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Abstract

Food caching is a behavioural strategy used by a wide range of animals to store food for future use. When food is
stored, it is susceptible to environmental conditions that can lead to spoilage via microbial proliferation or physical
and chemical processes. Given that the nutrition gained from consuming cached food will almost always be less
than consuming it immediately upon capture, the degree of degradation will play a central role in determining the
ecological threshold at which caching is no longer profitable. Our framework proposes that the degree of
susceptibility among caching species is based primarily on the duration of storage, and the perishability of stored
food. We first summarize the degree of susceptibility of 203 vertebrate caching species. Thirty-eight percent (38%)
of these species are long-term cachers (>10 days) but only 2% are both long-term cachers and store highly
perishable food. We then integrate insights from the fields of applied food science and plant biology to outline
potential mechanisms by which climate change may influence food-caching species. Four climatic factors
(temperature, number of freeze-thaw events, deep-freeze events and humidity) have been shown to affect the
degradation of food consumed by humans and are also expected to influence the quality of perishable food
cached in the wild. Temperature and moisture are likely important factors influencing seemingly nonperishable
seeds. Although we are able to provide broad classifications for caching species at risk of climate change, an
improved understanding of how environmental conditions affect the quality and persistence of cached food may
allow us to better predict the impact of changing climatic conditions on the fitness of food-caching animals.
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Background
Evidence suggests that climate change is influencing a
wide range of biological phenomena, including species
distributions [33, 58, 99], population abundance [48, 54],
and rates of extinction [26, 73]. Such studies provide im-
portant documentation of the potentially serious impacts
of climate change on natural systems but, with few ex-
ceptions (e.g. [18, 120, 171, 178]), fail to identify the
proximate mechanisms by which climate change has in-
fluenced fitness and population growth rates [25] and,
by extension, community structure [108, 121, 172, 175].
Identifying proximate mechanisms is important for the
development of predictive frameworks, permitting an

evaluation of the susceptibility of different species to
long-term changes in the environment [19].
Here, we seek to develop such a framework for food-

caching animals by integrating insights from the fields of
food science and plant biology with knowledge of food-
caching behaviours and preferences. Food caching is a
widespread behavioural adaptation used primarily by
non-migratory species to store food for future use dur-
ing periods of low resource availability or uncertainty
[164]. Once a food item is cached, it is exposed to envir-
onmental conditions that can either maintain or degrade
its quality over time. Furthermore, the degree of degrad-
ation may also depend on a variety of factors, including
food type, the duration of exposure and the location
where food is stored. Although these factors are well stud-
ied in the field of food science, they have not been consid-
ered in the context of climate change and caching species.
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Our motivation for understanding the mechanisms be-
hind environmental degradation of cached food stems
from our long-term research on a declining population
of Gray Jays (Perisoreus canadensis) at the southern edge
of their range [32, 110, 155, 171, 176]. Gray Jays cache a
wide range of perishable food items during the late sum-
mer and fall and use this food for over-winter survival
and late-winter breeding [154]. Waite and Strickland
[171]) proposed that warmer fall temperatures may be
leading to the degradation of cached food, which then
carries over to influence breeding success. They pre-
sented some correlational support for the ‘hoard-rot
hypothesis’ but the effect of fall temperatures on repro-
ductive success was relatively small compared to the
steep population declines and there was only weak evi-
dence that fall temperatures increased over the period in
which Gray Jays declined. Additionally, a recent experi-
ment using simulated caches did not find a consistent
effect of warmer fall temperatures on food quality
[140]. Sechley et al. [140])) did, however, suggest that
temperature thresholds, such as the presence or ab-
sence of deep freeze events, could be driving observed
differences in the degree of food preservation over a
latitudinal gradient. These lines of evidence lead us to
speculate that (a) the persistence of stored food may
be influenced by more than a simple linear relation-
ship with temperature and (b) that a deeper under-
standing of how climate influences food quality may
be gained by drawing upon applied research related
to the degradation of food stored by humans.
Our three primary goals in this paper are to (1) place

the potential effects of climate change on cached food
quality in a broader context of the costs and benefits of
caching, (2) introduce a framework, based on variation
in caching behaviour across species and in the types of
food they store, for assessing their susceptibility to cli-
mate change and, (3) use insights from the fields of food
science and plant biology to identify environmental con-
ditions that could contribute to the degradation or pres-
ervation of cached food in the wild. We anticipate that
these new perspectives will stimulate future research on
a wider range of caching species and improve our ability
to understand the potential effects that climate change
may have on this subset of animals.

Relating the potential effects of climate change to
the costs and benefits of caching
To put the potential effects of climate change into a
broader context, we consider a simple cost-benefit equa-
tion [4] in which the fitness (considered here as nutri-
tional gain), F, of a caching species can be estimated by
F = Gp – C, where G is the fitness (or nutrition) gained
by eating a cached food item at a future date, p is the
probability that that food item is retrieved, and C is the

cost of deferring consumption of that food item (in
other words, the nutrition lost from not consuming it
upon capture). Andersson and Krebs [4]argued that, if
Gp > C, then caching would evolve. However, in theory
[this principle could also be used to assess how the costs
and benefits of caching may change over ecological time
and this will be particularly relevant under rapidly chan-
ging environmental conditions.
Of course, many species-specific factors will influence

G, p, and C. Past studies have primarily focused on de-
termining what drives p, for example, by quantifying the
frequency of conspecific and heterospecific competitors
pilfering cached food [81, 83, 167] and estimating the
cognitive ability of a species to recover stored food at a
future date [65, 105, 124, 125]. In most cases (particu-
larly for species that cache perishable food), the nutri-
tion gained from consuming a cached item will almost
always less than consuming it immediately upon acquisi-
tion and that this is due, in large part, to the degradation
of cached food over time. The rate at which a cached
food item will degrade is dependent on duration for
which it is stored and the type of food that is stored (see
detailed discussion in section below).
As an example, we use this equation to estimate the

effect of different climatic conditions on caching in Gray
Jays. To estimate G, we use data from Sechley et al.
[140] who determined the caloric value of mealworms
experimentally cached over a typical storage-retrieval
period (fall-winter) at two locations with different cli-
matic conditions. Mealworms are an appropriate food
item to use for estimating cached food degradation in
Gray Jays because this species only stores perishable
food, and arthropods constitute a significant portion of
their diet [154]. In the middle of the range in Cochrane
Ontario, where temperatures rarely go above freezing
beginning in November, mealworms retrieved in March
were an average of 0.977 kcal, whereas at the southern
edge of their range in Algonquin Park, where tempera-
tures are rarely below zero until November, the average
caloric value of mealworms stored over the same period
was 0.663 kcal. For p, we used estimates of cache re-
trieval from two nutcrackers (0.84; Nucifraga columbi-
ana; [160], Nucifraga caryocatactes; [70]). Similar to
Gray Jays, both species rely on cached food for both
over-winter survival and reproduction and, therefore,
likely have relatively accurate spatial memories [8] The
cost of caching, C, can be estimated as the energy it
takes an individual to cache a food item and find an add-
itional item that is of equal nutritional quality to the
item that was cached. Because the energetic cost of for-
aging is not known for Gray Jays, we estimated C by tak-
ing an estimate of the daily energetic requirement of an
individual Gray Jay (47 kcal; [141]) and multiplying it by
the proportion of the day an individual would take to
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find a new food item (24 hrs/10 min = 0.007) resulting in
C = 0.33 kcal. Using these values, the nutrition gained
from caching food at the more southern site is estimated
to be >50% lower (0.23 kcal) compared to the more
northern site (0.50 kcal). Given temperatures in
Algonquin were similar to the Cochrane as early as 1990
[139], this suggests that Gray Jays in Algonquin park
have experienced a significant decline in nutritional qual-
ity of cached food. Of course, these are crude estimates
but they do serve as an example of how this equation can
be used to assess the influence of environmental condi-
tions on nutritional benefits of caching.

Predicting the susceptibility of food-caching
species to climate change
Caching behaviour is widely distributed across 30 fam-
ilies of mammals and 15 families of birds and is believed
to have evolved independently numerous times within
each taxa [30, 57, 145, 164]. Given the repeated, inde-
pendent evolution of caching behaviour, it is perhaps no
surprise that there is also a wide diversity of caching be-
haviours and types of food that are cached ([164];
Table 1). We believe that the degree to which cached
food is influenced by climate change depends primarily
on three major axes of variation that we discuss in detail
below. In order of importance they are: 1) the duration
of time that food is stored, 2) the type of food that is
cached, and 3) the location where food is stored (Fig. 1).

Duration of food storage
Caching species can generally be divided into two classes
based on cache duration. The first is ‘short-term cachers’
that can be characterized by temporally overlapping and
episodic caching and recovery events [164]. These spe-
cies are primarily motivated by present and/or imminent
uncertainty in resource availability and will typically
cache food for no longer than 10 days before retrieval.
One type of caching species that falls into this class are
single-item-surplus cachers that cannot consume all of a
prey item in a single sitting and, therefore, attempt to
protect the remaining portion of food for future feeding
bouts (e.g. Tigers, Panthera tigris; [138]). A second type
of short-term cacher stores food to protect it from het-
erospecific and conspecific competitors. For example,
Leopards will bring carcasses into trees in order to pro-
tect their kills from Lions and Hyenas [35, 39]. Barbados
Green Monkeys (Cercopithecus aethiops) have been ob-
served to cache food for short periods of time in order
to prevent conspecific competitors from accessing
their food [15]. A third type of short-term cacher are
‘insurance’ cachers, such as parids [142] and mustelids
[146], who cache food items for hours or days as an
apparent hedge against present or imminent uncer-
tainty in the environment.

The second class of caching species is ‘long-term
cachers’ that are characterized by distinct, non-
overlapping storage and recovery periods that are >10
days but are more typically separated by two or more
seasons [164]. Long-term cachers store food as a re-
sponse to a certain lack of food in the future. Species in
this class typically engage in intense periods of caching,
usually in the late summer or fall [31, 66, 154, 164] and
are followed by intervals of limited resources (e.g. win-
ter) during which caches are retrieved. Food stored by
long-term cachers will be more susceptible to environ-
mental change simply because it is exposed to the envir-
onment for longer periods compared to food stored by
short-term cachers. Long-term storage also increases the
probability that food will be stored during transitional
periods between seasons that are characterized by large
fluctuations in environmental conditions that can nega-
tively affect food quality. For example, late summer and
fall storage exposes items to potentially damaging
freeze-thaw cycles as the year transitions into winter.
Latitude and altitude play an important role in deter-

mining the duration that food is stored, particularly for
long-term cachers. At high latitudes, periods of limited
resources are longer, which means more food must be
cached over a comparatively shorter time period [24, 123].
This could imply that populations at higher latitudes are
more susceptible to changing climatic conditions because
of the presumably higher reliance on cached food com-
pared to populations at lower latitudes. Similarly, along
elevation gradients, high elevation population could be at
greater risk due to an increased reliance on cached food
[168]. Climate warming could benefit caching species by
prolonging food availability during the storage season or
by reducing the length of low-resource periods in which
cached food is relied upon. Both of these examples high-
light how caching behaviour changes over temperature
gradients, thus, it will be important to consider how chan-
ging climatic patterns influence not only food once it is
cached, but also how it could influence caching decisions.

Type of food stored
A wide variety of food is cached by wild animals
[29, 145, 164, 166] and this variation will impact how
susceptibility it may be to climate change. At the broadest
level, the distinction can be made between perishable and
non-perishable food items. Food perishability is primarily
a function of its water content, which dictates not only
how food will respond to freezing temperatures but also
the growth rate of bacteria [64, 96, 102]. Although some
species store exclusively perishable (e.g. carnivores, such
as canids, felids and raptors; [27, 100], and Gray Jays;
[154]) or non-perishable (e.g. tree squirrels Sciurus spp.
and new world mice Peromyscus spp.); [104, 164]) food,
many other species store both types of food. For example,
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Table 1 A summary of caching behaviour of 203 vertebrates (adopted and updated from [164]). Caching behaviour includes
duration of food storage, the perishability and type of food cached, and the location where food is stored are included within the
table. In many cases, information on each of these three categories represent a ‘best estimate’, as much of the literature consists of
anecdotal reports or natural history observations. All species were assigned a susceptibility score from 1-9 based on variation in two
major aspects of caching behaviour: duration and food perishability (see text for details). Susceptibility to climate change was
predicted to be lowest for short-term cachers of low perishable food item (1) and highest for long-term cachers of perishable food
items (9). More research is needed to understand how location of storage may influence degradation of cached food and was,
therefore, not included in the susceptibility score

Species Duration Perishability Food cached Placement Susceptibility

Jackdaw S Low E, N, Mi, SM Arboreal Cavity 1

Corvus monedula

Red tree vole S Low WV Arboreal Cavity 1

Arborimus longicaudus

Black-capped chickadee S Low I, N, S Arboreal Surface 1

Parus atricapillus

Boreal chickadee S Low N, S Arboreal Surface 1

Parus hudsonicus

Brown-headed nuthatch S Low I, S Arboreal Surface 1

Sitta pusilla

Coal tit S Low I Arboreal Surface 1

Parus ater

Eurasian nuthatch S Low N, S Arboreal Surface 1

Sitta europaea

Marsh tit S Low S Arboreal Surface 1

Parus palustris

Pygmy nuthatch S Low I, S Arboreal Surface 1

Sitta pygmaea

Red-breasted nuthatch S Low N, S Arboreal Surface 1

Sitta canadensis

Siberian tit S Low S Arboreal Surface 1

Parus cinctus

Tufted titmouse S Low N, S Arboreal Surface 1

Parus bicolor

White-breasted nuthatch S Low N, S Arboreal Surface 1

Sitta carolinensis

Large Japanese field mouse S Low N, S Subterranean Ground 1

Apodemus speciosus

Mexican spiny pocket mouse S Low S Subterranean Ground 1

Liomys irroratus

Small Japanese field mouse S Low N, S Subterranean Ground 1

Apodemus argenteus

Wood mouse S Low N, S Subterranean Ground 1

Apodemus sylvaticus

Yellow-necked mouse S Low N, S Subterranean Ground 1

Apodemus flavicollis

Fish crow S Mixed Mi Arboreal Surface 2

Corvus ossifragus

African striped weasel S High Ca, SM Arboreal Cavity 3
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Table 1 A summary of caching behaviour of 203 vertebrates (adopted and updated from [164]). Caching behaviour includes
duration of food storage, the perishability and type of food cached, and the location where food is stored are included within the
table. In many cases, information on each of these three categories represent a ‘best estimate’, as much of the literature consists of
anecdotal reports or natural history observations. All species were assigned a susceptibility score from 1-9 based on variation in two
major aspects of caching behaviour: duration and food perishability (see text for details). Susceptibility to climate change was
predicted to be lowest for short-term cachers of low perishable food item (1) and highest for long-term cachers of perishable food
items (9). More research is needed to understand how location of storage may influence degradation of cached food and was,
therefore, not included in the susceptibility score (Continued)

Poecilogale albinucha

Barn owl S High SM Arboreal Cavity 3

Tyto alba

Elf owl S High I Arboreal Cavity 3

Micrathene whitneyi

Schreech owl S High SM Arboreal Cavity 3

Otus asio

American kestrel S High Bi, Re, SM Arboreal Surface 3

Falco sparverius

Barred owl S High SM Arboreal Surface 3

Strix varia

Bat falcon S High Ba, Bi Arboreal Surface 3

Falco rufigulais

Boreal owl S High SM Arboreal Surface 3

Aegolius funereus

Broad-winged hawk S High Bi Arboreal Surface 3

Buteo platypterus

Buzzard S High SM Arboreal Surface 3

Buteo buteo

Crowned eagle S High MM Arboreal Surface 3

Stephanoaetus coronatus

Eagle owl S High Bi Arboreal Surface 3

Bubo bubo

Eleonora's falcon S High Bi Arboreal Surface 3

Falco eleonarae

Eurasian pygmy owl S High Bi, SM Arboreal Surface 3

Glaucidium passerinum

European kestrel S High SM Arboreal Surface 3

Falco tinnunculus

Goshawk S High Bi, SM Arboreal Surface 3

Accipiter gentilis

Great horned owl S High SM, MM Arboreal Surface 3

Bubo virginianus

Leopard S High LM, MM Arboreal Surface 3

Panthera pardus

Little owl S High Bi, SM Arboreal Surface 3

Athene noctua

Merlin S High Bi, SM Arboreal Surface 3
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Table 1 A summary of caching behaviour of 203 vertebrates (adopted and updated from [164]). Caching behaviour includes
duration of food storage, the perishability and type of food cached, and the location where food is stored are included within the
table. In many cases, information on each of these three categories represent a ‘best estimate’, as much of the literature consists of
anecdotal reports or natural history observations. All species were assigned a susceptibility score from 1-9 based on variation in two
major aspects of caching behaviour: duration and food perishability (see text for details). Susceptibility to climate change was
predicted to be lowest for short-term cachers of low perishable food item (1) and highest for long-term cachers of perishable food
items (9). More research is needed to understand how location of storage may influence degradation of cached food and was,
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Falco columbarius

New Zealand falcon S High Bi Arboreal Surface 3

Falco novaehollandiae

Northern hawk owl S High SM Arboreal Surface 3

Surnia ulula

Northern pygmy owl S High SM Arboreal Surface 3

Glaucidium gnoma

Northern shrike S High Bi, SM Arboreal Surface 3

Lanius excubitor

Orange-breasted falcon S High Ba Arboreal Surface 3

Falco deiroleucus

Peregrine falcon S High Bi Arboreal Surface 3

Falco peregrinus

Prairie falcon S High Bi Arboreal Surface 3

Falco mexicanus

Prevost's squirrel S High Fr Arboreal Surface 3

Callosciurus prevosti

Saw-whet owl S High SM Arboreal Surface 3

Aegolius acadicus

South island robin S High I Arboreal Surface 3

Petroica australis

Sparrowhawk S High Bi, SM Arboreal Surface 3

Accipiter nisus

Tawny owl S High SM Arboreal Surface 3

Strix aluco

African wild dog S High LM, MM Ground Surface 3

Lycaon pictus

Barbados green monkey S High Fr Ground Surface 3

Cercopithecus aethiops

Black bear S High Ca, MM, SM Ground Surface 3

Ursus americanus

Black-backed jackal S High LM, SM, MM Ground Surface 3

Canis mesomelus

Black-billed magpie S High Ca, E, N, Mi Ground Surface 3

Pica pica

Bobcat S High MM, SM Ground Surface 3

Lynx rufus

Brown bear S High Ca, LM, MM Ground Surface 3
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Table 1 A summary of caching behaviour of 203 vertebrates (adopted and updated from [164]). Caching behaviour includes
duration of food storage, the perishability and type of food cached, and the location where food is stored are included within the
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Ursus arctos

Canadian lynx S High MM, SM Ground Surface 3

Lynx canadensis

Carrion crow S High Ca Ground Surface 3

Corvus corone

Common crow S High A, E, Fi, N, SM Ground Surface 3

Corvus brachyrhynchos

Common raven S High Ca, E, Mi, SM Ground Surface 3

Corvus corax

Coyote S High LM, SM, MM Ground Surface 3

Canis latrans

European lynx S High MM, SM Ground Surface 3

Lynx lynx

Fennec fox S High E, MM, SM Ground Surface 3

Vulpes zerda

Fisher S High Bi, MM, SM Ground Surface 3

Martes pennanti

Golden jackal S High LM, SM, MM Ground Surface 3

Canis aureus

Lion S High LM, MM Ground Surface 3

Panthera leo

MacGregor's bowerbird S High Fr Ground Surface 3

Amblyornis macgregoriae

Mink S High Bi, MM, SM Ground Surface 3

Mustela vison

Mountain lion S High LM, MM Ground Surface 3

Felis concolor

Northwestern crow S High Fi, I Ground Surface 3

Corvus caurinus

Pine marten S High Bi, Ca, MM, SM Ground Surface 3

Martes martes

Polar bear S High LM, MM Ground Surface 3

Ursus maritimus

Snowy owl S High MM, SM Ground Surface 3

Nyctea scandiaca

Tiger S High LM, MM Ground Surface 3

Panthera tigris

Wolf S High LM, SM, MM Ground Surface 3
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Table 1 A summary of caching behaviour of 203 vertebrates (adopted and updated from [164]). Caching behaviour includes
duration of food storage, the perishability and type of food cached, and the location where food is stored are included within the
table. In many cases, information on each of these three categories represent a ‘best estimate’, as much of the literature consists of
anecdotal reports or natural history observations. All species were assigned a susceptibility score from 1-9 based on variation in two
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predicted to be lowest for short-term cachers of low perishable food item (1) and highest for long-term cachers of perishable food
items (9). More research is needed to understand how location of storage may influence degradation of cached food and was,
therefore, not included in the susceptibility score (Continued)

Canis lupus

Arctic shrew S High I Subterranean Ground 3

Sorex arcticus

Badger S High Ca, MM, SM Subterranean Ground 3

Taxidea taxus

Burrowing owl S High I, R Subterranean Ground 3

Athene cunicularia

European mole S High I Subterranean Ground 3

Talpa europaea

Least weasel S High SM Subterranean Ground 3

Mustela nivalis

Long-tailed weasel S High SM Subterranean Ground 3

Mustela frenata

Masked shrew S High I Subterranean Ground 3

Sorex cinereus

Mole-rat S High B, V Subterranean Ground 3

Spalax leucodon

Pygmy shrew S High I Subterranean Ground 3

Microsorex hoyi

Short-tailed weasel S High SM Subterranean Ground 3

Mustela erminea

Siberian mole S High I Subterranean Ground 3

Talpa altaica

Water shrew S High A, I, SM Subterranean Ground 3

Sorex palustris

Spotted hyena S High LM, MM Water 3

Crocuta crocuta

Heather vole Mixed Low WV Arboreal Surface 4

Phenacomys intermedius

Eastern gray squirrel Mixed Low N, S, Mi Ground Surface 4

Sciurus carolinensis

Eurasian red squirrel Mixed Low Co, N, S Ground Surface 4

Scirus vulgaris

Fox squirrel Mixed Low N, S Ground Surface 4

Sciurus niger

Great basin pocket mouse Mixed Low S Ground Surface 4

Perognathus parvus

Hispid pocket mouse Mixed Low S Ground Surface 4
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Perognathus hispidus

Japanese squirrel Mixed Low Co Ground Surface 4

Sciurus lis

Little pocket mouse Mixed Low S Ground Surface 4

Perognathus longimembris

Long-tailed pocket mouse Mixed Low S Ground Surface 4

Perognathus formusus

Plains pocket mouse Mixed Low S Ground Surface 4

Perognathus flavescens

Red-tailed squirrel Mixed Low N Ground Surface 4

Sciurus granatensis

Rock pocket mouse Mixed Low S Ground Surface 4

Perognathus intermedius

Tassel-eared squirrel Mixed Low N, S, Mu Ground Surface/Arboreal Surface 4

Sciurus aberti

Alaska ground squirrel Mixed Low S, V Subterranean Ground 4

Spermophilus undulatus

Arctic ground squirrel Mixed Low S, V Subterranean Ground 4

Spermophilus parryii

Botta's pocket gopher Mixed Low S Subterranean Ground 4

Thomomys bottae

Djungarian hamster Mixed Low N, S Subterranean Ground 4

Phodopus sungorus

Golden-mantled ground squirrel Mixed Low N, S Subterranean Ground 4

Spermophilus lateralis

Lesser bandicoot rat Mixed Low N, S, T Subterranean Ground 4

Bandicota bengalensis

Mountain pocket gopher Mixed Low V Subterranean Ground 4

Thomomys monticola

Muskrat Mixed Low B, R, T, V Subterranean Ground 4

Ondatra zibethicus

Northern pocket gopher Mixed Low R, T Subterranean Ground 4

Thomomys talpoides

Pouched mouse Mixed Low N, S Subterranean Ground 4

Saccostomus campestris

Richardson ground squirrel Mixed Low S, V Subterranean Ground 4

Spermophilus richardsonii

Rock squirrel Mixed Low N, S Subterranean Ground 4
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Table 1 A summary of caching behaviour of 203 vertebrates (adopted and updated from [164]). Caching behaviour includes
duration of food storage, the perishability and type of food cached, and the location where food is stored are included within the
table. In many cases, information on each of these three categories represent a ‘best estimate’, as much of the literature consists of
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major aspects of caching behaviour: duration and food perishability (see text for details). Susceptibility to climate change was
predicted to be lowest for short-term cachers of low perishable food item (1) and highest for long-term cachers of perishable food
items (9). More research is needed to understand how location of storage may influence degradation of cached food and was,
therefore, not included in the susceptibility score (Continued)

Spermophilus variegatus

Syrian golden hamster Mixed Low S, R, T Subterranean Ground 4

Mesocricetus auratus

Thirteen-lined ground squirrel Mixed Low S, V Subterranean Ground 4

Spermophilus tridecemlineatus

Desert woodrat Mixed Mixed V Ground Surface 5

Neotoma lepida

Eastern woodrat Mixed Mixed V Ground Surface 5

Neotoma floridana

White-throated woodrat Mixed Mixed V Ground Surface 5

Neotoma albigula

Bushy-tailed woodrat Mixed Mixed V Subterranean Ground 5

Neotoma cinerea

Mexican woodrat Mixed Mixed S, V Subterranean Ground 5

Neotoma mexicana

Mountain beaver Mixed High V Subterranean Ground 6

Aplodontia rufa

Arctic fox Mixed High E, MM, SM Ground Surface 6

Alopex lagopus

Red fox Mixed High Bi, E, MM, SM Ground Surface 6

Vulpes vulpes

Short-tailed shrew Mixed High A, Fi, I, SM Subterranean Ground 6

Blarina brevicauda

Agouti L Low N, S Ground Surface 7

Dasyprocta punctata

Alipne chipmunk L Low N, S Ground Surface 7

Tamias alpinus

Blue jay L Low N, Mi, S Ground Surface 7

Cyanocitta cristata

Clark's nutcracker L Low S Ground Surface 7

Nucifraga columbiana

Cliff chipmunk L Low N, S Ground Surface 7

Tamias dorsalis

Eastern chipmunk L Low I, N, S Ground Surface 7

Tamias striatus

Eurasian jay L Low Co, N, S Ground Surface 7

Garrulus glandarius

Eurasian nutcracker L Low S Ground Surface 7
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Nucifraga caryocatactes

Flat-headed vole L Low V Ground Surface 7

Alticola strelzowi

Green achouti L Low N, S Ground Surface 7

Myoprocta acouchi

Least chipmunk L Low N, S Ground Surface 7

Tamias minimus

Lodgepole pine chipmunk L Low N, S Ground Surface 7

Tamias speciosus

North American pika L Low V Ground Surface 7

Ochotona princeps

Pinyon jay L Low N, S Ground Surface 7

Gymnorhinus cyanocephlus

Red achouchi L Low N, S Ground Surface 7

Myoprocta exilis

Red-tailed chipmunk L Low N, S Ground Surface 7

Tamias ruficaudus

Western scrub jay L Low N, S Ground Surface 7

Aphelocoma coerulescens

Siberian chipmunk L Low N, S Ground Surface 7

Tamias sibiricus

Siberian pika L Low V Ground Surface 7

Ochotona alpina

Steller's jay L Low N, Mi, S Ground Surface 7

Cyanocitta stelleri

Yellow pine chipmunk L Low N, S Ground Surface 7

Tamias amoenus

Douglas’squirrel L Low Co, Mu, S Ground Surface/Arboreal Surface 7

Tamiasciurus douglasii

Red squirrel L Low Co, Mu, S Ground Surface/Arboreal Surface 7

Tamiascurus hudsonicus

African giant rat L Low N, S, T Subterranean Ground 7

Cricetomys gambianus

Alaska vole L Low V Subterranean Ground 7

Microtus miurus

Bank vole L High V (Lichen) Arboreal Cavity/Surface 7

Clethrionomys glareolus

Banner-tailed kangaroo rat L Low S Subterranean Ground 7
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Table 1 A summary of caching behaviour of 203 vertebrates (adopted and updated from [164]). Caching behaviour includes
duration of food storage, the perishability and type of food cached, and the location where food is stored are included within the
table. In many cases, information on each of these three categories represent a ‘best estimate’, as much of the literature consists of
anecdotal reports or natural history observations. All species were assigned a susceptibility score from 1-9 based on variation in two
major aspects of caching behaviour: duration and food perishability (see text for details). Susceptibility to climate change was
predicted to be lowest for short-term cachers of low perishable food item (1) and highest for long-term cachers of perishable food
items (9). More research is needed to understand how location of storage may influence degradation of cached food and was,
therefore, not included in the susceptibility score (Continued)

Dipodomys spectabilis

Black-bellied hamster L Low T, V Subterranean Ground 7

Cricetus cricetus

Brandt's vole L Low V, WV Subterranean Ground 7

Microtus brandti

California ground squirrel L Low S, V Subterranean Ground 7

Spermophilus beecheyi

Cape mole-rat L Low B, R, T Subterranean Ground 7

Georychus capensis

Cape dune mole-rat L Low T Subterranean Ground 7

Bathyergus suillus

Common mole-rat L Low B Subterranean Ground 7

Cryptomys hottentotus

Common vole L Low B Subterranean Ground 7

Microtus arvalis

Coruro L Low B, T Subterranean Ground 7

Spalacopus cyanus

Daurian pika L Low V Subterranean Ground 7

Ochotona daurica

Deer mouse L Low S Subterranean Ground 7

Peromyscus maniculatus

Desert kangaroo rat L Low S Subterranean Ground 7

Dipodomys deserti

Diurnal sand rat L Low S, V Subterranean Ground 7

Psammomys obesus

Edible doormouse L Low B, N, S Subterranean Ground 7

Myoxus glis

Forest dormouse L Low Co, S Subterranean Ground 7

Dryomys nitedula

Giant kangaroo rat L Low S Subterranean Ground 7

Dipodomys ingens

Great basin kangaroo rat L Low S Subterranean Ground 7

Dipodomys microps

Greater long-tailed hamster L Low V Subterranean Ground 7

Cricetulus triton

Hazel doormouse L Low Co, N, S Subterranean Ground 7

Muscardinus avellanarius

Heermann's kangaroo rat L Low S Subterranean Ground 7
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Table 1 A summary of caching behaviour of 203 vertebrates (adopted and updated from [164]). Caching behaviour includes
duration of food storage, the perishability and type of food cached, and the location where food is stored are included within the
table. In many cases, information on each of these three categories represent a ‘best estimate’, as much of the literature consists of
anecdotal reports or natural history observations. All species were assigned a susceptibility score from 1-9 based on variation in two
major aspects of caching behaviour: duration and food perishability (see text for details). Susceptibility to climate change was
predicted to be lowest for short-term cachers of low perishable food item (1) and highest for long-term cachers of perishable food
items (9). More research is needed to understand how location of storage may influence degradation of cached food and was,
therefore, not included in the susceptibility score (Continued)

Dipodomys heermanni

Indian gerbil L Low S, V Subterranean Ground 7

Tatera indica

Meadow vole L Low R Subterranean Ground 7

Microtus pennsylvanicus

Merriam's kangaroo rat L Low S Subterranean Ground 7

Dipodomys merriami

Mexican jay L Low N, S Ground Surface 7

Aphelocoma ultramarina

Mid-day gerbil L Low N, S, T, V Subterranean Ground 7

Meriones meridianus

Mole-rat L Low B, R, T, V Subterranean Ground 7

Spalax microphthalmus

Mole vole L Low B, T Subterranean Ground 7

Ellobius talpinus

Mountain pygmy possum L Low N, S Subterranean Ground 7

Burramys parvus

Namaqua gerbil L Low S Subterranean Ground 7

Desmodillus auricularis

Nothern grasshopper mouse L Low S Subterranean Ground 7

Onychomys leucogaster

Pale kangaroo mouse L Low S Subterranean Ground 7

Microdipodops pallidus

Pallas’ pika L Low V Subterranean Ground 7

Ochotona pallasi

Plains pocket gopher L Low B, T Subterranean Ground 7

Geomys bursarius

Prairie vole L Low S Subterranean Ground 7

Pitmys ochrogaster

Reddish-gray vole L Low V Subterranean Ground 7

Clethrionomys rufocanus

Rook L Low Co, N, S Ground Surface 7

Corvus frugilegus

Santa Cruz kangaroo rat L Low S Subterranean Ground 7

Dipodomys venustus

Social vole L Low B, R Subterranean Ground 7

Microtus socialis

Southeastern pocket gopher L Low B, T Subterranean Ground 7

Geomys pinetis
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herbivores, such as Collared Pikas (Ochotona collaris),
and Agoutis (Dasyprocta punctata) have been docu-
mented to store both non-perishable nuts, and seeds, and
perishable fruit [38, 71, 92, 134, 165].
Below, we discuss how the field of food science can

be used to develop an understanding of conditions
that maintain and degrade perishable food items. Al-
though there are few studies in food science that
examine the influence of the environment on seeds
and nuts, we also discuss how the field of plant biol-
ogy may offer some insight into how variation in cli-
mate could influence germination rates and reduce
the functional quality of stored seeds.

Location of food storage
With the exception of Beavers (Castor canadensis and
Castor fiber) and Spotted Hyenas (Crocuta crocuta)
which cache food in water, caching species store food in
two types of locations: in the ground or in trees [164].
When food is stored below ground it will tend to be
more buffered from environmental conditions compared
to food that is stored above ground. For example, when
air temperatures are below zero, temperatures remained
above freezing in underground burrows of Alpine
Marmots (Marmota marmot; [5]). When food is stored
during the temperate zone winter, snow accumulation of
30-40 cm can decouple soil and air temperature [156].

Table 1 A summary of caching behaviour of 203 vertebrates (adopted and updated from [164]). Caching behaviour includes
duration of food storage, the perishability and type of food cached, and the location where food is stored are included within the
table. In many cases, information on each of these three categories represent a ‘best estimate’, as much of the literature consists of
anecdotal reports or natural history observations. All species were assigned a susceptibility score from 1-9 based on variation in two
major aspects of caching behaviour: duration and food perishability (see text for details). Susceptibility to climate change was
predicted to be lowest for short-term cachers of low perishable food item (1) and highest for long-term cachers of perishable food
items (9). More research is needed to understand how location of storage may influence degradation of cached food and was,
therefore, not included in the susceptibility score (Continued)

Spiny pocket mouse L Low Fr, N, S Subterranean Ground 7

Heteromys desmarestianus

Taiga vole L Low V Subterranean Ground 7

Microtus xanthognathus

Tamarisk gerbil L Low N, S, T, Subterranean Ground 7

Meriones tamariscinus

Tree mouse L Low S, N Subterranean Ground 7

Beamys major

White-footed mouse L Low N, S Subterranean Ground 7

Peromyscus leucopus

American beaver L Mixed V, WV Water 8

Castor canadensis

Dusky-footed woodrat L Mixed N, S, V Subterranean Ground 8

Neotoma fuscipes

Eurasian beaver L Mixed V, WV Water 8

Castor fiber

Bull-headed shrike L High Bi, I, SM Arboreal Surface 9

Lanius bucephalus

Gray jay L High Ca, Fr, I, Mi Arboreal Surface 9

Perisoreus canadensis

Siberian jay L High Ca, Fr, I Arboreal Surface 9

Perisoreus infaustus

Wolverine L High LM, MM Ground Surface 9

Gulo gulo

Legend: A amphibian, B bulb, Ba bat, Bi bird, Ca carrion, Co cone, E eggs, Fi fish, Fr fruit, I invertebrates, LM large mammal, N nuts, Mi miscellaneous human foods,
MM medium mammal, Mu mushroom, R roots, Re reptiles, S seeds, SM small mammal, T tuber, V vegetation, WV woody vegetation. Note that mammal
classifications are based off of Vander Wall [164]
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In contrast, when food is cached above ground, it is
more likely to be directly exposed to environmental con-
ditions. For example, White-breasted Nuthatches (Sitta
carolinensis) store food caches in exposed bark crevices
on the trunk and limbs of trees [75, 116, 179], while Jays
of the genus Perisoreus cache food under pieces of bark
or lichen on branches [36, 154]. Other species, such as
Leopards, leave food items conspicuously on branches
where it is difficult for competitors, such as Lions and
Spotted Hyenas, to access them ([35], Eltringham SK.
The ecology and conservation of large African mammals.
[39]). In contrast, some species, such as Boreal Owls
(Aegolius funereus), store food in tree cavities [79], which
likely offers greater protection from environmental condi-
tions compared to food stored on the exterior of a tree.
Regardless of whether species store above or below

ground, some species may also exploit different micro-
habitats. For example, Banner-tailed Kangaroo Rats
(Diopdomys spectabilis) store food in multiple chambers
within their complex subterranean burrows [134].
Storage chambers can vary in both humidity and
temperature, resulting in differential microbial activity
between chambers [133]. Banner-tailed Kangaroo Rats
prefer seeds with intermediate levels of mould and,
therefore, exploit differences in microhabitats by moving

seeds with high mould levels to low humidity chambers,
and seeds with low mould levels to high humidity cham-
bers [133]. Differences in cache placement (subterranean
burrows, ground surface, tree cavities and tree surfaces)
mean that food items will be exposed to different cli-
matic conditions, which could lead to variation in the
degree of degradation. It is clear that additional research
is required to better understand the extent to which ex-
posure to environmental conditions differ between cach-
ing locations.

Summary of trends and susceptibility estimates
We compiled a list of 203 caching species for which
there is information on both the duration of storage and
perishability of cached food (Table 1). From this infor-
mation, we developed a susceptibility score for each spe-
cies using a hierarchical classification system. Species
were first divided into three categories based on the dur-
ation of food storage (short, mixed or long) and then,
within each of these three categories, further divided
into three groups according to the degree of perishability
of cached food (low, mixed or high). We considered
what are typically called ‘non-perishable’ food (nuts,
seeds) as low perishability because climate may influence
germination rates (see food science and plant biology

Fig. 1 Three axes hypothesized to influence the susceptibility of caching species to climate change with examples from species. Duration is the
length of time that a food item is stored, perishability is how susceptible a food item is to microbial degradation and location is where food is
stored. The latter falls under four categories ranging from high (arboreal) to low (subterranean) susceptibility. Each line represents the variation
within a species on a particular axes with the thickness of a line representing the primary place in which a species falls along a given axis. For
example, Gray Jays store perishable food but this storage can range from weeks to months. Green represents Gray Jays, blue represents Eurasian
Jays and orange represents Red Squirrels. Illustrations by A. Gubbe
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discussions below). For both storage duration and per-
ishability, species were defined as ‘mixed’ when there
was evidence in the literature for both ‘high’ and ‘low’
storage duration or perishability. This classification cre-
ated nine possible categories, [1] short-term, low-
perishability, [2] short-term, mixed-perishability, [3]
short-term, high-perishability, [4] mixed duration, low-
perishability, [5] mixed duration, mixed-perishability, [6]
mixed duration, high-perishability, [7] long-term, low-
perishability, [8] long-term, mixed perishability, and [9]
long-term, high-perishability food. High scores represent
the greatest predicted susceptibility to climate change.
Storage location was not used to determine susceptibility
scores because there is not yet enough empirical evi-
dence about how food cached at these different locations
(e.g. subterranean vs. arboreal surface) is influenced by
environmental conditions.
Because of the short-term nature of their caching be-

haviour, the largest proportion of caching species (44%)
were assigned to the three lowest susceptibility scores
(1-3). Of the 38% of species in the three highest sus-
ceptibility categories (score of 7-9), 91% relied on
low-perishability food (score of 7). Seven percent (7%)
stored both high- and low-perishability food and only
2% (four species: the Bull-headed Shrike Lanius buse-
phalus, Gray Jay, Siberian Jay Perisoreus infaustus and
Wolverine Gulo gulo) were both long-term cachers
and relied exclusively on high-perishability food (sus-
ceptibility score of 9). Population declines at the
southern edge of ranges have already been docu-
mented for both Gray Jays [171] and Wolverines [6]
and studies on both of these species also suggest that
climate change could be contributing to population
declines [62, 139, 171].
A smaller proportion of species (18%) were classified

as mixed duration cachers (e.g. Artic Foxes, Alopex lago-
pus and Red Foxes,Vulpes vulpes, susceptibility scores of
6). The reason why some species are classified as mixed
duration cachers may partly reflect geographic differ-
ences in caching behaviour within a species [43, 90,
168]. However, most species or populations likely cache
a variety of food items with different degrees of perish-
ability (Fig. 1). In such cases, food that is more perish-
able may also be of higher nutritional value (e.g. meat),
which implies that species in this category may be more
susceptible to climate change than we have estimated
here. Nevertheless, it is clear that, for many species,
more information is required to quantify how long
food is stored, as well as the proportion of specific
food items that are stored and their degree of perish-
ability. Such information will improve our estimates
of susceptibility and will, therefore, be important for
understanding how climate change could influence
their abundance.

Integrating concepts from food science to
understand the susceptibility of perishable food
to climate change
Understanding how environmental conditions influence
food quality is a major focus of the field of food science
[107, 122]. A number of conditions have been identified
that can degrade or preserve a wide range of perishable
food consumed by humans [16, 86, 97, 107]. At the
most general level, food can be degraded in three
ways. First, even in the complete absence of bacteria
or fungi, food may lose nutritional quality through a
breakdown in structure due to a number of physical
and chemical processes [10, 16]. Second, microbial
proliferation in food leads to losses of the nutrients
and energy originally available to non-microbial com-
petitors (e.g., humans) as these resources are diverted
into the growth of indigestible bacteria [51, 59, 60].
Third, even when food still contains energy and nutri-
ents potentially useful to non-microbes, these re-
sources may be rendered inaccessible as many
bacteria (e.g., Staphylococcus aureus and Clostridium
botulinum) produce toxins or noxious substances that
induce vomiting, diarrhea or otherwise render food
inedible for humans [51, 52]. Although spoilage is
fundamentally different from the physical or microbial
degradation of a food item, in nature the three pro-
cesses can be considered tightly linked. For example,
the physical degradation of a food item (e.g. through
freeze-thaw cycles) may accelerate microbial prolifera-
tion, which could then enhance the production of
toxins that render food inedible. Thus, these pro-
cesses will likely have to be considered together as
they will be difficult to separate in the wild. Here, we
focus on four classes of environmental factors that
are recognized to influence perishable food stored by
humans and that we believe are relevant to natural
systems.

Temperature
Temperature has long been the subject of study in the
field of food science because it influences microbial
growth, with different temperature thresholds respon-
sible for facilitating or inhibiting microbial growth de-
pending on the food item and species of bacteria [107].
Generally, warm temperatures act to facilitate microbial
growth, whereas cold temperatures inhibit growth [23].
Humans have manipulated temperature for centuries to ex-
tend the duration for which food can be stored [107, 151].
Lowering temperature is extremely effective because it acts
to retard microbial growth across a range of food groups,
such as meat, fruit and vegetative matter [22, 23, 129].
Many studies have investigated the relationship be-

tween temperature and microbial growth (e.g. [9, 20, 21,
49, 184]). Zwietering et al. [184] focused on modelling
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the relationship between temperature and bacterial
growth rate. Simple models, including a linear relation-
ship between temperature and growth rate and constant
growth at all temperatures were not supported. Instead,
the best fitting models were derived from a square root
model originally proposed by Ratkowsky et al. [131]. Part
of the reason why simpler models show a lack of fit is
that asymptotes exist to bacterial growth, particularly at
extreme temperatures [184]. These studies also highlight
the importance of both bacterial species and the food
substrate in determining rates of bacterial growth at dif-
ferent temperatures. For example, Bovill et al. [21] dem-
onstrated that the proliferation of Listeria monocytogenes
and Salmonella spp. at the same temperature depended
on substrate (milk vs. broth vs. meat) and bacteria spe-
cies. This dependence is likely the result of competition
between the existing bacterial flora of a food item and
novel bacteria [119]. In natural systems, local bacterial
communities could prevent additional harmful bacteria
from colonizing a food item, preventing food spoilage
due to the accumulation of noxious substances.
The majority of studies on the effects of climate

change in wild animal populations have focused on the
effect of temperature (e.g. [40, 77]) and temperature is
certainly the most common environmental predictor
variable used in studies of caching species as well (e.g.
[106, 171]). The advantage is that temperature is the
most commonly recorded long-term environmental vari-
able and, where it is not recorded, several models are
available to estimate past temperature values on either a
monthly or annual basis [94]. Using mean temperature
values over a specific time period is clearly convenient,
but we argue, perhaps not always the only ecologically
relevant factor for caching animals because it may not
capture other environmental conditions that are associ-
ated with different mechanisms known to influence the
quality of stored food.

Deep freezing
It may be useful to separate deep freeze from the general
effects of temperature because it represents a specific
threshold below which microbial growth is halted rather
than simply retarded. The specific temperature associ-
ated with a deep freeze event will depend on the mi-
crobe in question as cold tolerance varies across species
[69]. As microbial activity is a major cause of food spoil-
age, stopping this process to preserve food over long
time periods has been a major focus in the field of food
science [17, 41]. One study suggested that temperatures
as low as -55°C represent ideal storage conditions for
meat [55] because enzymatic reactions and oxidative
rancidity cease completely, removing most of the key
processes that would degrade food quality [182]. How-
ever, temperatures do not necessarily need to be this

extreme to halt microbial activity over time. A number
of studies have found that bacteria and fungi on frozen
food generally cease growth at -8°C [45] and other re-
search has provided evidence that the growth of some
microbes halts at around -12°C [42, 98].
Perhaps more importantly, deep freeze events can also

cause cell death or injury to microbial cells [113]. If mi-
crobes are killed when exposed to deep freeze tempera-
tures, it means that subsequent degradation will occur at
a slower rate, as fewer bacteria will be present to deplete
nutritional resources or render a food item inedible
through spoilage when temperatures increase [91, 174].
However, if not all bacteria are killed, deep freeze events
can also act as a selection agent to promote cold toler-
ance [174]. Many bacterial species can also enter a ‘vi-
able but nonculturable’ (VBNC) state, characterized by a
large reduction in metabolic activity in response to ex-
treme temperatures and other environmental stressors
[74, 113]. Once in the VBNC state, bacteria remain dor-
mant until conditions facilitate resuscitation. Some stud-
ies suggest that an increase in temperature can result in
resuscitation of cells in the VBNC state [114, 115, 177].
This highlights the importance of understanding the
relationship between temperature and the activity of mi-
crobes present on cached food. In particular, under-
standing relevant thresholds that inhibit bacterial growth
or kill bacteria will be key to interpreting the influence
of climatic variables on food quality over time.
For caching species, deep freeze events could play a

significant role in preserving the quality of stored food,
in particular for species that store food for use over the
winter. For example, in a study of the caloric content of
simulated Gray Jay caches at three different latitudes in
Ontario, Canada, Scheley et al. [139] found that the
mass loss and caloric content of cached food (meal-
worms and raisins) was similar between low- and mid-
latitude sites even though these sites differed in mean
fall temperatures. However, food caches from the high-
latitude site lost less weight and caloric content, leading
Scheley et al. [139] to speculate that ‘deep freeze’ events
may be driving this pattern as the high-latitude site was
the only site that reached an average of -16°C during the
winter. In Finland, bacterial activity was halted in two
different decomposer communities in soil at -16°C,
suggesting that this may be an important threshold in
natural systems [157]. Despite these indirect lines of
evidence, there have been no studies that have experi-
mentally examined whether deep freeze events con-
tribute to the preservation of perishable cached food
of a wild animal.

Humidity
Another influence on microbial growth is the amount of
water in the surrounding environment [1, 7]. Humidity,
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a measure of the moisture content of air, influences the
transfer of moisture between the air and surface of adja-
cent substrates [76]. It is well known that increases in
moisture around a food item leads to increased micro-
bial growth and proliferation [161]. For example, lower
environmental moisture content has been found to de-
crease microbial growth on rice and flour and, conse-
quently, increase the length of time these food items can
be stored [1, 47].
Since high ambient humidity facilitates microbial deg-

radation and spoilage [1], pronounced seasonal fluctua-
tions in rainfall and ambient humidity may mean that
during large portions of the year it is likely not profitable
to store perishable food, particularly at low latitudes. In
contrast, high-latitude ecosystems have lower ambient
humidity levels, punctuated by increases in moisture in
the form of rain and snow. This reduction in humidity
favours long-term storage and could also allow species
to store at multiple time points throughout the year.
At high latitudes, humidity is likely to influence food

caches primarily in the spring, summer, and fall because
warm air can hold a larger quality of water vapour [162]
and this means that more water is available to microbes
[82]. Conversely, in winter, much of the moisture is
present as a solid (i.e. ice), which means that it cannot
be easily accessed by microbes, thus inhibiting growth.

Freeze-thaw events
Freeze-thaw events cause phase changes of bound water
within a cell (e.g. ice crystal formation) and the associated
rapid expansion and contraction of water can result in
damage to cellular structures [10, 86, 87, 170]. As a result
of the degradation of cellular structures, freeze-thaw
events can affect multiple aspects of food quality and sev-
eral studies in applied food science have been conducted
to understand the mechanisms behind these processes.
Microstructure is one major component of food

quality that is heavily influenced by freeze-thaw
events [3, 10]. The denaturation of proteins, particularly
within meat and fish products, has been linked to changes
to the microstructure of a food item [3, 16]. Associated
with these changes in microstructure is a process known
as ‘drip loss’ [182]. As a food item undergoes a freeze-
thaw cycle, damaged cells leak an exudate containing sol-
uble nutrients, vitamins, minerals and protein [10, 86]. In
addition to siphoning nutritional content away from the
cell, this exudate also produce favourable conditions for
microbial growth by increasing nutrient and moisture
available around a food item [86].
The number of freeze-thaw events that a food item ex-

periences can also influence the amount of damage that
is caused. Multiple freeze-thaw events can have strong
additive effects that can cause food to degrade more rap-
idly [16, 68, 128, 148, 150, 180, 181]. Srinivasan et al.

[150] documented an increase in mechanical damage
sustained by freshwater prawns (Macrobrachium rosen-
bergii) exposed to repeated freeze-thaw events and this
damage was caused by repeated melting and reformation
of ice-crystals within a cell. Boonsumrej et al. [16] found
similar mechanical damage to Tiger Shrimp (Penaeus
monodon) characterized by torn muscle fibres, an in-
crease in distance between adjacent muscle fibres, and a
breakdown of the subcuticular membrane surrounding
muscle fibres. This mechanical damage was associated
with increased thawing loss (the weight lost by a sample
when comparing frozen and thawed weight), a decrease
in protein concentrations and an increase in thiobar-
bituric acid, a compound associated with food decom-
position [16].
In the field of food science, studies have typically ex-

amined the effect of up to five consecutive freeze-thaw
events on food quality (e.g. [68, 148, 180, 181]). How-
ever, one study demonstrated that meat might continue
to degrade after 15 freeze-thaw cycles [128]. Further
studies are needed to determine if various food types
have different threshold numbers of freeze-thaw cycles
beyond which no further damage can be inflicted. Such
studies would be important in order to determine if pos-
sible increases in the number of freeze-thaw events
resulting from long-term changes in climate could de-
crease survival of food caches in the wild.

Integrating concepts from plant biology to
understand the susceptibility of non-perishable
food to climate change
Although cached seeds are typically considered non-
perishable, seed become inedible when they germinate
and therefore, may also be influenced by climate change.
The field of plant biology has identified a number of
regulatory processes and environmental conditions that
influence the likelihood of germination [11]. For ex-
ample, dormancy, the failure of a seed to germinate
when conditions are otherwise favourable to promote
germination [34, 46], ensures that seeds will only
germinate when conditions are favourable for growth
[34, 169] and is greatly influenced by a number of envir-
onmental variables including temperature and moisture.

Temperature
The effect of temperature is generally related to the life
history of the plant species or taxa [11]. For example,
winter annuals require periods of warm temperatures
preceding cold temperatures in order for their seeds to
germinate [12], whereas summer annuals require periods
of cold weather followed by warm temperatures in order
to germinate. Patterns of temperature fluctuations can
also be important to stimulate germination, with many
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species responding favourably to alternating tempera-
tures [84, 109, 144, 149].
Freeze-thaw cycles may also influence the germination

of seeds that are stored by many food-caching species.
Soil temperature regimes, which can be influenced by
freeze-thaw events, have a strong bearing on the occur-
rence and timing of germination [126, 127], however this
relationship is highly variable between plant species [14].
Several studies indicate that exposure to low soil tem-
peratures is necessary for germination to occur [78, 143]
and other studies have shown that freeze-thaw cycles
can lead to scarification, a necessary precondition for
germination in some plant species [183]. Van Assche et
al. [163] proposed that freeze-thaw cycles could interact
with cold winter temperatures in a two-step process to
promote germination. First, low winter temperatures
make seeds sensitive to freeze-thaw cycles. Second,
freeze-thaw cycles cause seeds to become water perme-
able, facilitating germination. For such species, warming
winter temperatures could lead, in the short term, to
prolonged availability of food caches, as seeds would fail
to germinate and, in the long term, to eventual local ex-
tinction of the trees/plants producing the seeds favoured
by food-caching species. On the other hand, for plant spe-
cies whose seeds germinate independently of exposure to
cold temperatures or freeze-thaw cycles, warmer and
shorter winters could shorten the availability of seeds to
any animals that cached them [93].

Moisture
In general, some moisture is required to facilitate ger-
mination but the optimum water content varies across
species [111]. Soaking seeds is a common commercial
method used to “prime” seeds for germination, leading
to a higher percentage of germination for many species
[2, 118]. Similar to temperature, variability in moisture is
necessary for many species to promote germination.
However, for some species, variability in moisture levels
can result in a decreased germination rates or have no
effect at all [13, 89, 159]. There may also be strong inter-
active effects between moisture and temperature. For
example, in seeds without sufficient water content, dor-
mancy will not be broken by temperature alone [11].

Linking food-degrading environmental conditions
with climate change
The environmental variables outlined above are particu-
larly relevant to natural systems as they are rapidly shifting
due to climate change [63]. Already mean temperatures
across the globe have increased [63, 173], precipitation
patterns have shifted resulting in altered moisture regimes
[147, 152] and an increase in unpredictable weather pat-
terns, such as mid-winter thaws and late frosts, have been
documented [63, 173]. The shift in these environmental

variables suggests that the relationship between caching
species and their environment is changing and potentially
altering the benefits of caching food. However, it is
important to note that not all of these environmental
variables will necessarily shift in the same way or with
similar magnitudes.

Extracting climatic variables from historical
weather data
Historical weather records are valuable for quantifying
how climatic variables may influence long-term changes
in abundance of caching species. Even when data are
sparse, minimum, maximum and mean temperatures
can be used to estimate other climatic variables, such as
freeze-thaw events and the duration of deep freeze
events. Natural history characteristics, such as when a
species begins caching food and when it retrieves cached
food, should be used to determine relevant time points
to extract data from historical records.

Freeze-thaw events
Extracting information on freeze-thaw events from his-
torical records requires knowledge of food-specific initial
freezing point [103]. Initial freezing points are directly
related to the concentration of solutes in a food item
and its water content [130] and are known for a variety
of food items. Many of these estimates could be used as
surrogates for food items cached by wild species. Miss-
ing from the existing literature, however, are estimates
of arthropod initial freezing points, which are relevant to
a number of food-caching species that regularly store
this taxa. Once initial freezing points have been deter-
mined by experiments or estimated from the literature,
the numbers of freeze-thaw events can then be extracted
from historical weather records by determining the point
when the temperature drops below and then rises above
the initial freezing point.

Deep-freeze Events
Although deep-freeze events can be easily extracted from
historical temperature records, the use of minimum, mean
or maximum daily temperatures has an important bearing
on how deep-freeze events are interpreted. For example,
extracting deep-freeze events based on minimum daily
temperature implies, in most cases, that temperatures will
drop below the deep-freeze threshold for only part of the
day. Alternatively, using maximum daily temperatures im-
plies that temperatures will remain below the given deep
freeze threshold for the entire day. Maximum daily tem-
peratures allow for the estimation of deep-freeze days,
which is the number of complete days that microbial ac-
tivity is inhibited. However, without hourly weather re-
cords it is difficult to estimate exactly how long deep
freeze events would inhibit microbial growth. To better
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predict deep-freeze thresholds, it is also important to
understand the species or groups of microbes that are
present in a food caching system. An understanding of the
microbial diversity present on a food item could provide
better estimates on the temperature at which microbial
activity is halted, rather than relying on estimates obtained
from the literature.

Humidity
Estimates of humidity from historical records can be dif-
ficult to obtain, as many weather stations have not re-
corded daily humidity [44]. In spite of this, proxies can
be used to provide estimates of humidity or moisture
levels in the environment. Rainfall and snowfall are cli-
matic variables that are commonly found in historical
weather records and can be used to provide a crude esti-
mate of moisture in the environment. However, predict-
ive models based on precipitation in combination with
minimum daily temperature have been shown to provide
better estimates of humidity in both North America and
Europe. However, in more arid environments, such as
parts of Africa, this relationship does not seem to be
robust [44] and it is necessary to use more complex
models [76].

Characteristics of caching species that could
mitigate the impact of climatic change
Behavioural strategies
Caching species have developed a number of behavioural
strategies that retard cache degradation [37, 67, 95, 135,
158] and, therefore, may mitigate the effects of changing
climate. These strategies include handling techniques,
exploitation of chemical properties in the environment,
and exploitation of certain climatic factors to decrease
food perishability.
Several species have been documented to use specific

handling techniques that lessen degradation of a cached
food item. For example, incapacitating, rather than
killing prey at the time of capture can serve to inhibit
spoilage or reduce the rate of degradation. Burrowing
Owls (Athene cunicularis) have been shown to incapaci-
tate long-horned beetles to facilitate storage [135], while
Elf Owls (Micrathene whitneyi) have been observed to
damage the thorax and remove the legs from live sphinx
months [88]. Other animals, such as the Short-tailed
Shrew (Blarina brevicauda), produce toxins in their sal-
iva that immobilize prey by rendering them comatose
[95]. Once in this state, prey can remain alive for several
days after capture.
Some species may exploit antimicrobial compounds in

the environment to preserve cached food. Elgmork [37]
suggested that Brown Bears (Ursus arctos) cover car-
casses with Sphagnum moss to aid in long-term preser-
vation because Sphagnum is known to contain phenolic

compounds that have antimicrobial properties. Arboreal
caching species may exploit similar antimicrobial com-
pounds of coniferous trees (e.g. spruce Picea spp.), which
have been proposed to preserve cached food better than
deciduous trees. In Gray Jays, evidence suggests that ter-
ritory quality at the southern edge of their range is re-
lated to the percentage of conifers on their territories
[110, 155], which appears to be partly due to the super-
ior ability of conifers to preserve food [155]. Willow Tits
(Parus montanus) have also been observed to preferen-
tially cache food on conifers rather than deciduous trees
[81], which could also be related to the antimicrobial
properties of conifers.
A third method that caching species use to retard mi-

crobial degradation over time is to exploit microhabitats
and climatic conditions. Tigers have been documented
to cache prey in areas with increased brush and cover
prey items in debris. Schaller [138] suggested that these
this was done to lower the temperature experienced by a
food item to reduce microbial activity. Many rodents dry
grass and berries [145] and Red Squirrels hang mush-
rooms in trees [56]. This drying process is analogous to
freeze-drying human food, which increases the length of
time food can be stored [132, 137]. Cones, however, are
susceptible to disintegration through drying which may
explain why squirrels place cones in terrestrial middens,
where moisture levels are higher than above the ground
or snow [158].
Species that have developed behavioural strategies to

mitigate the influence of exposure to the environment
may be less susceptible to the effects of climate change.
For example, dried food will likely be less influenced by
freeze-thaw cycles, as damage due to the phase change
of water will be reduced. However, it is important to
note that examples of species exploiting the environ-
ment to enhance preservation are largely anecdotal and,
therefore, require more rigorous study.

Physiological adaptations
To our knowledge, no studies have explicitly investigated
potential physiological adaptations of caching species to
cope with microbial proliferation on cached food items
but studies of scavengers could help to inform future re-
search on this subject. Recently, Roggenbuck et al. [136]
characterized a variety of adaptations in the digestive
tracts of two New World vultures, Coragyps aratus and
Cathartes aura. Both species were found to have low pH
in their digestive systems that destroyed most bacterial
species before they could reach the hindgut. Addition-
ally, the intestinal microbiome of both species had a
high prevalence of both Clostridia and Fusobacteria
[136], which are commonly found on carrion. Their
abundance in the hindgut likely benefits vultures by fur-
ther breaking down carrion, allowing for the more
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complete digestion of food [136]. Both Clostridia and
Fusobacteria have been demonstrated to cause a variety of
negative effects in both wildlife and humans [53, 61, 80].
Their presence in vulture intestinal tracts suggests that
they tolerate bacterial toxins, a finding also documented
in other scavenging birds [112]. It is possible that
food-caching species also possess similar physiological
adaptations to eliminate harmful microbes that colonize
stored food.
Specialized gut microbiomes could also allow caching

species to cope with microbial colonization of a cache or
digest rotting food. These adaptations could be particu-
larly important for species that cache perishable food
items, which are more likely to be colonized by bacteria.
Such adaptations could buffer the impact of increased
degradation arising from climate change. Investigations
of gut microbiomes have been undertaken for a diverse
range of species, including amphibians, reptiles and mam-
mals (e.g. [72, 85, 101]), including one caching species
(Red Squirrel; [153]).

Conclusions
We outline a novel approach to address how changes in
the environment may influence food-caching species by
synthesizing information from the fields of food science
and plant germination ecology and then classifying the
vulnerability of species based on caching behaviour. As
caching species rely on stored food for survival during
periods of limited food availability and, in some cases,
for reproduction, factors that influence food quality
could have major downstream effects on fitness and
population dynamics.
Studies on both the Gray Jays [171] and Wolverines

[6, 62] highlight how climate could be influencing popu-
lation abundance but detailed demographic studies on
caching species remain limited. It will also be important
to consider what cached food is being used for during
periods of low resource availability. For example, both
Gray Jays and Wolverines use cached food not just for
survival but also for reproduction [28, 154], meaning
that multiple demographic vital rates may be linked to
changes in cached food quality over time. Identifying the
vital rates driving population dynamics will help to identify
how the downstream effects of climate change on cached
food quality may influence population growth rates.
In addition to demographic studies, understanding the

influence of climate change on caching species will re-
quire experimental work on how specific environmental
variables may influence cached food. Such studies could
take place in the field (e.g. [139]) or in the laboratory by
borrowing many of the approaches used in the field of
food science (e.g. [16, 50, 117]). Ultimately, a combin-
ation of experimental and demographic studies will be the
most rigorous approach for identifying specific

mechanisms by which climate change could influence this
fascinating group of animals.
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