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Abstract 

 

Structural fabrics within the Vermilion district, northeastern Minnesota, including 

metamorphic foliation and elongation lineation (Le), are well established and can be 

summarized as near-vertical foliation striking northeast containing oblique to vertical Le. 

The oblique to vertical lineations are present throughout the Vermilion district, yet areas 

of subhorizontal lineation orientations are also present locally. Despite broad agreement 

in structural data, first-order interpretations including vorticity axis orientation and shear 

sense have yet to be agreed upon. Two different interpretations emerge from previous 

studies: 1) dextral transpression associated with terrane accretion and 2) Le-parallel 

shearing consisting of regional dip-slip shearing and later, more focused, strike-slip 

shearing. The Kawishwi Shear Zone (KSZ), one of several Vermilion district shear 

zones, shows structural relationship particularly well. Foliation consistently strikes east-

northeast and dips vertically. Le is broadly down-dip with discrete areas of subhorizontal 

orientation. Goodman (2008) performed a structural and kinematic analysis of the KSZ 

and interpreted lineation-parallel shearing with dip-slip shearing followed by strike-slip 

shearing. However, previous studies do not specifically constrain flow within L-S 

tectonites relative to Le.  

This study aims to characterize the kinematic pattern of flow through use of 

quartz fabric analysis of c- and a-axis petrofabrics. The data acquired reveal the dominant 

slip planes and direction of flow during deformation, and also provide information about 

deformation temperature and strain geometry. Oriented samples from the KSZ were 

analyzed by a scanning electron microscope and electron backscatter diffraction 

(SEM/EBSD) system. Sample KS7J contains a vertical Le and quartz petrofabric data 

indicate flow nearly parallel to Le, thus dominantly dip-slip displacement. Quartz 

microstructures are consistent with greenschist-facies deformation. Sample KS6U1, 

collected from a localized zone with strike-parallel lineation, displays quartz petrofabric 

data indicative of slip along the prism <a> plane with flow parallel to Le. Activation of 

the higher temperature prism <a> plane is attributed to conditions of the quartz vein 

emplacement. The results of this study support the lineation-parallel shearing hypothesis 

for deformation within the KSZ. Similar to the results of Goodman (2008), data of this 
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study support at least two shearing events in the Kawishiwi Shear Zone. Sample KS7J is 

interpreted to record the pervasive, broad dip-parallel deformation, whereas sample 

KS6U1 is interpreted to record a late-stage localized strike-parallel deformation. The 

general shear flow geometry of sample KS7J indicates displacement near-parallel to Le 

and does not contain a significant strike-parallel component. Data of this study are in line 

with regional displacement parallel to Le resulting in dominantly vertical movements. 
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1. Introduction 

The Superior province of northeastern Minnesota contains numerous Archean 

shear zones. The Kawishiwi, Shagawa Lake, Mud Creek, Murray and Burntside Lake 

shear zones are identifiable in the field as extensive planar zones of high strain and share 

similar structural fabrics (Figure 1). Rocks within the shear zones are L-S tectonites and 

contain a metamorphic foliation and elongation lineation. Foliation is near-vertical and 

striking east-northeast; elongation lineation ranges from oblique to down-dip, with rare 

horizontal to subhorizontal orientations (Hudleston et al., 1988; Bauer and Bidwell, 1990; 

Schultz-Ela and Hudleston, 1991; Goodman, 2008; Karberg, 2009; Johnson, 2009; 

Erikson, 2010; Goldner, 2013). Despite broad agreement in structural data, first-order 

interpretations including vorticity axis orientation and shear sense have yet to be agreed 

upon. Vorticity axis orientation and shear sense interpretations are fundamental to 

understanding the crustal assembly of the Archean Superior province of northeast 

Minnesota, which in turn has implications for Archean crustal assembly processes in 

general.  

Archean shear zones of northeast Minnesota have been variably interpreted as 

recording horizontal, and near-vertical, displacement. Horizontal displacement 

interpretations originate largely from strain analysis and observations of asymmetric 

fabrics viewed within sub-horizontal surfaces (Hudleston et al., 1988; Bauer and Bidwell, 

1990; Schultz-Ela and Hudleston, 1991). Given the dominant orientation of elongation 

lineations (oblique to down-dip), these studies call for regional shearing oblique to the 

elongation lineation at angles ranging from approximately 90° to 45° and they are 

interpreted to be a result of shortening perpendicular to foliation accompanied by 

significant strike-slip translation.  Conversely, near-vertical displacement interpretations 

are based on microstructural interpretations of asymmetric kinematic indicators viewed 

within planes normal to foliation and containing elongation lineation (Goodman, 2008; 

Karberg, 2009; Johnson, 2009; Erikson, 2010; Goldner, 2013). Asymmetric kinematic 

indicators were dominantly found within planes normal to foliation and containing 

elongation lineation, whereas planes normal to foliation and elongation lineation display 

dominantly symmetric microstructural fabrics. These observations led previous workers 
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to an interpretation of regional shear parallel to the elongation lineation (dip-parallel or 

oblique shear). Horizontal and subhorizontal elongation lineations, where present, are 

interpreted to represent late-stage strike-parallel shear.  

Previous interpretations warrant further study for two main reasons. First, ductile 

flow parameters such as the vorticity axis (a line about which objects rotate during 

progressive non-coaxial shearing) and slip direction (or slip plane, normal to the vorticity 

axis) have yet to be specifically constrained for these rocks. Interpretations of horizontal 

displacements call for the vorticity axis to be oriented at a shallow angle or parallel to 

dip-parallel elongation lineation. Interpretations of vertical displacements call for the 

vorticity axis to be at a high angle or normal to dip-parallel elongation lineation. Second, 

quartz crystallographic preferred orientation analysis can shed light on the orientation of 

the vorticity axis in L-S tectonites, in addition to providing information on strain-type and 

flow geometry (Law, 1990 and references therein). With the advent of electron 

backscatter diffraction, quartz crystallographic data can be collected across a large area 

within a relatively short time when compared to universal stage measurements on the 

optical microscope. Another benefit of electron backscatter diffraction is the ability to 

simultaneously collect both quartz c-axis and a-axis orientations.  

Through the use of quartz crystallographic preferred orientation analysis (herein 

referred as quartz fabrics), this study attempts to address sample slip direction relative to 

elongation lineation. Quartz fabric analysis relies on well-established knowledge of how 

quartz plastically deforms as recorded in the patterns in stereographic projections of c- 

and a-axes orientations plotted in relation to foliation and lineation. During progressive 

deformation, characteristic patterns may emerge. Quartz c-axis and a-axis pattern 

geometries are influenced predominantly by deformation temperature and flow geometry 

(e.g., Lister and Hobbs, 1980; Schmid and Casey, 1986). In this study, pattern geometry 

resulting from quartz c-axis data is used to interpret the governing crystallographic slip 

plane(s), and pattern geometry resulting from quartz a-axis data is used to further 

constrain slip direction. An interpretation of the orientation of the vorticity axis is made 

possible by considering both datasets. Additionally, quartz fabric geometry can also 
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provide an estimate of the relative magnitude of strike-slip and dip-slip components of 

deformation.  

Samples collected from areas of dip-parallel and strike-parallel lineations within 

the Kawishiwi shear zone were selected due to deformed quartz being present. To aid in 

constraining deformation temperature, interpretations of characteristic microstructures of 

deformation mechanisms of quartz (e.g., bulging, subgrain rotation and grain boundary 

migration; Hirth and Tullis, 1992) are also presented. 
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2. Background 

Prior study of L-S tectonites within the Vermilion district, northeastern Minnesota 

is divisible into three phases. Early studies (Hooper and Ojkangas, 1971; Sims, 1972, 

1976; Hudleston, 1976) focused on large-scale structures, including folds and foliation, 

that called for flattening due to the emplacement of the Vermilion Granitic Complex 

located along the northern border of the district and the Giants Range Batholith located 

along the southern border of the district. Later studies (Hudleston et al., 1988; Schultz-

Ela and Hudleston, 1991) performed strain analysis of elongated casts and offered a new 

interpretation of deformation in the form of dextral transpression with dominant 

displacement parallel to foliation strike, and normal, or at a high angle to, elongation 

lineation. Recent studies (Goodman, 2008; Karberg, 2009; Johnson, 2009; Erikson 2010; 

Goldner, 2013) employed kinematic analysis techniques and presented different 

interpretations that recognize the importance of ductile shear parallel to elongation 

lineation. To date, the parameters of vorticity within these L-S tectonites are not well 

constrained. 

2.1 Geologic Setting and Previous Studies of the Vermilion District 

The Vermilion district, as first defined by Clements (1903), is a narrow belt of 

meta-volcanic and meta-sedimentary rocks that extends from the vicinity of Tower, 

Minnesota northeast to Saganaga Lake and the Canadian border (Figure 1). Located 

within the Archean Superior Province of the Canadian Shield, the district spans the 

boundary between the high-grade gneissic Quetico subprovince and the low-grade meta-

volcanic meta-sedimentary, and plutonic units of the Wawa subprovince. Numerous 

shear zones marked by well-developed L-S tectonites are present throughout the district. 

Major units of the district, from oldest to youngest, include the Lower and Upper 

Ely Greenstone members, the Lake Vermilion Formation, the Knife Lake Formation, and 

the Newton Lake Formation (Gruner, 1941; Sims, 1972; Sims and Southwick, 1985 and 

references therein). The Lower and Upper Ely Greenstone include meta-gabbro, meta-

diabase, pillowed basalts and calc-alkalic volcanic rocks (Shultz, 1980). The Lake 

Vermilion Formation is comprised of greywacke and felsic volcanic units (Ojakangas, 
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1972). Volcanogenic lithic sedimentary units of sandstone, siltstone, conglomerate and 

slate dominate the Knife Lake group, which also includes hornblende phyric volcanic 

breccia and tuff (Guner, 1941; Jirsa et al., 2011). The Newton Lake Formation is 

comprised of mafic meta-igneous rocks including gabbro to diabase basalt flows, clastic 

volcanic rocks of calc-alkalic and tholieiitic composition, and sedimentary banded iron 

formation (Shultz, 1980). 

Felsic plutonic units intrude the meta-volcanic and meta-sedimentary units to the 

north and south (Jirsa et al., 2011 and references therein). Plutonic rocks include two 

major units of the Vermilion Granitic Complex (north) and the Giants Range Batholith 

(south). The ages of these complexes generally range from 2750 Ma to 2700 Ma 

(Goldich, 1972 and references therein). The Vermilion Granitic Complex encompasses 

the local units of granite, tonalite and trondhjemite. The Giants Range Batholith consists 

of an assemblage of monzonite, quartz monzonite, migmatite and granodiorite.  

Rocks containing a metamorphic foliation and elongation lineation are referred to 

generally as L-S tectonites and are well established in the Vermilion district (Sims, 1972, 

1976; Hudleston 1976; Hudleston et al., 1988; Shultz-Ela and Hudelston, 1991; Bauer 

and Bidwell, 1990; Goodman, 2008; Karberg, 2009; Johnson, 2009; Erikson, 2010). 

Foliation dominantly strikes east-northeast and is commonly near vertical. Elongation 

lineation is present within the foliation plane and displays a range in orientation from 

near horizontal to near vertical and oblique. In this study, pitch is used to describe the 

orientation of lineation and is defined as the angle from the east side of the horizontal 

strike of the foliation to the elongation lineation as measure in the foliation plane. Near-

horizontal elongation lineations, herein referred to as strike-parallel, have pitch angles of 

0°-10° or 180°-170°. Near-vertical elongation lineations, herein referred to as dip-

parallel, have pitch angles of 75°-105°. Oblique elongation lineations have pitch angles 

of 45°-75° and 105°-135°. The Vermilion district is dominated by down-dip elongation 

lineations with pitch angles of 45°-135°. Shear zones are present throughout the district 

and are characterized as generally planar zones of L-S tectonites. The Burntside Lake, 

Shagawa Lake, Kawishiwi, Mud Creek and Murray shear zones cut local units of the 

district and extend in excess of 20 km in length.   
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Previous work within the district can be divided into three main approaches on the 

basis of time and methodology: 1) early macroscopic observations, 2) strain analysis, and 

3) recent kinematic microstructural analysis. Early studies focused on macroscopic scale 

structures, including the orientation of folds and regional foliation (e.g., Hooper and 

Ojkangas, 1971; Sims, 1972, 1976; Hudleston, 1976). These studies were followed by 

work employing strain analysis techniques (e.g., Hudleston et al., 1988; Shultz-Ela and 

Hudleston, 1991). More recent studies focused on kinematic microstructural analysis 

(e.g., Goodman, 2008; Karberg, 2009; Johnson, 2009; Erikson 2010; Goldner, 2013).  

Although there is a general agreement with respect to the orientation of structural 

elements, these studies differ with regard to shear sense interpretations leading to a lively 

debate with different implications for Archean crustal assembly processes.  

Early studies focused on identification of large-scale folds and deformation of the 

Vermilion district rocks, interpreted to relate to the emplacement of plutonic units 

(Hooper and Ojkangas, 1971; Sims, 1972, 1976; Hudleston, 1976). Data and 

interpretation in these studies focused in the area near Tower, Minnesota, along the 

central and western regions of the district, and are based largely on field relationships. 

These studies began by identifying cleavage (metamorphic foliation) as near vertical and 

striking east-northeast. Additional field data included fold axes and lineation orientation. 

On the basis of fold axis orientation and interlimb-angle, two basic suites of folds were 

identified, including F1 folds with horizontal axes and F2 fold axes that plunge steeply to 

the east. Additionally, F1 folds are isoclinal and F2 folds are open to tight (Hudleston, 

1976). The main conclusions of these studies were: 1) north-south directed flattening 

occurred across the district, and 2) F1 and F2 folds formed contemporaneous with 

emplacement of the plutonic units to the north and south, which squeezed and shortened 

the region between the plutonic bodies (Hooper and Ojkangas, 1971; Sims, 1972, 1976; 

Hudleston, 1976).  

Hudleston (1976) characterized strain by documenting the shape of elongated 

clasts within coarse sedimentary units, and offered additional first-order interpretations. 

Along with areas of flattening, Hudleston (1976) also called for areas of constriction, 

particularly in the area south of Tower, Minnesota. The major conclusions of this study 
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were: 1) foliation formed normal to the direction of maximum shortening (Z-axis of the 

finite strain ellipsoid) and mineral lineation formed parallel to the direction of maximum 

extension (X axis of the finite strain ellipsoid) and 2) deformation involved lateral 

shortening and vertical extrusion between the intruding batholiths. This interpretation led 

to identifying the mineral lineation as an elongation (or stretching) lineation.  

The next group of studies focused on detailed observation and strain analysis of 

flattened and elongated clasts in outcrop (Hudleston et al., 1988; Shultz-Ela and 

Hudleston, 1991). Field data were consistent with other studies including foliation near 

vertical and striking east-northeast and lineation pitch values oblique to dip-parallel (45°-

135°). The resulting interpretation presented a new model for deformation of the 

Vermilion district. Along with the lineation representing the direction of maximum 

extension, these studies called for a different mechanism for flattening and lineation 

formation. These studies proposed that regional transpression associated with volcanic 

arc-terrane accretion caused dextral strike-slip shear throughout the district, accompanied 

by regional compression, all produced by north-northwest directed oblique subduction. 

Field mapping and outcrop studies by Bauer and Bidwell (1990) and Jirsa et al. (1992) 

presented similar results and suggested similar interpretations. 

Recent studies of the Vermilion district have focused on specific study of the 

shear zones. The Kawishiwi, Shagawa Lake, Mud Creek, Murray and Burntside Lake 

shear zones were the subject of detailed field mapping, and microstructural analysis of 

oriented  thin-sections (Goodman, 2008; Erikson 2008, Karberg, 2009; Johnson, 2009; 

Goldner, 2013). Field mapping reinforced similarities in foliation orientation across the 

district while also bringing to light local variability in elongation lineation orientation. 

The Kawishiwi, Shagawa Lake, Mud Creek, Murray and Burntside Lake shear zones are 

dominated by down-dip elongation lineations of varying pitch. The Kawishiwi, Mud 

Creek, Murray and Burntside Lake shear zones contain predominately dip-parallel 

elongation lineations (pitch angles of 75°-105°). The Shagawa Lake shear zone contains 

dip-parallel and oblique elongation lineations (pitch angles 45°-135°). Localized areas of 

strike-parallel elongation lineations occur within each shear zone with the exception of 
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the Murray and Burntside Lake shear zones, which display consistently dip-parallel 

elongation lineations.  

Kinematic analysis employed in this and other recent studies included collecting 

oriented samples throughout each shear zone and conducting microstructural analysis of 

these samples. Kinematic interpretations are best made within the plane that displays the 

greatest degree of asymmetry. This plane, the motion plane, is commonly oriented 

parallel to the lineation and normal to the foliation, yet this need not be the case in non-

plane strain. To constrain the orientation of the motion plane, observations were made in 

two different planes relative to elongation lineation: 1) the lineation parallel, foliation 

normal plane and 2) the lineation-normal plane. Asymmetric fabrics in the elongation 

lineation parallel, foliation normal plane are consistent with lineation-parallel shear, 

whereas asymmetric fabrics in the lineation normal plane are consistent with shearing at a 

high angle to the lineation.  These studies reveal asymmetric microstructures within the 

lineation-parallel, foliation normal plane, indicative of lineation-parallel shear (Figure 2).  

The vorticity axis is interpreted to be at a high angle to the elongation lineation (90°), 

although it was not explicitly constrained (Goodman, 2008; Karberg, 2009; Johnson, 

2009; Erikson 2008; Goldner, 2013). 

Major conclusions from recent studies include: 1) widespread shearing occurred 

parallel to the predominant elongation lineations (down-dip lineations, vertical or near 

vertical shear) and 2) localized areas containing strike-parallel lineations represent late-

stage strike-parallel shear (Goodman, 2008; Karberg, 2009; Johnson, 2009; Erikson 

2008). Kinematic interpretations vary only slightly between shear zones. The Kawishiwi 

and Mud Creek shear zones are interpreted to record areas of both north- and south-side-

up shear, followed by localized dextral strike-slip shearing (Goodman, 2008, Karberg, 

2009). Similarly, the Shagawa Lake shear zone was interpreted to record both north- and 

south-side-up shear, followed by localized sinistral strike-slip shear (Erikson, 2008). 

Johnson (2009) interpreted a deformational history of dip-parallel shear coupled with 

flattening within the Murray shear zone.  

A key question within the Vermilion district relates to the ductile flow within the 

region’s shear zones, and in particular, the orientation of the vorticity axis relative to the 
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elongation lineation. Although previous studies demonstrate that the elongation lineations 

represent the direction of maximum extension (or stretching), the relationship between 

flow direction and lineation has yet to be robustly established. Given the down-dip 

orientation of the elongation lineation, dextral transpression interpretations invoke ductile 

flow at varying angles to the elongation lineation, ranging from 90° (dip-parallel 

lineations) to 45° (oblique lineations) to 0° (strike-parallel lineations) (Figure 3). Recent 

studies invoke flow parallel to the elongation lineation, regardless of lineation orientation 

(Figure 2).  

2.2 Structural Fabric Elements 

Structural fabric data in this study include features recognized in the field such as 

foliation and elongation lineation, kinematic microstructures such as S/C foliations and 

rotated grains, microstructures characteristic of quartz recrystallization mechanisms, and 

crystallographic fabric elements documented by a scanning electron microscope using an 

electron backscatter diffraction system.  

Metamorphic foliations (Mf) are planar features that occur penetratively 

throughout the rock. Two types of discrete foliations, S and C, commonly develop during 

non-coaxial shear (Berthé et al., 1979; Lister and Snoke, 1984). S-foliation surfaces are 

continuous cleavages commonly marked by grain-shape preferred-orientations of quartz 

aggregates and are related to the accumulation of finite strain. C-foliation surfaces, 

commonly marked by mica, cut S-surfaces and are discontinuous discrete planes that 

represent high shear strain. C-surfaces parallel shear zone boundaries; the relative 

orientation of C- and S- surfaces is a strong indicator of shear direction (Figure 4) (Berthé 

et al., 1979; Lister and Snoke, 1984).  

Elongation lineations (Le) are linear features that occur penetratively throughout a 

rock as a result of elongation or stretching during deformation. Le can further be 

classified based on the foliation plane containing the lineation. Lineations present on S-

surfaces are termed Ls whereas lineations present on C-surfaces are termed Lc. Although 

both Ls and Lc are formed as a result of stretching, Lc are a direct consequence of 

shearing rather than accumulation of strain; as such, Lc lineations provide the best 
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indicator of shear (Lin and Williams, 1992; Lin et al., 2007). Lc, unlike Ls, lies within the 

shear plane, and is therefore parallel to the displacement direction. Recognition of Ls 

versus Lc may be possible by careful field observation. In addition to identifying S- and 

C-surfaces in the field, Lc typically present a ridge-and-groove morphology on C-

surfaces. 

Quartz petrofabrics record operative deformation mechanisms, which can in turn 

provide general deformation temperature constraints. Recrystallization mechanisms of 

quartz are dependent primarily on temperature, based on experimentally and naturally 

deformed samples and average geologic strain rates (Hirth and Tullis, 1992; Stipp et al., 

2002). Recrystallization mechanisms of quartz consist of grain-boundary bulging, 

subgrain rotation and grain-boundary migration (Figure 5) (Drury et al., 1985; 

Shigematsu, 1999; Stipp et al., 2002). At low temperature, grain boundary mobility is low 

and boundary movement occurs locally. Recrystallization occurs when the grain 

boundary bulges into an adjacent grain of high dislocation density, commonly along the 

boundaries of old grains and triple junctures (Drury et al., 1985; Shigematsu, 1999; Stipp 

et al., 2002). This process of bulging generally occurs at 270-390 °C, transitioning to 

subgrain rotation at 390-410 °C. Subgrain rotation recrystallization is characterized by 

subgrains progressively rotating in response to migration of dislocations into subgrain 

walls leading to the formation of new grains.  Subgrain rotation is dominant at 

temperatures of 410-490 °C and transitions to grain-boundary migration at 490-520 °C. 

At high temperatures (greater than 520 °C), grain-boundary mobility is high and grain 

boundaries migrate easily and engulf entire crystals. 

A common phenomenon of ductile deformation is the formation of a 

crystallographic preferred orientation (CPO). CPO is commonly represented using 

stereographic projections of crystallographic axis orientations plotted relative to foliation 

and elongation lineation. Fabric maxima, girdles and skeletons are descriptive terms of 

fabric geometry. Maximas occur in areas of relatively high concentration of points. 

Fabric girdles are simply the best-fit great or small circles for any given set of points on a 

stereonet, and fabric skeletons are constructed of lines that connect individual maximas.  
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Quartz a- and c-axis fabric plots commonly contain characteristic patterns 

governed by temperature, non-coaxiality of flow, and strain geometry (Lister and Hobbs, 

1980; Schmid and Casey, 1986; Law, 1990). Quartz fabric plots are useful in determining 

the deformation symmetry or asymmetry, active slip-system, vorticity, and flow direction 

during deformation. The major slip-systems of quartz with increasing activation 

temperature are basal <a>, rhombic <a>, prism <a> and prism <c> (Figure 6). Typical 

c-axis patterns of coaxial plane-strain deformation (pure shear) consist of two small-

circle girdles connected with a great-circle girdle (Type I crossed girdle). C-axis patterns 

typical of constriction contain two great circle girdles whereas c-axis patterns typical of 

flattening contain two small circle girdles (Figure 7). Fabric patterns resulting from 

plane-strain deformation consist of two small circle girdles connected with a great circle 

girdle (Type I crossed girdle).  

Shear sense and flow direction interpretation is possible by considering the fabric 

symmetry and active slip systems. Symmetric quartz c-axis and a-axis fabrics are 

representative of coaxial deformation, whereas asymmetric fabrics are representative of 

non-coaxial deformation (Lister & Hobbs, 1980; Schmid & Casey, 1986). As previously 

mentioned, the vorticity axis can be represented as a line about which objects rotate. In 

non-coaxial plane-strain, the vorticity axis is parallel to the Y-axis of the finite strain 

ellipsoid. Similarly, in coaxial plane-strain deformation (pure shear), the vorticity axis is 

parallel to the Y-axis of the finite strain ellipsoid, yet there is not a preferred direction of 

vorticity. Both quartz c-axis and a-axis fabric data provide information on the orientation 

of the vorticity axis. C-axes fabric skeletons tend to rotate towards the foliation in the 

direction of shear (Figure 7b). This rotation tracks vorticity and can be interpreted to be 

the vorticity axis. Issues may arise when only considering c-axis fabrics for vorticity axis 

interpretations, mainly due to more complex flow geometries resulting in less 

interpretable fabrics. An interpretation of the vorticity axis using a-axis fabrics relies on 

the assumption of slip in the direction of an a-axis. This assumption is valid where prism 

<c> is not an active slip system (i.e., at low to medium-high temperatures of shear). 

Because the basal <a>, rhomb <a> or prism <a> planes accommodate slip in the 

direction of one of the a-axes, the plane containing the a-axis maxima (a-axis maxima 

girdle) is interpreted to be the dominant slip plane. In non-coaxial deformation, the 
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vorticity axis is normal to the dominant slip plane, leading to an interpretation that the 

pole to the a-axis maxima girdle is the vorticity axis.  

3. Methods 

The objective of this study is to gain insight on the character of ductile flow 

within the L-S tectonites of the Kawishiwi shear zone. Sample orientation was tracked 

throughout the study. Petrography was performed to distinguish microstructures 

interpreted to be the result of different deformation mechanisms. Quartz fabric data were 

acquired using the SEM/EBSD at the University of Minnesota Duluth (UMD) Research 

Instrumentation Laboratory. The primary goal during data collection using the 

SEM/EBSD was to examine a large sample area in a timely manner without sacrificing 

electron backscatter pattern quality. Samples collected from areas of dip-parallel and 

strike-parallel lineations were selected due to deformed quartz being present.  

3.1 Sample Preparation 

Two main goals of sample preparation in this study are: 1) preserving sample 

orientation and 2) polishing thin-section surfaces to a quality sufficient for SEM/EBSD.   

Collecting oriented samples in the field and tracking the orientation throughout the thin-

sectioning process is vital to correctly identifying shear sense with respect to map 

structures. Sample collection and sectioning followed the procedure of Hansen (1990). 

During thin-sectioning, marks were cut on the corner of the thin-section chip enabling 

reconstruction of sample orientation. Samples were sectioned at a commercial lab and 

underwent microprobe polish. Upon receiving the thin-section, sample orientation was 

confirmed by examining the remaining billet and hand sample. Additional polish was 

applied through use of a colloidal silica bath for three hours. Samples were not subjected 

to a conductive coating prior to SEM/EBSD analysis.       

3.2 Petrography of Quartz Deformation Mechanisms 

Thin-sections were examined by optical petrography and microstructures 

interpreted to be the result of deformation mechanisms (bulging, subgrain rotation, and 

grain-boundary migration) were documented. As previously mentioned, the active 

deformation mechanism during deformation provides general temperature constraints. 
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Bulging microstructures include relatively large grains displaying undulose extinction 

and defined subdomains with smaller grains present along grain boundaries. Large grains 

are interpreted to represent relic grains, whereas small grains represent new grains 

forming by bulging. Unlike bulging, grains recrystallized by subgrain rotation typically 

display uniform grain size. Additionally, a grain-shape-preferred orientation is commonly 

present. Grains recrystallized as a result of grain-boundary migration display variability 

of grain size and irregular grain boundaries.   

3.3 Collection of Quartz Fabric Data 

Orientations of quartz c- and a-axes were obtained by SEM/EBSD. SEM/EBSD 

operates by imaging and indexing electron backscatter patterns (EBSP), a phenomena 

created through the interaction of the electron beam and the lattice planes of the 

crystalline material. EBSPs contain Kikuchi bands representative of sample orientation. 

Kikuchi bands are generated when backscattered electrons diffract through lattice planes 

and collide with a phosphor screen (Figure 8). The resulting image is captured by a 

charged-coupled camera and sent to a computer for indexing. Indexing occurs when the 

software matches the EBSP with known standards. This results in identification of phase 

and orientation. Mean angular deviation values (MAD) are one way to quantify how well 

observed and expected EBSPs match. MAD values are expressed as the average angular 

misfit between the observed and expected Kikuchi bands. In this study, acceptable MAD 

values were limited to less than 1 degree. 

The SEM at UMD is equipped with a HKL EBSD detector and the Channel 5 

software suite. The program Flamenco
®
 is used to collect EBSD data. This is achieved 

through interactive and automated processes. Interactive data collection consists of the 

user controlling all aspects of the SEM and Flamenco
®
 throughout the collection process. 

The operator manually chooses the acquisition sites (typically in reference to an 

orientation contrast image) and moves the stage accordingly. Alternatively, automated 

data collection consists of Flamenco
®
 determining the acquisition sites and stage 

movements based on parameters defined by the operator. Parameters of automated data 

collection broadly include defining the spatial limits, number and location of acquisition 
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sites in addition to various parameters involved in the indexing of EBSD patterns. These 

parameters remain constant throughout an automated data collection session.  

Data collection for this study used automated techniques, wherein the stage 

moved a specified distance between each acquisition point. This distance, the step size, is 

ultimately tied to grain-size. The average grain-size was determined petrographically for 

each sample. In this way, the SEM/EBSD mimics universal stage methodology where 

each grain represents a single data point. In practice, however, grains larger than the 

average grain size may be indexed multiple times.  

3.4 Coordinate Systems and Scales Used In This Study  

Three main coordinate systems were used in this study: 1) geographic, 2) 

macroscopic structural features, and 3) crystallographic. Geographic coordinates consist 

of map-scale observations and interpretations with respect to north. At this scale, 

observations include broad foliation (i.e., no distinction between S- and C- surfaces), and 

interpretations include shear-sense (i.e., north- or south- side up, dextral, sinistral). A 

more focused coordinate system employs the macroscopic fabric, foliation and lineation, 

as reference. In this case, the type of foliation (i.e., S or C) and elongation lineation (i.e., 

Ls or Lc) are noted. Interpretations at this scale include shear-sense based on 

asymmetries of S/C surfaces, vorticity relative to the lineation, and orientation of the 

motion plane. Lastly, the crystallographic coordinate system uses the orientations of 

quartz c- and a-axes leading to observations of fabric pattern geometry and interpretation 

of active slip systems during deformation.  

In this study I use the term vorticity profile plane (VPP) when referring to the 

motion plane in crystallographic coordinates. When using VPP, I imply the orientation 

was determined using quartz c-axis or a-axis data rather than macroscopic structural 

features.  
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4. Results 

 Two samples, KS6U1 and KS7J, were the focus of this study because they sample 

deformed quartz, which displays a strong crystallographic preferred orientation when 

viewed with an optical microscope. Quartz fabrics from this study directly address the 

orientation of the vorticity axis in relation to Le (Figure 9). Sample KS6U1, a sample 

from a localized shear zone, contains a strike-parallel Le and displays fabric geometry 

interpreted to be a result of late-stage right-lateral monoclinic simple shear (Goodman, 

2008). Quartz c-axis fabric data from this study support data from Goodman (2008) and 

indicates sample KS6U1 underwent shear parallel to Le with a vorticity axis normal to 

Le, contained within Mf. Quartz a-axis data from this study also suggests right-lateral 

monoclinic simple shear with the vorticity axis normal to Le. 

Sample KS7J contains a dip-parallel lineation representative of the KSZ and 

displays S/C fabrics interpreted to be a result of non-coaxial shearing with north-side up 

shear sense (Goodman, 2008). Quartz c-axis fabric data from this study grossly mimic 

data from Goodman (2008). Data of this study display more complex patterns suggestive 

of non-plane strain. C-axis data from this study indicate sample KS7J records general 

shear with the vorticity axis nearly perpendicular to Le and shear direction near parallel 

to Le.  

 These two samples are discussed in detail below.  

4.1 Sample KS6U1 

 Sample KS6U1 is consist of deformed quartz vein material with a strike-parallel 

Le. Strike-parallel Le is localized and the surrounding host rocks display a dip-parallel 

Le. Mf orientation remains similar within the localized zone. The quartz vein itself 

parallels Mf oriented 285, 80N. Microstructures including triple-junctures, undulose 

extinction, and well-defined boundaries indicate that the sample experienced subgrain 

rotation recrystallization. Quartz crystallographic fabrics display a well-defined pattern 

indicative of monoclinic plane-strain non-coaxial shear (simple shear) (Figure 10). C-axis 

data are consistent with universal stage data of Goodman (2008), which displays 

evidence for prism <a> slip (Figure 11). Both c- and a-axis data suggest similar 



 

16 
 

orientations of the dominant slip plane and the vorticity axis. The dominant slip plane is 

also consistent with S/C fabrics of right-lateral shear. The vorticity axis is oriented 

normal to Le and contained within Mf.  

4.1.1 Sample KS6U1 Microstructural Observations 

  Microstructures of sample KS6U1 display asymmetry within an Le-normal Mf-

normal plane and the Le-parallel, Mf-normal plane (Goodman, 2008). Individual quartz 

grains are roughly 250 micrometers. Quartz grains display triple-junctures, undulose 

extinction, and well-defined boundaries (Figure 12). Inclusions within quartz are 

generally not present. These observations indicate that quartz within sample KS6U1 

underwent subgrain rotation recrystallization. This corresponds to regime II of Hirth and 

Tullis (1992) and indicates deformation temperatures ranging from 390 to 490 °C (Stipp 

et al., 2002). The presence of quartz subgrains, deformation fractures within feldspar, and 

lack of high-temperature minerals such as amphibole may indicate deformation 

temperatures were closer to the lower end of the range between 390-490 °C.            

4.1.2 Sample KS6U1 SEM/EBSD Operating Conditions 

Quartz c- and a- axis fabric data were acquired from a Le-normal plane; data were 

rotated for display into a Le-parallel Mf-normal plane. SEM/EBSD operating conditions 

included a Hough resolution of 80, 70 reflectors, 2x2 binning, beam current of 15Kv, and 

a chamber pressure of 1Pa. Of the 2100 acquisition sites, 1726 produced quartz EBSPs 

suitable for indexing (MAD values less than 1). Sample step size was equal to the 

average grain size, 246 micrometers. A total area of 1.27 cm
2
 was analyzed (Figure 13).  

4.1.3  Sample KS6U1 c-axis Data 

Sample KS6U1 c-axis data display a single girdle containing populations 

associated with the prism <a> slip system (Figure 10). Normal to the c-axis girdle is the 

dominant slip plane (C-plane). The asymmetry of the girdle is best displayed by the 

fabric skeleton and is consistent with right-lateral shearing (Figure 10). This asymmetry 

indicates that the vorticity axis is normal to Le, contained within the S-foliation plane.     
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4.1.4 Sample KS6U1 a-axis Data 

 Sample KS6U1 a-axis data display a girdle of maxima located along the great 

circle when viewed in an Ls-parallel Mf-normal plane (Figure 10). This is consistent with 

plane-strain deformation. The orientation of the slip plane and vorticity axis can be 

determined by considering the active slip systems. With the exception of prism <c> slip, 

all other slip planes act in the direction of an a-axis. Thus, at low to medium-high 

temperatures, where basal <a>, rhomb <a> or prism <a> planes accommodate slip, a-

axis populations tend to cluster around the dominant slip direction. The two maxima lie 

within the C-plane, indicating this is the slip plane (Figure 10). Furthermore, one would 

expect to find asymmetry viewed in a plane normal to the slip plane and normal to the 

slip direction in that plane (a-axis maxima girdle). Thus, in quartz crystallographic 

coordinates, the a-axis maxima girdle is analogous to the VPP. Furthermore, the pole to 

the a-axis maxima girdle is the vorticity axis (Figure 10B).  

4.2 Sample KS7J 

Sample KS7J is characterized by deformed quartz vein material with a dip-

parallel Le. Surrounding host rocks also contain a dip-parallel Le and Mf is near vertical. 

Quartz fabric pattern geometry is indicative of general shear with displacement oriented 

near parallel to Le (Figure 14). C-axis data are consistent with universal stage data of 

Goodman (2008), displaying basal <a>, rhomb <a> +/- prism <a> slip (Figure 11B) 

with right lateral asymmetry. The right-lateral asymmetry corresponds to north-side-up 

shear sense in geographic coordinates. The a-axis maxima girdle is not oriented along the 

great circle within an Le-parallel, Mf-normal plane, indicating that the deformation was 

likely by general shear flow, rather than simple shear. The pole to the a-axis maxima 

girdle, interpreted as the vorticity axis, is located near 90 degrees from Le. Viewed 

looking down Le, c- and a-axis data display symmetric fabrics further establishing that 

the orientation of the vorticity axis is nearly 90 degrees from the Le rather than parallel or 

near parallel to Le. 
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4.2.1 Sample KS7J Microstructural Observations 

Microstructures of sample KS7J display asymmetries within an Ls-parallel, Mf-

normal plane (Goodman, 2008). Quartz grains display a range of grain size from 50-1000 

micrometers, with an average grain size of roughly 500 micrometers. Quartz grains 

display well-defined subgrains, undulose extinction, and diffuse boundaries (Figure 15). 

Inclusions within quartz are generally not present. These observations indicate sample 

KS7J underwent bulging recrystallization. This corresponds to regime I of Hirth and 

Tullis (1992) and indicates deformation temperatures ranging from 270°C - 390°C (Stipp 

et al., 2002). 

4.2.2 Sample KS7J SEM/EBSD Operating Conditions  

Quartz c- and a- axis fabric data was acquired from a Ls-parallel Mf-normal 

plane; data were rotated for display into three other planes: 1) plotting the fabric in 

relation to the S-plane, 2) looking down the pole to the a-axis maxima girdle, and 3) 

looking down Le (Figure 14). SEM/EBSD operating conditions included a Hough 

resolution of 80, 70 reflectors, 2x2 binning, beam current of 15Kv, and a chamber 

pressure of 1Pa. Of the 980 acquisition sites, 676 produced quartz EBSPs suitable for 

indexing (MAD values less than 1). Sample step size was equal to the average grain size, 

500 micrometers. A total area of 2.45 cm
2
 was analyzed (Figure 16). 

4.2.3 Sample KS7J c-axis Data 

Sample KS7J quartz c-axis data display populations associated with the basal 

<a>, rhomb <a> +/-prism <a> slip systems (Figure 14A.i). Normal to the c-axis girdle 

is the dominant slip plane (C-plane). The orientation of the S-plane is marked by a grain-

shape-preferred orientation of quartz in thin-section. C-axis fabric displays right-lateral 

asymmetry (Figure 14B.i). The right-lateral sense of shear corresponds to north-side-up 

in geographic coordinates. C-axis fabric grossly mimics data of Goodman (2008) (Figure 

11B). Goodman (2008) interpreted the vorticity axis to be oriented normal to Ls based on 

the inclined c-axis fabric. This orientation of vorticity is somewhat supported by quartz c-

axis data of this study, yet taken without a-axis data it is difficult to state with certainty. 

To test if the vorticity axis is at this orientation, c-axis data was rotated into a VPP 
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(rotation based on a-axis data). Within a VPP (Figure 14C.i), right-lateral asymmetry is 

present, suggesting the vorticity axis could be located 90  20 degrees from Ls. To test if 

vorticity is parallel to Le, fabric data were rotated to be viewed looking down Le. Within 

this view, c-axis fabrics display symmetry indicating the vorticity axis is not parallel to 

Ls (Figure 14D.i).  

4.2.4 Sample KS7J a-axes Data 

 Sample KS7J quartz a-axis fabric geometry displays a maxima girdle oriented 

oblique to the great circle in a Le-parallel Mf-normal plane (Figures 14B.i and 14B.ii). 

This fabric is indicative of non-coaxial non-plane-strain shear, or general shear. 

Furthermore, the a-axis maxima all have similar contour values, leading to complexity in 

determining the dominant slip plane. The similarity in the contour values of a-axis 

maxims is possibly due to the flow geometry of general shear wherein slip occurs at 

relatively similar amounts in each a-axis direction (the influence of the coaxial 

component of deformation). As discussed earlier, the pole to the a-axis maxima girdle is 

interpreted to be the vorticity axis. Sample KS7J displays a vorticity axis oriented near 90 

( 20) degrees from Le (Figures 9 and 17).  

4.3 Summary of Results 

The major results of this study are: 

1. Sample KS6U1 with a strike-parallel Le, records dextral simple-shear wherein 

displacement was parallel to Le and the vorticity axis is contained in Mf and 

perpendicular to Le.  

2. Deformation temperature of sample KS6U1 was determined by interpreting 

microstructures thought to be the result of subgrain rotation recrystallization at 

390-490 °C. 

3. Sample KS7J with a dip-parallel Le, represents general shear wherein 

displacement was near parallel to Le and the vorticity axis is not contained in 

Mf, although oriented near perpendicular to Le. 
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4. Deformation temperature of sample KS7J was determined by interpreting 

microstructures thought to be the result of boundary bulging recrystallization 

at 270-390 °C. 

5. The data presented here support the two-stage history of the Kawishiwi shear 

zone as proposed by Goodman (2008), in which broadly developed dip-slip 

deformation predated later-stage localized strike-slip deformation.  

6. Later-stage strike-parallel shear was localized within a narrow quartz vein and 

microstructures relate relatively higher deformation temperature to the vein 

environment.  
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5. Implications  

The results of this study support the Le-parallel shearing hypothesis for 

deformation within the Kawishiwi shear zone. Non-coaxial shear was found to be parallel 

to the strike-parallel Le of sample KS6U1 and near parallel to the dip-parallel Le of 

sample KS7J. The vorticity vector was determined to be contained in Mf and 

perpendicular to Le in sample KS6U1. The vorticity vector was determined to not be 

contained in Mf, but lie in a plane with a similar orientation and near perpendicular to Le 

in sample KS7J. Similar to the results of Goodman (2008), data of this study support at 

least two shearing events in the Kawishiwi shear zone. Sample KS7J is interpreted to 

represent the board dip-parallel deformation and records displacement near parallel to Le. 

Sample KS6U1 is interpreted to represent the later-stage localized strike-parallel 

deformation. The general shear flow geometry of sample KS7J does not contain a 

significant strike-parallel component.  

Sample KS6U1 is interpreted to represent a later-stage, localized, strike-parallel 

deformation at a higher temperature than the initial, broadly developed, dip-parallel 

deformation recorded by sample KS7J. This interpretation is supported by relationships 

in the field and microstructural observations. It is important to note that the KSZ is 

dominated by dip-parallel Le. Strike-parallel Le is present only locally in discrete, narrow 

domains (Figure 18). The quartz vein that KS6U1 samples is sharply bounded by areas of 

dip-parallel Le. Microstructures consistent with subgrain rotation recrystallization are 

typified in sample KS6U1 and along with quartz fabrics suggest the vein was warmer 

than the host rock during deformation. Further study of this interaction may shed light on 

the vein fluids and possibly have implications for gold mineralization.   

5.1 Vorticity Vector and Strain Geometry 

The results of this study identify the vorticity vector within the Kawishiwi shear 

zone of northeastern Minnesota. Previous studies call for varying orientations of the 

vorticity axis relative to Le. Interpretations of lineation-parallel shearing call for the 

vorticity axis to be contained within Mf and oriented normal to Le (Figure 2) (e.g., 

Goodman, 2008; Erikson, 2008; Karberg, 2009; Johnson, 2009; Goldner, 2013), whereas 
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interpretations of horizontal displacements call for the vorticity axis to be oriented normal 

to the horizontal (parallel to dip-parallel Le) (Figure 3) (e.g., Hudleston et al., 1988; 

Shultz-Ela and Hudleston, 1991). Two samples KS6U1 and KS7J were analyzed 

containing a strike-parallel and dip-parallel Le, respectively. Within the Kawishiwi shear 

zone, dip-parallel Le dominates. Quartz crystallographic fabric data from sample KS6U1 

indicate a vorticity vector contained within Mf and oriented 90 from the Le (Figure 10). 

Fabric geometry and asymmetry further indicate plane-strain non-coaxial shear (e.g. 

simple shear) parallel to Le. Quartz fabric data from sample KS7J indicate the vorticity 

vector is not contained in Mf, but lies in a plane with a similar orientation and near 

perpendicular to Le (Figures 14 and 17). Fabric geometry and asymmetry further indicate 

non-coaxial non-plane-strain shear (general shear).  

Both samples indicate conditions consistent with Le-parallel shear. Quartz 

crystallographic fabrics of sample KS6U1 display a well-defined pattern indicative of 

monoclinic plane-strain non-coaxial shear (simple shear) (Figure 10). Both c- and a-axis 

data suggest similar orientations of the dominant slip plane and the vorticity axis. The 

dominant slip plane is also consistent with S/C fabrics of right lateral shear. The vorticity 

axis is oriented normal to Le and contained within Mf. Quartz crystallographic fabrics of 

sample KS7J indicate general shear with displacement oriented  near parallel to Le 

(Figure 14). The a-axis maxima girdle is not oriented along the great circle within an Le-

parallel, Mf-normal plane indicating that the deformation was likely general shear flow 

geometry, rather than plane-strain. The vorticity axis does not lie in Mf, but in a plane 

with a similar orientation and near perpendicular to Le. Fabrics viewed looking down Le 

display symmetric fabrics further establishing that the orientation of the vorticity axis is 

nearly 90 degrees from the Le rather than parallel or near parallel to Le. 

5.2 Evaluation of General Shear of Sample KS7J 

 Sample KS7J displays quartz fabrics interpreted to be a result of general shear. 

Further evaluation is warranted as previous studies called for general shear flow 

geometries with a significant strike-parallel component (e.g., transpression; Hudleston et 

al., 1988; Shultz-Ela and Hudleston, 1991). Quartz fabrics of sample KS7J discount a 

significant strike-parallel component for two main reasons. First, asymmetric fabrics are 
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present within a Le-parallel Mf normal plane indicative non-coaxial shear (Figures 14). 

Fabric geometry is consistent with shear near parallel to Le (near vertical in geographic 

coordinates). Second, symmetric fabrics are present within a Le-normal plane (Figure 

14d). Because the Le is oriented parallel to the dip of the foliation (near vertical in 

geographic space), a significant strike-parallel component would lead to an asymmetric 

fabric within a plane normal to the lineation. These symmetric fabrics, in addition to the 

orientation of vorticity axis, together are inconsistent with a significant strike-parallel 

component of general shear within sample KS7J. 

5.3 Evaluation of Orthogonal Reactivation Within the KSZ 

 Goodman (2008) first identified the presence of the medium-high temperature 

prism <a> slip system in the relatively low temperature host rock of the KSZ and 

suggested orthogonal reactivation as a candidate to explain this phenomena. Orthogonal 

reactivation is a hypothesis presented by Oliver (1996) to account for apparent high-

temperature slip at low temperature due to shearing in two orthogonal directions. In this 

scenario, initial non-coaxial shear would produce a crystallographic preferred orientation 

within quartz; subsequent orthogonal shear would exploit weaknesses within the aligned 

quartz lattice and trigger slip along high-temperature slip planes. Oliver (1996) argued 

that a-axes provide a possible test for this model. Given an X-Y-Z coordinate system 

where X is the lineation, Z is the pole to the foliation and Y is perpendicular to X and Z, 

orthogonal reactivation calls for a-axis maxima contained within the YZ plane.  Sample 

KS6U1 contains a-axis maxima within the XZ plane, thus discrediting the idea that 

orthogonal reactivation led to the formation of quartz fabric patterns in the KSZ strike-

parallel sample. Furthermore, microstructures are interpreted to represent subgrain 

rotation recrystallization at temperatures of 390-490 °C. These two factors taken together 

are perhaps best interpreted as indicating that the prism <a> slip is representative of 

medium-high deformation temperature within the quartz of sample KS6U1.  

5.4 Limitations of This Study and Suggestions for Future Work 

The results of this study apply only to the Kawishiwi shear zone. However, only 

two samples were analyzed and interpretations for the remainder of the Vermilion district 
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are not made. Additionally, this analysis relies heavily on quartz a-axis fabrics in 

determining the vorticity profile plane and the vorticity vector. Although the effects of 

general shear on c-axis fabric geometry are well established (e.g. changes to fabric 

symmetry), it is much less clear what response general shear has on a-axis fabric 

geometry. Future work within the Vermilion district could entail analyzing samples from 

other shear zones to gain regional insight. Analyzing quartz a-axis fabrics within more 

complex shear zones such as transpressional, transtensional or stretching faults may 

provide knowledge of the influence of non-plane-strain flow on fabric geometry.  
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6. Summary 

Archean shear zones of northeastern Minnesota have been variably interpreted as 

evidence for horizontal and near-vertical displacement. Through the use of quartz 

crystallographic preferred orientations analysis this study attempts to address sample slip 

direction relative to mineral elongation lineation. Samples collected from areas of dip-

parallel and strike-parallel Le within the Kawishiwi shear zone were selected due to 

deformed quartz being present. The results of this study support the lineation-parallel 

shearing hypothesis for deformation within the Kawishiwi shear zone. Similar to the 

results of Goodman (2008), data of this study support at least two shearing events in the 

Kawishiwi shear zone. Sample KS7J is interpreted to record the pervasive, broad dip-

parallel deformation whereas sample KS6U1 is interpreted to record a late-stage localized 

strike-parallel deformation. The general shear flow geometry of sample KS7J indicates 

displacement near parallel to Le and does not contain a significant strike-parallel 

component. 
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Figure 2. Block diagram displaying shear parallel to the elongation lineation. Note the 

different orientations of elongation lineation from dominantly vertical and oblique (red/blue) 

to less commonly horizontal (green). In each case, shear is interpreted to be parallel to the 

elongation lineation (Goodman, 2008; Erikson, 2008; Karberg, 2009; Johnson, 2009; Goldner, 

2013). Based on the asymmetric fabrics, the vorticity vector is inferred to be orientated within 

the foliation plane, perpendicular to the elongation lineation. Additionally, in the case of 

oblique elongation lineations (blue), one might expect to observe an apparent asymmetry on 

the horizontal surface. Kinematic interpretations of this apparent asymmetry are flawed for 

they are viewed in an arbitrary plane with respect to the elongation lineation.     



28 
 

Figure 3. Block diagram displaying dextral transpression hypothesis. This hypothesis invokes 

shear at varying angles to the elongation lineation ranging from 90
◦
 (A) to 45

◦
(B) to parallel 

(C). A similar geographic orientation of the inferred vorticity axis (blue) is present 

irrespective of elongation lineation orientation.     
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Figure 4. Block diagram of S/C fabric geometry of non-coaxial deformation. S-surfaces 

form due to the accumulation of finite strain and are cut by C-surfaces. C-surfaces 

represent zones of high shear strain and form parallel to the shear zone boundary (Berthé 

et al., 1979; Lister and Snoke, 1984). Note the asymmetric fabric is indicative of shear 

when viewed in a Le-parallel, Mf-normal plane. 
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Figure 5. Deformation mechanisms of quartz and general microstructures of resulting 

recrystallized grains. Shaded grain is the source of the recrystallization. From Passchier and 

Trouw (2005).  
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Figure 6. Crystallographic slip systems of quartz. Stereographic projections correspond to c-

axis populations as a result of the active slip system, plotted in relation to foliation and 

elongation lineation (Figure courtesy of D. Oliver).  
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Figure 7a. Quartz c- and a- axes fabrics of various strain states for coaxial deformation (from 

Thigpen et. al., 2010; after Schmid and Casey 1986). 

 

Figure 7b. Quartz c-axis fabric symmetry. Non-coaxial plane-strain deformation (simple 

shear) results in Type I asymmetric fabrics. Coaxial-plane-strain deformation (pure shear) 

results in Type I crossed girdle symmetric fabrics. Non-coaxial non-plane strain (general 

shear) results in more complex fabric geometry displaying characteristics of both pure and 

simple shear (from Thigpen et. al., 2010; after Schmid and Casey 1986).   
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Figure 8. Electron backscatter pattern of quartz produced from sample KS7J. Kikuchi lines 

are formed by electrons diffracting through lattice planes. Lower image is the indexed pattern.  
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Figure 9. Stereographic and block diagram displaying the spatial relationship between the vorticity 

axis and elongation lineation. In stereographic view, the vorticity axis and elongation lineations 

plot as points. The black points represents the elongation lineation (contained within the S- or C-

plane). The orange point represents the orientation of the vorticity axis located perpendicular to 

the elongation lineation. The green area represents the range of orientations of the vorticity axis 

located parallel to the elongation lineation. For reference the poles to the S- and C- surfaces are 

represented as red and blue dots respectively.  
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Figure 10. Quartz fabrics of sample KS6U1. Fabrics are viewed looking down the elongation 

lineation (left) and looking normal to the elongation lineation, parallel to the S/C foliations 

(right). Symmetric fabrics are present looking down the elongation lineation and asymmetric 

fabrics are present looking normal to the elongation lineation, parallel to the S/C foliations, 

indicative of lineation parallel shearing.  
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Figure 11. Quartz c-axis fabrics of samples KS6U1 and KS7J from Goodman (2008) and this 

study. Data from this study display similar fabrics to Goodman (2008).  
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Figure 12. Photomicrograph of sample KS6U1 as viewed in a plane nearly normal to Mf and 

looking approximately down Le with crossed polarized light. Apparent asymmetry is 

attributed to the offset of  the thin-section to perpendicular Le (15°).       
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Figure 13. Photomicrograph of sample KS6U1 outlining SEM/EBSD acquisition area (red) as 

viewed in a plane normal to Mf and looking down Le with crossed polarized light.   
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Figure 14. Quartz fabrics of sample KS7J. Each row (a,b,c,d) represent a different view of 

fabric. Fabric skeleton are provided within each view. Asymmetric fabrics are present when a 

plane normal to the s-foliation and containing the elongation lineation (row b) imply shear 

sense (right lateral; north-side up). The vorticity vector is interpreted to be the pole to the a-

axes maxima girdle. When viewed looking down the pole to the a-axes maxima girdle, 

asymmetric fabrics are present (row c). Furthermore, when viewed looking down the 

elongation lineation, symmetric fabrics are present (row d). 
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Figure 15. Photomicrograph of sample KS7J. This is an Le-parallel, Mf-normal view; crossed 

polarized light.  
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Figure 16. Photomicrograph of sample KS7J outlining SEM/EBSD acquisition area (red) as 

viewed in a an Le-parallel, Mf-normal view with crossed polarized light.   
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Figure 17. Stereographic and block diagram displaying the vorticity axis of the dip-

parallel sample KS7J. The vorticity axis of this study (purple) is oriented near 90 from 

the elongation lineation.  



43 
 

Figure 18. Cartoon block diagram of the Kawishiwi shear zone displaying relationship 

between dominate dip-parallel Le (grey) and localized strike-parallel Le (white). 

Localized strike-parallel zones are narrow and often sharply bounded by the pervasive 

dip-parallel fabrics. Quartz fabrics of this study are also illustrated.   
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