[an error occurred while processing this directive]
Department of Biology
Home People Faculty Andrews
MATTHEW T. ANDREWS, McKnight Presidential Professor of Biology; Director, Bio-Translational Research Center

B.S., 1979, University of Michigan Ann Arbor
Ph.D., 1984, Wayne State University School of Medicine, Detroit

Email: mandrews@d.umn.edu
Office: 253D SSB
Phone: 218-726-7271

Research Interests

Genetic factors controlling mammalian hibernation

Research in my laboratory is directed toward the characterization of genes responsible for the induction and maintenance of hibernation in mammals. Hibernating mammals provide a unique system for identifying molecules that are important in regulating metabolism, body temperature and food intake. In a state of deep hibernation body temperature is only a few degrees above 0°C, oxygen consumption holds at 1/30 to 1/50 of the aroused condition and heart rate can be as low as 3-10 beats/minute, compared to 300-400 beats/minute when the animal is awake and active. We are currently using RNAseq and proteomics to identify genes and proteins that are responsible for the physiological characteristics of hibernation in the thirteen-lined ground squirrel Ictidomys tridecemlineatus.

Hibernation is seen in a wide-range of taxa including rodents, carnivores, insectivores, bats and even primates. Since the majority of species within these groups do not hibernate, it has been proposed that hibernation results from the differential expression of genes common to all mammals rather than the evolution of new genes unique to the hibernating species. Determining the function of gene products involved in hibernation is one of the main goals of the laboratory and has applications in the areas of hypothermia, ischemia/reperfusion injury, cardiac function and organ preservation. A transgenic approach examining mechanistic aspects of hibernation can be found at: http://dx.plos.org/10.1371/journal.pone.0053574



TV interview on hibernation

Nature's Fat-Burning Machine


Recent Publications

  • Ballinger, M.A., Hess, C., Napolitano, M.W., Bjork, J.A., and Andrews, M.T. (2016) Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function. Am J Physiol., doi:10.1152/ajpregu.00463.2015.
  • Cooper, S.T., Sell, S.S., Fahrenkrog, M., Wilkinson, K., Howard, D.R., Bergen, H., Cruz, E., Cash, S.E., Andrews, MT, and Hampton, M. (2016) Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels. Physiol Genomics. doi:10.1152/physiolgenomics.00120.2015.
  • Anderson, K.J., Vermillion, K.L., Jagtap, P., Johnson, J.E., Griffin, T.J., and Andrews, M.T. (2016) Proteogenomic analysis of a hibernating mammal indicates contribution of skeletal muscle physiology to the hibernation phenotype. J. Proteome Res., 15, 1253-1261.
  • Vermillion, K.L., Jagtap, P., Johnson, J.E., Griffin, T.J., and Andrews, M.T. (2015) Characterizing cardiac molecular mechanisms of mammalian hibernation via quantitative proteogenomics. J. Proteome Res., 14, 4792-4804.
  • Schwartz, C., Ballinger, M.A. and Andrews M.T. (2015) Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels. Am. J. Physiol., 309, R1292-1300.
  • Schwartz, C., Hampton, M. and Andrews, M.T. (2015) Hypothalamic gene expression underlying pre-hibernation satiety. Genes, Brain and Behavior, 14, 310-318.
  • Vermillion, K.L., Anderson, K.J., Hampton, M. and Andrews, M.T. (2015) Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal. Physiol. Genomics, 47, 58-74.
  • Schwartz, C., Hampton, M. and Andrews, M.T. (2013) Seasonal and regional differences in gene expression in the brain of a hibernating mammal. PLoS One 8, e58427.
  • Schwartz, C. and Andrews, M.T. (2013) Circannual Transitions in Gene Expression: Lessons from Seasonal Adaptations. In Ann E. Rougvie, Michael B. O'Connor, editors: Developmental Timing. Current Topics in Developmental Biology 105, 247-274.
  • Nelson, B.T., Ding, X., Boney-Montoya, J., Gerard, R.D., Kliewer, S.A. and Andrews, M.T. (2013) Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor. PLoS One 8, e53574.
  • Hampton, M., Melvin, R.G. and Andrews, M.T. (2013) Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation. PLoS One 8, e85157.



  • BIOL 4199 Frontiers in Cell Biology
  • BIOL 4231 Molecular Biology


Postdoctoral Associates

  • Duane Allen - Ph.D., Oregon Health and Sciences University, Portland
  • Jessica Sieber - Ph.D., University of Oklahoma


Current Graduate Students

  • Clair Hess
  • Rebecca Madden


Undergraduate Researchers

  • Sarah Dettle
  • Anton Sauer
  • Alex Ryan
© 2018 University of Minnesota Duluth
The University of Minnesota is an equal opportunity educator and employer.
Last modified on 06/03/16 11:44 AM
University of Minnesota Campuses
Crookston | Duluth | Morris
Rochester | Twin Cities