
s, the total number of bipartition conflicts with other loci, the number of bipartitions
tal number of conflicts for a given locus can exceed the number of nodes it resolves
ed from each locus.

o. conflicting bipartitions No. resolved bipartitions Ratio conflict/resolution

30 0.03
6 0
4 0.50
3 0
10 0.10

35 0.11
18 0.39

1 11 1.00
8 0.25
12 0.33

s-level molecular phylogeny of the New World blackbirds (Icteridae). Mol.
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incongruence. Placement of Nesopsar as sister to Agelaius got strong
(98% posterior) support using nuclear sequences, but not with the
combined dataset (87% posterior); the other 14 strongly-supported
nodes in the former analyses were recovered in the latter, which
found robust support for 21 of 43 nodes.

3.7. Concordance of results from analyses based on different optimality
criteria

We found no strongly-supported topological differences be-
tween trees inferred from a given dataset using different optimal-
ity criteria. Furthermore, analyses using GARLI and MrBayes almost
always agreed in assigning support to nodes according to the
thresholds that we selected for comparing bootstrap values to pos-
terior probability (P70% and P95%, respectively). However, in a
very few cases, assessments were sharply discordant. For exam-
ple,apart from uniting Xanthopsar with Pseudoleistes, relationships
within the South American clade received extremely poor support
in ML analyses of the 46-taxon nuclear locus dataset, but the same
topology was recovered by MrBayes with strong support at four
additional nodes (Fig. 2).

Using the 118-taxon combined dataset, we found that the
topologies of the single best tree from GARLI and the consensus
tree from MrBayes were identical, even at poorly supported nodes,
with one exception—the Bayesian tree found Curaeus forbesi sister
to Gnorimopsar with poor (58% posterior) support, whereas in ML,
those lineages were sequentially nested branches in relationship to
other taxa (Fig. 4). Assessments of strong support agreed at all but
6 of 115 nodes (Fig. 4). To test whether strong Bayesian support for
the monophyly of all other grackles and allies exclusive of a well-
supported Nesopsar-Agelaius clade was peculiar to MrBayes, we
used BEAST to analyze the same concatenated dataset and got
the same result. For further details of effects of optimality criteria,
see Appendix S1.
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4. Discussion

We present the first comprehensive species-level phylogeny of
Icteridae. By using mitochondrial gene sequences from all cur-
rently recognized taxa, together with strategic sampling of four nu-
clear loci and whole mitochondrial genomes, we were able to
resolve most relationships with high confidence. Our best estimate
of phylogeny (Fig. 4) exhibits a topology that is consistent with the
strongly supported results of past studies, but that also contains
many new and robustly resolved inferences of relationship. These
novel hypotheses of relationship include some unexpected place-
ments of taxa that had not been included in previous molecular
phylogenies, resolution of the relationships among major clades
within Icteridae, and resolution of genus-level relationships within
the grackles and allies.

4.1. Congruence of results from different analyses

Although it is possible that inferences made with our most
inclusive dataset were biased by uneven coverage of sequence
sampling across taxa, previous studies have found phylogenetic
analyses robust to missing data when they include an adequate
number of shared informative characters (Wiens, 2005; Wiens
and Moen, 2008; Wiens and Morrill, 2011). We can state with con-
fidence that heterogeneous addition of data did not undermine
recovery of relationships that received robust support with smaller
datasets having uniform coverage. The congruent results of our
analyses demonstrate that most findings were robust to variation
in mitochondrial sampling, taxon sampling, and use of signal
derived from either the mitochondrial or nuclear genomes. In gen-
Please cite this article in press as: Powell, A.F.L.A., et al. A comprehensive specie
Phylogenet. Evol. (2013), http://dx.doi.org/10.1016/j.ympev.2013.11.009
eral, nuclear loci were less successful than mitochondrial loci for
inferring relationships at the tips of the tree, but they provided sta-
bility to relationships throughout the tree and corroborated many
results of previous studies based on mitochondrial data alone.

4.2. Icteridae and its major subclades

Although the composition of Icteridae has rarely been ques-
tioned, until recently, robust support for its monophyly (Barker
et al., 2013) and basal relationships within it has been lacking. Lan-
yon and Omland (1999), using mitochondrial cytochrome b se-
quences, found support for five major clades within Icteridae, but
not for their interrelationships or for icterid monophyly. Klicka
et al. (2007), using ND2 plus cytochrome b, found strong support
for Icteridae excluding meadowlarks and allies, but not for the
family as a whole, for monophyly of the meadowlarks and allies,
or for basal relationships. Using our expanded mitochondrial data-
set, we recovered Icteridae and the meadowlarks and allies with
strong support, but we were unable to resolve robustly relation-
ships among the other four major clades.

Nuclear loci allowed us to reconstruct basal relationships with-
in Icteridae with high confidence, and they resolved homoplasy in
the mitochondrial signal such that support values were even high-
er using the combined dataset. We found a graded pattern of rela-
tionship among major clades, with the meadowlarks and allies
sister to the rest of Icteridae (as in previous studies). Within the
latter, the caciques and oropendolas (including Amblycercus) were
sister to a pairing of the orioles with the grackles and allies. This
pattern does not match mitochondrial topologies, which grouped
(with poor support) the orioles with the caciques and oropendolas,
a position that concurred with traditional views (e.g. American
Ornithologists’ Union, 1983).

4.3. Meadowlarks and allies

Meadowlarks (Sturnella) generally inhabit open grasslands and
are notable for their stocky build, long bill, relatively short tail,
and red or yellow breast versus cryptically-streaked dorsal colora-
tion. Prior to the present study, a thorough molecular treatment
was lacking. Lanyon and Omland (1999) included six of 10 species
in their study of Icteridae, and Barker et al. (2008) included six spe-
cies in their treatment of the yellow-breasted meadowlarks, but
the three red-breasted species served only as outgroups. We found
that placements of the red-breasted species not included in previ-
ous studies fit traditional expectations: each is sister to the species
with which it has sometimes been considered conspecific—S. mili-
taris with superciliaris, and loyca with defilippii. Both our mitochon-
drial and nuclear datasets supported monophyly of red and yellow-
breasted groups, which are genetically more divergent (�15%) than
any other congeners within Icteridae. The meadowlarks were once
divided between Sturnella, Leistes, and Pezites, until Short (1968)
merged them for lack of substantial morphological and ecological
divergence. Sibley and Monroe (1990) gave new life to Leistes, cit-
ing Parker and Remsen (1987), who argued for its continued recog-
nition based on behaviors shared with Agelaius phoeniceus and not
with Sturnella. When molecular studies later found S. bellicosa
more closely related to L. superciliaris than to the yellow-breasted
Sturnella species, Leistes was abandoned since it made Sturnella as
then defined (i.e. inclusive of Pezites), paraphyletic. We found that
all meadowlark genera are monophyletic as originally defined,
though support for placement of S. bellicosa with S. loyca and S. def-
ilippii, to constitute Pezites, was weak in most analyses.

One of the most surprising findings of the first molecular phy-
logenies of Icteridae (Lanyon, 1994; Lanyon and Omland, 1999)
was that Xanthocephalus is not allied with Agelaius, as had been
supposed from behavioral and ecological similarities, but rather
s-level molecular phylogeny of the New World blackbirds (Icteridae). Mol.
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is most closely related to Dolichonyx and Sturnella. Our nuclear and
mitochondrial datasets both supported that unexpected grouping,
but in the pattern of divergences among those genera we encoun-
tered the only instance of conflict between strongly-supported
nodes inferred from nuclear versus mitochondrial sequences. Nu-
clear data placed Xanthocephalus sister to a Dolichonyx-Sturnella
clade, whereas mitochondrial data supported a sister relationship
between Xanthocephalus and Dolichonyx. We obtained all four nu-
clear loci and a substantial amount of mitochondrial sequence
from each of these taxa, so it seems that many more loci will be
necessary to resolve these relationships with confidence. Although
Xanthocephalus and Dolichonyx are more closely related to Sturnella
than to other icterids, they are genetically and phenotypically
divergent. Dolichonyx is unique among blackbirds for undergoing
two complete molts per year and is unusual among New World
passerines for being an interhemispheric migrant. Xanthocephalus
and Dolichonyx are so different from one another that their mor-
phologies and behaviors are not particularly suggestive of one res-
olution of relationships over another.

4.4. Caciques and oropendolas, including Amblycercus

The caciques and oropendolas (�23 spp.) are inhabitants of
tropical forests, where their pendant nests and displays can make
them conspicuous, especially in the case of colonial species. They
span a wide range of sizes, from Cacicus sclateri (23 cm, 57 g) to
Psarocolius montezuma (up to 53 cm, 560 g; Fraga, 2011). Perhaps
because of small effective population sizes in polygynous species,
phylogenetic studies of the group have yielded well-resolved and
strongly-supported hypotheses of relationship, even when inter-
nodes are short (e.g. this study, Price and Lanyon, 2002a, 2002b).
Our main concerns were to achieve complete taxon sampling and
to use nuclear loci to test some of the surprising findings of previ-
ous studies. We also propose a number of taxonomic revisions,
many of them long overdue given results of previous studies (i.e.
Price and Lanyon, 2004a, 2004b).

Mitochondrial DNA, even with increased sample size, was not
able to recover the cup-nesting cacique, Amblycercus, as sister to
the typical caciques and oropendolas, but nuclear loci did so with
very strong support, as did the combined dataset. Like mitochon-
drial data, the nuclear loci indicate that the genetic divergence of
Amblycercus from the other caciques and oropendolas is substan-
tial. Nuclear markers also supported the position of Cacicus melan-
icterus outside the rest of the typical caciques and oropendolas, and
the combined dataset placed it sister to them with strong support;
consequently, that taxon should be restored to Cassiculus (e.g. Fra-
ga, 2011). The remaining caciques and oropendolas sort into two
clades, one containing all species currently placed in Psarocolius,
and the other comprising mostly Cacicus species.

Mitochondrial data placed Cacicus solitarius sister to Psarocolius,
but with only weak support. By contrast, nuclear loci strongly sup-
ported a sister relationship of Cacicus solitarius to the other Cacicus
spp., as did analysis of the combined dataset under ML (Bayesian
analysis recovers the same topology with weak support).
Consequently, our study found that Cacicus solitarius need not be
reassigned to Procacicus, as proposed by Fraga (2005). A very
surprising finding of previous studies was the close relationship
between Ocyalus and Clypicterus (Freeman and Zink, 1995; Price
and Lanyon, 2002a, 2004a) and the position of those taxa well out-
side of Psarocolius. Subsequent work (Price and Lanyon, 2004a),
that even more surprisingly found those genera imbedded within
Cacicus, has thus far been ignored in taxonomic revisions. We
found strong nuclear (and combined) support for placement of
Ocyalus and Clypicterus in the Cacicus clade; consequently, those
species should be reassigned to that genus. Elsewhere within
Cacicus, we recovered the same pattern of relationships found by
Please cite this article in press as: Powell, A.F.L.A., et al. A comprehensive specie
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Price and Lanyon (2004a), except that we included C. koepckeae,
which we recovered as sister to C. sclateri as anticipated (Cardiff
and Remsen, 1994). Following Price and Lanyon (2004a), we
included deeply divergent subspecies of Amblycercus and several
Cacicus spp., which should probably be recognized as species. Some
authorities (e.g. Jaramillo and Burke, 1999; Fraga, 2011; Gill and
Donsker, 2012) recognize Cacicus (uropygialis) microrhynchus as a
species and treat C. u. pacificus as a subspecies of C. microrhynchus,
when in fact, mitochondrial DNA indicates that pacificus is more
closely related to C. u. uropygialis.

Within Psarocolius, we recovered the same pattern of relation-
ships found by Price and Lanyon (2002a, 2002b, 2004a) but added
two species missing from previous studies.1 We found that the new-
ly sampled taxa, P. cassini and P. guatimozinus, are sister to one an-
other, that P. montezuma is sister to that pair, and that those three
taxa are sister to P. (bifasciatus) yuracares, all of which were placed
in the formerly-recognized Gymnostinops. The sister relationship
between Gymnostinops and P. viridis was a surprise when first discov-
ered (Price and Lanyon, 2004b), although song characteristics sup-
ported the alliance (Price and Lanyon, 2002b). Indeed, that result
has yet to be embraced by taxonomic authorities (e.g. Gill and Dons-
ker, 2012; Remsen et al., 2012), who still list P. viridis between the
much more distantly related P. atrovirens and P. decumanus. Diver-
gences among all these taxa are very shallow, but all nodes were
strongly supported. For the sake of clarity, we chose not to include
multiple representatives of P. decumanus and P. angustifrons, even
though both species contain divergent lineages (Price and Lanyon,
2002a, 2002b, 2004a). Both complexes require further investigation
and taxonomic revision. Some authorities have treated P. angustifrons
alfredi as a species (e.g. Sibley and Monroe, 1990), yet mitochondrial
DNA indicates that P. angustifrons atrocastaneus is even more
divergent from P. a. angustifrons than is P. angustifrons alfredi.

4.5. Orioles

The orioles, a group of small arboreal or shrub-dwelling icterids,
many with distinctive orange and black plumage patterns, repre-
sent the second-largest of the major clades within Icteridae,
yet all �33 species are classified in one genus, Icterus. The orioles
have been the subject of intensive systematic study (Omland
et al., 1999; Lovette et al., 2001; Allen and Omland, 2003; Sturge
et al., 2009; Jacobsen et al., 2010; Jacobsen and Omland, 2011),
including very thorough sampling at the subspecies level, and
use of both mitochondrial DNA and nuclear introns. These studies
have generally found high concordance between signals and re-
solved very short internodes (Jacobsen et al., 2010), but have also
uncovered instances of conflict between nuclear and mitochondrial
markers that are unlikely to be outcomes of incomplete lineage
sorting (Jacobsen and Omland, 2011). It seems that introgression
among the ancestors of a few species, some of which are presently
involved in different hybridization interactions, has complicated
the histories of their genomes.

Nuclear sampling in our study was limited to one representa-
tive from each of the three major clades within Icterus; conse-
quently, we did not have much opportunity to, nor did we,
encounter cases of conflict between nuclear and mitochondrial sig-
nals. Although our mitochondrial sampling was more extensive
than in previous studies, the pattern of relationships we recovered
was equivalent to, and no better resolved than, results of those
studies from which the data was largely derived (e.g. Omland
et al., 1999). We included I. jamacaii, the only oriole missing from
previous phylogenies, as a COX1 sequence from GenBank (Table 1),
s-level molecular phylogeny of the New World blackbirds (Icteridae). Mol.
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in hope of resolving its position among troupials, a group of orioles
unusual for their large size, white irides, and blue-colored bare skin
around the eyes. A closer relationship of I. icterus to I. croconotus
than to I. jamacaii received strong support under ML, but not using
Bayesian methods. If accurate, this placement is contrary to treat-
ment of I. croconotus as a subspecies of I. jamacaii in classifications
that recognize only two species of troupial (e.g. Sibley and Monroe,
1990). Inclusion of samples of I. cayanensis, I. chrysocephalus, and I.
pyrrhopterus in our study should not be interpreted as an endorse-
ment of resolving species limits within that complex (D’Horta
et al., 2008) to those taxa, but rather, was done to illustrate repre-
sentative divergences within it using names that appear in current
taxonomic lists and other references.

4.6. Grackles and allies

Grackles and allies compose the most taxonomically diverse of
the major clades within Icteridae despite the superficial similarity
of many species, especially those with all black plumage. Although
ours was more successful than any previous study, a definitive res-
olution of genus-level relationships within the clade remains elu-
sive, as neither whole mitochondrial genomes nor the nuclear
loci we sampled provided consistently robust support for all nodes.
Studies based on ND2 plus cytochrome b (e.g. Johnson and Lanyon,
1999; Eaton, 2006) found Nesopsar and Dives to be sequentially sis-
ter to all other grackles and allies, whereas in this study whole
mitochondrial genomes placed Nesopsar in a poorly-resolved basal
position relative to Agelaius, Molothrus, and a strongly-supported
Dives-Euphagus-Quiscalus plus South American endemics clade.
Although the finding of a sister relationship between the South
American clade and Dives-Euphagus-Quiscalus also received strong
support in combination with nuclear loci, it was dependent on the
signal from whole mitogenomes, and thus was novel to this study.
Nuclear loci (together) supported the Dives-Euphagus-Quiscalus
clade and a sister relationship between Nesopsar and Agelaius,
but the latter relationship conflicted with placement of Nesopsar
sister to the Dives-Euphagus-Quiscalus plus South American
endemics clade, as found with the 118-taxon full mitochondrial
dataset. As a consequence of those antagonistic signals, the Nesop-
sar-Agelaius pairing received inconsistent (48% ML bootstrap, 99%
Bayesian posterior probability) support in the combined dataset
analysis, as did monophyly of the remaining grackles and allies
(52%, 99%), thus yielding an imperfectly robust resolution of basal
relationships in the grackles and allies, the topology of which
(Fig. 4) is altogether unique to this study. Note that recovering that
topology was not dependent on placement of Nesopsar; in fact,
when it was excluded from the dataset, ML support for the mono-
phyly of all grackles and allies exclusive of Agelaius increased to
73% (from 52%). We cannot explain the apparently differing signals
contained in the nuclear and mitochondrial genomes of Nesopsar,
but we have ruled out effects of overall base composition (Powell
et al., 2013) or accelerated rates of replacement substitutions in
the mitochondrial genome.

Another goal of our study was to resolve robustly relationships
among the assemblage of species of the South American clade,
which is exceptional for its variety of plumage patterning, mor-
phology, habitat preferences, and reports of cooperative breeding
in many species (Fraga, 2008). The diversity of the group is re-
flected in its taxonomy—with 13 genera, eight of them monotypic,
its 19 species account for nearly half of all genera in Icteridae. We
sequenced nuclear loci from most species, but analyses of those se-
quences resolved only four nodes with strong support. Two of
those inferences were almost certainly erroneous because of the
following: they received strong support only with Bayesian analy-
sis of the concatenated dataset; they were not found, even with
weak support, in trees recovered with mitochondrial data, com-
Please cite this article in press as: Powell, A.F.L.A., et al. A comprehensive specie
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bined nuclear and mitochondrial data, or any species-tree analy-
ses; and they strongly contradicted a number of strongly-
supported relationships found in other analyses. The noise and
misleading signal from nuclear loci was substantial enough to nul-
lify the signal from ND2 plus cytochrome b sequences, yielding a
tree with a unique topology and only two strongly supported
nodes within the clade (Barker et al., 2013). By contrast, trees in-
ferred from ND2 plus cytochrome b alone (Johnson and Lanyon,
1999; Cadena et al., 2004; Eaton, 2006) had better support and
were topologically similar to our best inferences. We found that
whole mitochondrial genomes were able to resolve robustly most
nodes in the group, even in combination with the nuclear dataset
(though its inclusion weakened support values). The only case of
strongly supported agreement between those markers was the sis-
ter relationship between Xanthopsar and Pseudoleistes.

Apart from stronger support for many nodes (especially with
mitochondrial data; Fig. 1), the novel findings of this study with re-
spect to the South American clade include recovery of a Macroagel-
aius-Gymnomystax-Lampropsar-Hypopyrrhus clade and inclusion of
two species that were absent from previous molecular studies. As
expected, Macroagelaius subalaris was recovered as sister to M.
imthurni. By contrast, Curaeus forbesi did not group with C. curaeus
in any analyses, but rather defined its own long branch in a grade
between a strongly supported C. curaeus-Amblyramphus clade and
Gnorimopsar. Morphologically, C. curaeus, C. forbesi, and Gnorimop-
sar are similar—for example, they all have distinctively lanceolate
feathers, with robust and very shiny rachides, on and near the head
(but note that distantly-related Hypopyrrhus also has these traits)—
and forbesi has been mistaken for Gnorimopsar, both in the field
(Mazzoni et al., 2012) and in collections (Short and Parkes, 1979).
In a few analyses, we recovered C. forbesi as sister to Gnorimopsar
with very weak support, but mitochondrial data provided strong
support for the graded set of relationships described above. The
taxon clearly does not belong in Curaeus, so unless a wholesale tax-
onomic revision of the South American clade is undertaken to lump
most of the group into a single genus, it seems that naming C. forb-
esi to a new monotypic genus is in order; we propose renaming it
as Anumara forbesi (see Appendix A).

Elsewhere within the South American endemic clade, our re-
sults concur with past studies and so taxonomic revisions made
in the past decade remain appropriate, including assigning several
former Agelaius species to Agelasticus and Chrysomus (Lowther
et al., 2004). Taxonomies currently differ in the naming of Oreopsar,
either as Oreopsar badius or, following Lowther (2001), as Agelaio-
ides oreopsar, a usage that recognizes the sister relationship be-
tween that taxon and A. badius. That case, and the South
American clade in general, presents a challenge for taxonomists
who dislike placing species with distinctly different characteristics
(judged according to a subjective threshold) within the same
genus, but who also wish to avoid naming monotypic genera. Re-
sults of molecular phylogenetic studies have not led to reappraisals
of phenotypic similarity among the South American endemic spe-
cies, so unless a different standard is adopted to measure the utility
of generic naming, the taxonomy of the clade does seem an appro-
priate reflection of its diversity.

Another case in which taxonomic revision is in order is Dives
atroviolaceus, which we found sister to Quiscalus-Euphagus, not to
other Dives. Although exact placement of D. atroviolaceus relative
to Euphagus and Quiscalus was somewhat unstable, its closer rela-
tionship to one or both of those taxa than to Dives received strong
support. Consequently, D. atroviolaceus should be restored to its
former monotypic genus, Ptiloxena. Fraga (2011) adopted this
scheme based on behavioral characteristics and following the sug-
gestion of Webster (2003), who measured skeletal divergences
among species. Ironically (because it is in some ways opposite to
our finding despite leading to the same nomenclatural change),
s-level molecular phylogeny of the New World blackbirds (Icteridae). Mol.
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Webster (2003) argued for the distinctiveness of D. atroviolaceus,
and thus its renaming, based on its morphological divergence from
Quiscalus, and he suggested that the revised Dives and Quiscalus
were morphologically similar enough that they might be merged.
Quiscalus warrants additional phylogeographic study and revision
of species limits because several species contain deeply divergent
lineages (see Powell et al., 2008).

5. Uncited reference

Yang (2007).
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Appendix A

Anumara (new genus); Type species: Agelaeus forbesi P.L. Sclat-
er; Included taxa: monotypic; Etymology: this masculine name is a
formalization of the local Brazilian name, anumará, for the type
species (van Perlo, 2009; reported as arumará, per W.A. Forbes,
by Short and Parkes (1979)); Diagnosis: The genus is diagnosed
by characters of the type species, forbesi (see Sclater, 1886; Short
and Parkes, 1979). An icterid (Family Icteridae) with all-blackish
plumage, smaller than similar Curaeus curaeus and somewhat
smaller than Gnorimopsar chopi but like them in appearance with
respect to having lanceolate feathers, with robust and very shiny
rachides, on and around the head and neck region. Bill about as
long as head, with straight culmen, flattened on top (especially
above the nostrils). Mouth lining red (Jaramillo and Burke, 1999).
Wing short and rounded; primary projection 5–8 mm (Short and
Parkes, 1979). Tail graduated; outer retrices shorter than central
retrices by 12–18 mm (Short and Parkes, 1979). Song consists of
two unmusical buzzes (Jaramillo and Burke, 1999).

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ympev.2013.
11.009.
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