

VEHICLE DETECTING AND TRACKING IN VIDEO FOR

INCIDENT DETECTION

Nitin Agarwal
Nicholas Andrisevic

Kiran Vuppla
Marian S. Stachowicz
mstachow@d.umn.edu

Laboratory for Intelligent Systems

Department of Electrical and Computer Engineering
271 Marshall W. Alworth Hall
University of Minnesota Duluth

Duluth, MN 55812 USA
Phone: (218) 726-6147

Fax: (218) 726-7267

Andrey Burlev
Konstantin Seleznev

GadgetSoft, Novosibirsk, Russia

www.gadgetsoft.com

Published by
Minnesota Department of Transportation

Office of Research Services
Mail Stop 330

395 John Ireland Boulevard
St. Paul, Minnesota 55155-1899

Disclaimer: This report represents the results of research conducted by the authors and does not necessarily
represent the view or policy of the Minnesota Department of Transportation and/or the Center for
Transportation Studies. This report does not contain a standard or specified technique.

Acknowledgments

1. Northland Advanced Transportation Systems Research Laboratory, (NATSRL),
for providing funding and assistance on this project.

2. The Employees of the Minnesota Department of Transportation, for their
assistance in the data collection for this project.

3. Special thanks to Nic Bacigalupo, MIS Manager for the Duluth Mn/DOT office,
who helped by providing access to the cameras that Mn/DOT has installed around
the Duluth highways.

Table of Contents

Chapter Page No.

1. Introduction 1

2. Vehicle Detection Algorithm 3

2.1. System Overview 3
2.2. Detection of Moving Areas 4
2.3. Determination of the Threshold for Finding Contrast Regions 4
2.4. Background Refresh 5
2.5. Separation of the Areas Found 5
2.6. Tracking the Moving Areas 5
2.7. Attribution of the Moving Areas to Vehicles 7

3. Data Collection for Experimentation 9

3.1. Data Acquisition 9
3.2. Accounting for Variance in Conditions 9
3.3. Glossary 11

4. Possible Algorithm Applications 13

4.1. Video Traffic Surveillance 13
4.2. Automatic Incident Detection 14
4.3. Electronic Rumble Strips 15
4.4. Automatic Number Plate Recognition 15
4.5. Car Park Systems for Occupancy 16
4.6. Car Park Systems for Security 16
4.7. Fire Detection 17
4.8. Electronic License Plate 17
4.9. Bus Lane Enforcement 18

5. Conclusion 19

6. References 21

Appendix A A-1
Appendix B B-1
Appendix C C-1

Tables and Figures

Figure No. Page No.

Figure 1: Distribution histogram of the difference between the

background and the foreground 4

Figure 2: Mask and the contours for the frame 5

Figure 3: Correspondence between areas from frame to frame 6

Figure 4: The case when the way of an area from frame to frame cannot be followed 6

Figure 5: Correspondence between areas 1 to 1 for p+1 frames 7

Figure 6: Experiment on data collected using Grab.exe 9

Figure 7: Experiment on low quality video with Grab.exe 10

Figure 8: Experiment of video clips that were collected using dirty lenses

camera on Grab.exe software 10

Figure 9: Experiment on video clip of an intersection using Grab.exe 11

Figure 10: Queue Length Measurement and Intersection Control [11] 14

Figure 11: An Electronic Rumble Strip [8] 15

Figure 12: A system for Automatic Number Plate Recognition [16] 16

Figure 13: Fire Detection using Video Imaging [13] 17

Figure 14: An Electronic License Plate [15] 17

Figure 15: View from a Camera Installed on a Bus [14] 18

Executive Summary

Video cameras are widely used in Traffic Management Centers (TMCs), and the numbers are
steadily increasing. For example, within Minneapolis and St. Paul, (Twin Cities), the number of
cameras used for traffic management is reaching near 250. Other Minnesota cities are following
this trend, e.g. Traffic Operational Centers (TOCs) in Duluth and St. Cloud also make use of a
large number of cameras for traffic management.

The purpose of this project is to research and experiment on the application of vehicle detection
software in traffic control systems, specifically to detect abnormal traffic situations, such as
sudden lane change, vehicle going off the road and possibly vehicle accidents.

The automation of tasks such as surveillance of the roadways, would help save on the
maintenance of the road and help respond more effectively to abnormal situations, such as
accidents. This would make traveling much easier for the travelers as it would save them time
and money and would make traveling safer, since dangerous road conditions would be more
effectively addressed. Furthermore, the members of the Department of Transportation would be
better able to perform their jobs, without being impeded by tedious and repetitive tasks. All in
all, the automation of certain aspects in a traffic control system proves to not only increase the
effectiveness and robustness of the system, but also increases the quality of service and
performance of the traffic control system.

This research project consists of three parts:

Vehicle Detection Algorithm:
This phase describes the algorithm employed in the development of the software. Main steps in
the algorithm are:

1. Detection of moving areas.
2. Tracking the moving areas.
3. Matching the moving areas to the vehicles.

Data Collection for Analysis:
In this phase various experiments were conducted to determine exactly what features of the
software required further testing and analysis. Before this is done, it must be determined what
type of video clips are considered valid or invalid data, based on features such as content,
quality, etc. Once this is accomplished, the methods by which the data is collected are chosen
based on how effectively they produce the desired data. Next the resources for collecting the data
are described as well as when and where the videos were captured, and the types of equipment to
be used.

The results of the experiments are analyzed and used to determine if further experimentation is
required, and also to form conclusions and comments on the performance of the software.

Possible Algorithm Applications:
This phase involved exploration and evaluation of the applicability of the algorithm in various
types of traffic control situations. Application of the algorithm is discussed for each of these
situations. An evaluation of the usability of the algorithm is reported for each of these situations.

1

Chapter 1

Introduction

The purpose of this project is to research and experiment on the application of a vehicle
detection algorithm in traffic control systems, specifically to detect abnormal traffic
situations, such as sudden lane change, vehicle going off the road and possibly vehicle
accidents.

Video cameras have been widely used in Traffic Management Centers (TMCs), and the
numbers are steadily increasing. Even within Twin Cities alone, the number of cameras
used for traffic management is reaching near 250, and other cities are following this
trend, e.g. Traffic Operational Centers (TOCs) in Duluth and St. Cloud use a large
number of cameras as well.

The initial task of this research is to focus on detecting vehicles from video images and
using it for computation of traffic density. An algorithm is developed for this purpose and
is discussed in the Chapter 2 of the report.

The third chapter discusses the data collection techniques and experimentation with the
data. While gathering data for experimentation, the main goal was to collect data with
various light and weather conditions.

Chapter 4 discusses the possible areas in which the algorithm can be applied and finally,
the last chapter ends with the conclusion of the report.

The algorithm is implemented with the program Grab.exe. Grab.exe has been developed
by Konstantin Seleznev and Andrey Burlev of GadgetSoft Inc. in cooperation with
members of the Laboratory for Intelligent Systems, (LIS), at the University of Minnesota,
Duluth. The main 3 sections of the report are listed below and are discussed in the
following chapters:

 - Vehicle Detection Algorithm
 - Data Collection for Experimentation

- Possible Algorithm Applications

2

3

Chapter 2
Vehicle Detection Algorithm

Traffic control systems are based on a wide range of detectors to estimate the parameters
of moving objects. Magnetic loop detectors are often used today to count vehicles passing
through them. Systems based on video cameras have certain advantages. In addition to
vehicle count they can determine some other traffic parameters such as changes of
trajectory, dynamic parameters of the motion, non-standard motion. A camera can be set
up much easier than a loop detector. The use of video-based detection and control
systems will improve planning and building the roads by providing a way to accurately
measure traffic density. The presented system uses one camera fixed on a high site, e.g. a
bridge or a post, and looking downwards at the traffic scene. The system requires setting
the geometrical parameters of the camera’s position.

This section describes the algorithm for vehicle detection and tracking by video image of
traffic scene taken by stationary camera. The algorithm consists of three stages: detection
of moving areas, tracking of the moving areas, and attribution of the areas to vehicles on
the traffic scene. The system can handle moving objects that partially of completely
overlap, and obtain such parameters as Number of vehicles per hour, Average vehicle
velocity, Density of vehicles per unit distance, Average spacing between vehicles. The
algorithm has been tested on real traffic scenes and proved to be an effective tool to
obtain traffic parameters.

2.1 System Overview

The presented algorithm consists of three parts.

1. Detection of moving areas.
This part of the algorithm detects areas that contrast to the road. Simultaneously, the
image of the road is gradually corrected according to weather and light changes and
camera position.

2. Tracking the moving areas.
After the detection of contrasting areas, for each frame we have 2D areas showing the
positions of the vehicles (or parts of vehicles) on the road. The aim of this part of the
algorithm is to set up a correspondence between the areas in the previous frame

{ }111 ..1, −−− == klkk nlaA and the areas in the current frame { }kkk nlaA ..1,11 == , i.e.
for each 11 −− ∈ kpk Aa to find a set of such 1, −∈∈ kkkq NqAa , building up the
correspondence under the assumption of small travel of the areas from frame to
frame, and for each { }klkk nlaA ..1, == we find a set kkqk PqAa ∈∈ −− ,11 .

3. Matching the moving areas to the vehicles.
A vehicle can consist of a number of areas and an area in the frame can belong to a
number of vehicles. That can happen in a sunny weather when the shadow of the
vehicle moves together with the vehicle or when one vehicle overlaps another on the

4

image. This part of the algorithm sets up the correspondence between moving areas
and vehicles. For each frame k and for each vehicle kpk Vv ∈ we find a set

kkkq CqAa ∈∈ , . Then, for the detected vehicles the trajectories and dynamic
parameters are found.

2.2 Detection of Moving Areas

Detection of the areas can also be split into three steps.

1. Determination of the threshold for finding contrasting regions
2. Background refresh
3. Separation of the areas found

2.3 Determination of the Threshold for Finding Contrast Regions

Let () HjWiFbFgFrF jijijiji ..1,..1;,, === be the value at),(ji in the current frame,
where FbFgFr ,, correspond to the color component on the image, HW , - are width and
height of the frame. Let ()jijijiji BbBgBrB ,,= correspond to background image. Now

we calculate { }ijijijijijijij BbFbBgFgBrFrT −−−= ,,max , and then build a distribution

histogram for ijT , () ∑ 










 =

=Γ
ji

ij

otherwise
xTif

x
, ,0

,1
, where 255...0=x . The distribution graph

will have a maximum near zero because the area of contrasting regions is usually a small
part of the area of the whole frame. Thus, the number of pixels where the difference in
color between the background and the frame is small will be considerable. Let

()xT
xm Γ= max , then we find such T that () ()xTTT

x
m Γ>=Γ maxarg,β . In our case we

took 05.0=β .

25T

mT

x
Γmaxarg

0

mTβ

Figure 1. Distribution histogram of the difference between the background and the frame.

5

2.4 Background Refresh

To calculate the background we use the following scheme. For the first frame we put

ijij FB = , then we calculate mask


 >

=
otherwise

TTif
M ij

ij ,0
,1

, and now for all ijB such that

0=ijM we calculate the refreshed value of the background 1)1(−−+= k
ij

k
ij

k
ij BFB αα ,

where k corresponds to the number of the frame. This means that only those pixels are
refreshed that lie beyond contrasting regions. Experiments have shown that the optimal
value is 1.0=α . If light or camera position parameters change then areas will appear for
which 1=ijM throughout many frames, e.g. due to a motion of a shadow from a
stationary object or when the camera is displaced, and the whole field of the image will
have mask 1. Now we calculate the change mask ()k

ij
Nk

ij
Nk

ij
k
ij MMMMC &...&&~ 1+−−= ,

where N is the threshold number of frames for the change mask. Now for all ijB such

that 0=ijMC we refresh background using the change mask 1)ˆ1(ˆ −−+= k
ij

k
ij

k
ij BFB αα . We

used αα =ˆ .

2.5 Separation of the Areas Found

For each frame ijF we have a mask ijM , and find contours of each connected area where

1=ijM

For frame k
ijF we get a set of areas { }kkk nlaA ..1,11 == characterized by the rectangles

containing them { }kkk nlbB ..1,11 == . Note that we take into account contours that
encircle the area from outside, i.e. if a contrasting area has holes then contours encircling
the holes are not used. Also we do not include into the set of areas contours that have
small area () SbS kl < , we took 20=S which removed regions corresponding to noise
from the vibration of the camera.

2.6 Tracking the Moving Areas

Suppose we have two sets of rectangles { }kkk nlbB ..1,11 == , { }111 ..1, −−− == klkk nlbB for
the current and the previous frames, respectively. We set up a correspondence between

11 −− ∈ kpk Aa and kkq Aa ∈ if 11 −− ∈ kpk Bb intersects with kkq Bb ∈ and

Fig. 2. Mask and contours for the frame.

6

()
()pk

klpk

nlb
kq bS

bbS
b

kkl 1

1

..1,
maxarg

−

−

=
=

I
, similarly we set up a correspondence between kkq Aa ∈ and

11 −− ∈ kpk Aa if kkq Bb ∈ intersects with 11 −− ∈ kpk Bb and
()

()kq

lkkq

nlb
pk bS

bbS
b

klk

1

..1,
1

11

maxarg −

=
−

−−

=
I

.

Thus for each two frames we have a correspondence graph between the previous and the
current frames. Note that one frame can correspond to many frames and many frames can
correspond to one frame. On the other hand, there can be situations when one cannot
follow the way of a region from frame to frame, see figure 4 (the way of the area can be
tracked by the ribs from the previous frame to the current one and from the current frame
to the previous one).

Thus we will take the following algorithm of adding ribs. First we add ribs going from
the areas in the previous frame to the areas in the current frame, and then we add ribs
going from the areas in the current frame to those in the previous frame. When adding a
frame we control that each connected component of the graph would not have more than
one vertex with grade over 1, meaning a graph which includes only vertexes

Figure 3. Correspondence between areas from frame to frame

Figure 4. The case when the way of an area from frame to frame cannot be followed.

11qkb −

21qkb −

1kpb

2kpb

7

corresponding to the current and the previous frames but not to the entire sequence of
preceding frames. As a result, when we unite the entire sequence of correspondences
from frame to frame we can follow the travel of the region throughout a sequence of
frames.

2.7 Attribution of the Moving Areas to Vehicles

Here we assume that a vehicle can consist of a number of areas and an area can
correspond to more than one vehicle. We also assume that the dimension of the vehicle
form a rectangle covering the rectangles that form the vehicle. Let us denote the weight

of an area inside the vehicle as
()

()kl

klkp
klp vS

vbS
w

I
= , where k is the number of the frame,

p is the number of the area in the frame, l is the number of the vehicle in the frame. The
area can be found in three major situations.
For an area in the current frame kpa there is a corresponding area in the previous frame

lqka − , then we set up a correspondence between kpa and vehicles corresponding to lqka −
in case if Wwklp > , we used 1.0=W . If for lqka − there is no correspondence to any
vehicle then we check for how many frames back the area has had a correspondence from
frame to frame as 1 to 1 (see fig. 5). If such a correspondence is found throughout 1P
frames then a vehicle is created, and kpa is attributed to the vehicle.

An area can disappear, i.e. for a region in the previous frame lqka − there is no area in the
current frame. In that case a vehicle may have no regions left, and we mark the vehicle as
gone. If a vehicle that has gone does not reappear for 2P frames (see c) then it is removed
from the set of vehicles. We used 32 =P .
An area can reappear, i.e. for kpa there is no area in the previous frame. We check the
intersection of this region with vehicles that have gone and if Wwklp > , then we admit
correspondence of that region to the gone vehicle klv and the vehicle is restored as
normal.

Figure 5. Correspondence between areas 1 to 1 for p+1 frames.

Pqpkb −
11 −+− Pqpkb

0qkb
…

8

9

Chapter 3
Data Collection for Experimentation

The data collection phase of the project consists of several stages. The fist stage is to
decide when and where the traffic videos should be recorded, contacting the necessary
parties to schedule use of equipment and facilities if needed, and obtaining the required
equipment to perform the data collection. Also during this stage, careful planning is done
to ensure that undesirable outside interference with the recording process, as well as other
obstacles, are kept to a minimum.

3.1 Data Acquisition

The next stage involves the actual data collection. The primary traffic video source for
this project was The Minnesota Department of Transportation, (Mn/DOT), facilities in
Duluth, Minnesota. Nic Bacigalupo, the MIS Manager for the Duluth Mn/DOT office
helped in providing access to the cameras that Mn/DOT has installed around Duluth.
Using a laptop computer and Axis Camera Explorer, traffic videos were recorded directly
from the camera in real-time, and then converted into movie file format to be useable by
Grab.exe software. Traffic footage was also recorded near the University of Minnesota
Duluth campus to provide an additional source of data.

Figure 6: Experiment on data collected using Grab.exe

3.2 Accounting for Variance in Conditions

Data was collected in the form of .avi video files. These videos were recorded at an
approximate frame rate of 30 frames per second. The data was collected in a manner that
accounted for the wide range of weather, equipment, and traffic conditions. In a real
world situation, diverse weather conditions would exist and may affect the performance
of the software. These conditions include a bright sunny day, on a foggy day, on a rainy
day and even during different times of day such as morning time, afternoon time, and
evening time and during dusk.

10

Figure 7: Experiment on low quality video with Grab.exe

Data was also collected at a frame rate of less than 30 frames per second. This was done
to allow observation of the Grab.exe software’s behavior when the bandwidth is less than
optimal, causing a decrease in recording performance, and when the video quality is less
than optimal, i.e. low frame rate, blurry picture, and low resolution.

Figure 8: Experiment of video clips that were collected using dirty lenses camera on
Grab.exe software

Since cameras would be mounted on various platforms and would likely be overlooking
the road from various angles and positions, care was taken to gather video data that
represented these cases. While shooting videos, the camera was placed at various
locations such as under a bridge, on a pole, on the road median, by the side of the road
and various pan, tilt and zoom settings were experimented with.

Traffic monitoring software would be required to work with cameras at locations with
diverse traffic conditions. For example, on a straight highway, on a curved road, on a

11

crossroad, on a cloverleaf, in a tunnel, and so on. Therefore, videos were also shot to
account for these considerations.

Figure 9: Experiment on video clip of an intersection using Grab.exe

3.3 Glossary

Road Color Difference: The contrast of the road from the background to foreground.

Camera Height: The height at which the camera is located on the pole.

Camera Direction: The change in view of the camera.

Field of View: The distance to which the camera can view the vehicles

Car Color Difference: The contrast of the vehicles from the background to foreground.

12

13

Chapter 4
Possible Algorithm Applications

This section discusses the automating of various tasks required by the Department of
Transportation. These tasks can be done manually; however doing so requires a
significant amount of funding and manpower. Discussed below are some of the tasks
which when automated will reduce a lot of the overhead on the human operators, make
traveling safer, increase the cost effectiveness of fuel use, can decrease travel time, and
make the traffic control system more robust.

Algorithm application is discussed for each of these tasks. An evaluation of the
algorithm’s usability is reported for each of these tasks.

4.1 Video Traffic Surveillance

Video images can be used to keep a watch on traffic in the various roads of a town or on
a highway. Several video cameras are installed on the roads on which the traffic needs to
be checked. These images could be transferred to the operator working in the Traffic
Management Center through a broadband connection. A computer algorithm to look for
certain behavior in the traffic can analyze the images from these cameras. This could
include

• Intersection Control: The video image from a busy traffic intersection could be
analyzed to find if the traffic at the intersection is causing congestion [11]. If this is the
case, then the traffic at the previous intersections could be alerted about the congestion at
the approaching intersection so that the vehicle owners could take precautionary measure,
such as an alternate route or just be mentally prepared about the traffic ahead. If this
information could be made available to them beforehand, i.e., before they left their homes
or offices then they could possibly delay their trip so as to avoid the congestion ahead.

• Queue Length Measurement: Similar to the above discussion, if there is significant
amount of traffic congestion on a certain road, then the traffic approaching the congested
area could be warned beforehand about the situation so that the vehicle owners could take
alternate measures in advance to handle the situation. If they are warned well in advance
of the congestion, then they could avoid the congested road. And, if that is not possible,
then they could compensate for the delay, such as by rescheduling appointments and
meetings.

14

Figure 10: Queue Length Measurement and Intersection Control [11]

• Travel Time: It would help the commuters, if existing software could approximate
their travel time depending on the route taken and the amount of traffic on that route prior
to the commencement of their journey [11]. Using software like this, the commuter could
travel a route with the least traffic and subsequently, least travel time.

Algorithm Usability: With some modifications, the algorithm could be adapted to the
above-mentioned applications. For example, instead of identifying just individual
vehicles, it needs to identify a group of vehicles and find how dense they are. If the
density is high, it suggests that the road is crowded with chances of a big queue of
vehicles and travel time can be higher on this road.

4.2 Automatic Incident Detection

Video Imaging could also be used to look for incident conditions on roads. These
conditions include an accident, sudden change of lane, a vehicle going off the road and so
on. This would help the Department of Transportation to regulate the traffic flow on a
road. For instance, if an accident occurred and was detected by the software, which
would then alert the necessary authorities, who will notify and dispatch the required
emergency response teams to the location of the accident.

Furthermore, appropriate action can be taken to avoid congestion or roadblock on the
road due to the mishap. In addition, if an incident occurs, its video could be preserved for
the analysis, which could be useful for insurance companies and the court of law to find
the cause of the accident. Similarly, if a vehicle is being driven recklessly which changes
lanes quickly and is over the speed limit, then appropriate action could be taken against
the driver of the vehicle to avoid any accident.

Algorithm Usability: The algorithm could be applied for the above task after several
enhancements. The software is already capable of identifying and tracking vehicles. If an
additional module is added to it, which could track the trajectory of the vehicle and
identify any sudden change in the trajectory, the software could be implemented for the
above purpose.

15

4.3 Virtual Rumble Strips

Currently, rumble strips are made on roads by the Department of Transportation to check
for vehicles going off the road and to prevent them from going into the fields and ditches.
Installation of rumble strips is expensive and time consuming. It even deteriorates the life
of the tires of the vehicles when they run over them. A simple alternative could be a
vehicle with a camera installed on it and equipped with software that could continuously
monitor the vehicle's lateral position on the roadway and signal the driver's predicted run-
off in time to prevent a mishap [8]. This system would be a simple, inexpensive and
maintenance free alternative to the present rumble strips.

Figure 11: An Electronic Rumble Strip [8]

In addition, the above system could be used to alert the driver if he is going in the wrong
direction on a road-way. This could be accomplished by the fact that on interstates, the
line drawn on one side of the road is yellow in color while on the other side it is white in
color.

Algorithm Usability: This algorithm may not effectively perform this application, as the
basic idea is quite different in this case than what the algorithm is originally designed for.
This algorithm requires the camera to be on a fixed platform and tracks the moving
vehicles; however, this would require the camera to be fixed on a moving vehicle and
would have to identify the steady lines on the either sides of the road.

4.4 Automatic Number Plate Recognition

Automatic number plate recognition could be used as an identification technology for
traffic surveillance, toll collection, traffic management and many other projects where
accuracy, speed and automation are essential objectives. If a high security building
requires all the vehicles only with a valid permit to enter the building, then a surveillance
system could be installed at the gates of the building. This system could be equipped with
software that would decode the number plate of the vehicle from its image and would
compare this number from the ones stored in the database with the permit to the building
[16]. If there were a match, then the gate would open for the car and if not the gate would
remain locked. This would help avoid the need of a human operator at the entrance gates
of the buildings.

16

Figure 12: A system for Automatic Number Plate Recognition [16]

Algorithm Usability: In order to accomplish this, the algorithm would have to undergo
considerable modifications. Once the software identifies a vehicle and its’ License Plate,
a software would be required which could identify the number on the plate and compare
it with the ones in the database.

4.5 Car Park Systems for Occupancy

Multiple video Cameras could be installed in the multi-story car parking. The cameras
could be installed so that they can cover the entire parking lot. If there is an empty slot
for a car in the parking structure, the software would identify the vacant spot and indicate
it at the entrance of the gate so that a car entering the parking structure could go straight
to the empty slot without wasting time and fuel in finding a slot, saving money and
reducing pollution.

Algorithm Usability: The algorithm can be used to identify vacant slots in a car park and
could give directions to a new car entering into the parking area showing the directions to
an empty slot.

4.6 Car Park Systems for Security

Many thefts of cars take place at the car parks where there is nobody to attend the cars. A
mechanism could be installed which could take the picture of a car while it is exiting the
parking space and compare it with a picture which was taken while the car was entering.
After the image comparison the vehicle could be let to leave the parking if a close match
was found or may be stopped for further inspection if there was a mismatch. This system
could help reduce the car theft from parking lots just by using this simple comparison.

Algorithm Usability: The algorithm could be effectively used for the above task. The
software could be used to take the pictures of the cars while entering and exiting the
parking area. By comparing the two pictures, a suspicious car could be identified.

17

4.7 Fire Detection

Certain sections of roads, such as tunnels, are susceptible to particular hazards, such as
fires, which can create a critical situation in short amount of time. As such, detection and
response time are crucial in this case. A Fire Detection mechanism that is installed in
these tunnels would alert the incoming traffic to any such incident so that they could wait
outside until the emergency response teams have dealt with the situation.

Figure 13: Fire Detection using Video Imaging [13]

Algorithm Usability: It would require a completely different algorithm to detect fire.
This algorithm is not designed for this purpose.

4.8 Electronic License Plate

For the law enforcement agencies, this system could be quite useful. An electronic
license plate could be installed on the vehicles, which is different from the conventional
number plate as it would be a flat panel monitor instead of a metal sheet. Any registration
number could be displayed on the monitor depending on the requirement.

Figure 14: An Electronic License Plate [15]

Algorithm Usability: This application again does not come under the scope of this
algorithm. This is significantly different from all the other applications discussed in this
paper.

18

4.9 Bus Lane Enforcement

Certain roads in the cities have bus lanes that are meant specifically for use by the local
city buses. It must be made sure that these lanes are used only by the permitted vehicles
and by no other vehicles. To achieve this, cameras would be installed in the front of the
buses so that they could see the vehicles in front of them [14]. The image from this
camera could be processed to extract the registration number of the vehicle and compared
with the roster of numbers in the database with the permit to drive on the bus lane. If this
number does not match with any of the entries in the database, then a ticket could be
issued to the owner of the vehicle.

Figure 15: View from a Camera Installed on a Bus [14]

Algorithm Usability: This application is quite similar to the one discussed for Automatic
Number Plate Recognition. Hence, the same could be implemented here with little
modifications.

19

Chapter 5
Conclusion

The algorithms were tested with digitized videos of traffic scenes. The values of Number
of vehicles per hour, Average vehicle velocity, Density of vehicles per unit distance,
Average spacing between vehicles have been obtained. All the values were measured
according to pixels on the image, i.e. the geometrical parameters were found in pixels and
velocity was given in pixels per second. Further we are going to develop an algorithm for
automated determination of the position of the camera referring the road by the averaged
character of the vehicles’ travel, and also to improve the adoptability of the algorithms to
the changes in light and small displacements of the camera.

Some or all of the above mentioned possible algorithm applications could be applied to
real life traffic control and management systems depending on the requirements. The
automation of tasks such as surveillance of the roadways, would save on the maintenance
of the road and help respond more effectively to abnormal situations, such as accidents.
This would make traveling much easier for the travelers as it would save them time and
money and would make traveling safer, since dangerous road conditions would be more
effectively addressed.

Furthermore, the members of the Department of Transportation would be better able to
perform their jobs, without being impeded by tedious and repetitive tasks. All in all, the
automation of certain aspects in a traffic control system proves to not only increase the
effectiveness and robustness of the system, but also increase the quality of service and
performance of the traffic control system.

20

21

Chapter 6
References

[1] D. Beymer, P.McLauchlan, B.Cofman and J.Malik. A Real-Time Computer
Vision System for Measuring Traffic Parameters, in Proc. IEEE Computer Vision and
Pattern Recognition, San Juan, Puerto Rico, June, 1997, pp.495–501.

[2] C. Isaac and M. Gerard. Detecting and Tracking Moving Objects for Video
Surveillance, in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, June 2000.

[3] M.F. Philip and M.W. Murray. A Unifying Framework for Structure and Motion
Recovery from Image Sequences, in Proc. of Fifth International Conference on
Computer Vision, June 23–25, 1995, pp. 314–320.

[4] N. Garber and L. Hoel. Traffic and Highway Engineering. Pacific Grove, CA:
Brooks/Cole Publishing Company, 1999.

[5] A. Burlev, K. Seleznev, M. S. Stachowicz. Vehicle Detecting And Tracking Using
Color in Video, Unpublished Paper, 2003.

[6] AlphaWorks, (2002). Real-Time Video Traffic Surveillance Software. Retrieved June
20, 2003 from http://www.alphaworks.ibm.com/tech/videosurveillance

[7] Peek Traffic, Inc., (2000). VideoTrak - The Next Generation Detection Standard...
Retrieved June 19, 2003 from http://www.stansellelectric.com/html/peek-pvs.html

[8] Williamson, G. A. (2002). Automotive Lane Tracker. Retrieved June 21, 2003 from
http://www.williamson-labs.com/lane.htm

[9] Betke, M., Haritaoglu, E., Davis, L. S. (1996). Multiple Vehicle Detection and
Tracking in Hard Real Time. Retrieved June 14, 2003 from
http://citeseer.nj.nec.com/betke96multiple.html

[10] Intertraffic.com, (2002). Carmen Free Flow ANPR Software. Retrieved June 19,
2003 from
http://www.intertraffic.com/marketplace/mypage/products_detail.asp?mypageid=385&pr
oductid=602

[11] Citilog, (2003). Leader for Video Detection solutions in the Traffic Industry.
Retrieved June 12, 2003 from http://citilog.itnetwork.fr/

[12] Golden River, (2000). Traffic Data for the Decision Maker, Retrieved July 17, 2003
from http://www.goldenriver.com/

22

[13] ScanEx, (2003). Detection of forest fires. Retrieved July 19, 2003 from
http://www.scanex.ru/stations/fire.htm

[14] Steven J Warren, (2003). UK Speedtrap Guide. The only UK Site with Comments
from the Police and the most up to date information on UK Police SpeedTraps. Retrieved
July 19, 2003 from http://www.ukspeedtraps.co.uk/gatso16.htm

[15] Electro-Optical Technologies Inc, (2003). State of WI License Plate. Retrieved July
19, 2003 from http://users.rcn.com/lnelson/wi.html

[16] Hi-Tech Solutions, (2003). Welcome To Hi-Tech Solutions. Retrieved July 19, 2003
from http://www.htsol.com/

1

Appendix A

Parallelization of Fuzzy Relational Equations

A-1

Appendix A

Parallelization of Fuzzy Relational Equations

Deepa Krishnamoorthy
Marian Stachowicz
Masha Sosonkina

University of Minnesota

1049 University Drive, Duluth, MN 55812, USA

Abstract

Many scientific and engineering problems involve the use of fuzzy relational equations of
the form A o R = B, where A is the input vector, R is the relational system and B is the
output vector. A lot of research has been carried out to find an appropriate solution to
fuzzy relational equation. For some applications the above system can be very large
involving several hundreds of fuzzy equations for which a solution is to be found. A
uniprocessor system could take a long time to solve large problems since it has limited
memory resources and computational power. Parallelization of large problems into
smaller ones and distributing them to various processors where each processor computes
its own solution is found to be very efficient. Through this paper we show that such a
method for finding solution of fuzzy relational equation yields good results in terms of
savings in time required for finding the solution.

Keywords: Fuzzy relations, computation of fuzzy relational equation

1. Introduction

Fuzzy relational equations [2, 4, 5] are useful in many engineering and scientific
applications like fuzzy controllers and system analysis. The notion of fuzzy relational
equations is associated with the concept of composition (max-min) of binary relation. In
the max-min composition the membership grades (degree of association of fuzzy
relations) are combined by finding the maximum of the minimums of the corresponding
membership grades of the rows of the first fuzzy relation and the columns of the second
fuzzy relation.

The equation

A o R = B (1)

where o denotes the max-min composition [2] is called a fuzzy relational equation. By
fuzzy composition we mean that [1]

max min (ai, rij) = bij ∀ iε I, ∀ j ε J
 jεJ

A-2

If the fuzzy relation R is viewed as a pure fuzzy system, then by the max-min
composition the systems output B can be easily computed without any restrictions given
input A and the system R itself.

There are two types of problems that can arise [7].

• The first problem arises when input A and output B are given and relation R is to
be determined. This problem is called the “fuzzy identification” problem.

• The second problem is called the “fuzzy deconvolution” problem, where relation
R and the output B are known and input A is to be found.

The fuzzy deconvolution problem is the problem of our interest for which a solution is to
be found using a parallel method that we propose and discuss in the following sections.

In this paper, we propose parallelization of fuzzy relational equations by using a row wise
distribution of the matrix, which is used to represent the system of equations.
Parallelization of fuzzy equations is appropriate in cases where the relational equation set
involved is quite large. On a uniprocessor system, large problems could result in
inappropriate consumption of memory and could also slow down the solution process. By
using a parallel method the problem can be broken down into smaller independent
problems, which can be solved simultaneously by each processor involved in the
computation. This saves memory as against the uniprocessor system, by distributing the
work to other processors. Also the time involved to solve the problem can reduce
considerably. In the following sections, we will discuss details about the implementation
approach and the algorithm used.

2. Fuzzy Relational Equations and Parallelization

2.1 Fuzzy Relational Equations

We are interested in finding a solution to the system of equation given in (1)

We can view A as the fuzzy input, B as the fuzzy output and R as the fuzzy relation.

The following is a diagrammatic view of the problem of “fuzzy deconvolution” for which
a solution is to be found.

 Output B Input A

 Fuzzy Output Fuzzy input

Fig 1: The fuzzy deconvolution problem

Fuzzy
Relation R

A-3

We propose to find the input vector A given the fuzzy relation R and the output vector B
by using a parallel method, details of which is given in the next few sections.

2.2 Existence of solution

The height of a vector or relation is defined as the highest membership grade in the set.
The membership grade is a value in the interval [0,1] defining the degree of membership
to the set in consideration [2].

The criterion for existence of solution for the fuzzy relation equation system is that the
height of the relation R be less than the height of the input vector. For the problem at
hand the output vector B acts as the input to the system [6]. So for our case

height [B] < height [R]

Once we can establish that this is true we know that the solution exists.

2.3 Notion of parallelization

Fuzzy relational equations can be easily parallelized since they are represented as a set by
a matrix and each equation in this set is independent (does not depend on the solution of
other equations) of each other.

The following example shows how sets of fuzzy equations look in a matrix form.

 0.5 0.7 0.8 0.3
 R = 0.6 0.6 0.4 B = 0.6
 1.0 0.5 0.3 1.0

Once we get the system in this format we can find the input vector A that satisfies this
equation given output vector B and relation R. Some applications could have systems to
the order of thousands of equations.

By our approach, for larger problem, the matrix R can be broken down into several
independent problems by using a row wise distribution. The number of equations
distributed to each processor depends on the number of equations in the problem and also
the number of processors available for the computation. Each processor also gets the
known output vector B, which is used in finding the local solution. Once the local
solution is found, the global solution is obtained by aggregating the local solutions
computed from each processor. This can be achieved when each processor broadcasts its
local solution to all other processors.

3. Message Passing Interface

MPI (Message Passing Interface) [3] is a widely used standard for writing message–
passing programs to communicate between processors. In the message-passing model of

A-4

parallel computation, the processes executing in parallel have separate address spaces.
Communication occurs when a portion of one process’s address space is copied into
another process’s address space. A fixed set of processes is created at program
initialization, one process per processor.

Some basic functions of MPI are listed below.
MPI_Init : Initiate an MPI

 computation
MPI_Finalize : Terminate a computation
MPI_Comm_size : Determine the number of

 processes
MPI_Comm_rank : Determine the process

 identifier
MPI_Send : Send a message
MPI_Recv : Receive a message
MPI has a rich set of easy to use library functions for parallel tasks. We chose to use MPI
for parallelizing fuzzy equations since it is easy to use and its implementation is readily
available.

4. Implementation

The relational matrix R and known output vector B are stored in files. Once MPI is
initialized, the matrix and known vectors files are accessed and the values are read in row
wise.

The total number of rows going to each processor is determined by using the following
formula:
Local number of rows = total number of rows / number of processors

In case the number of rows cannot be broken down equally, the last processor will be
given the extra rows as a simple solution to this problem. Since each processor reads
from the same file, the start and end points of reading are determined initially to avoid
some processors reading data meant for other processors.

4.1 Finding the Upper Level Solution

Given fuzzy relation R and output vector B of equation (1), the aim is find the input
vector A. The solution that satisfies this relational equation is given as follows [2]

 R α B = 1 ; if r <= b (2)
 = b ; if r > b

where α is an operator that determines the output value depending on the values of a row
of R and vector B as given in the formula (2).

A-5

Once the local solution is found in each processor using the above formula, it is broadcast
to all other processors. Each processor in turn stores the solution coming from other
processors according to the rank of the processors so that each processor will have the
entire solution in the same sequence.

4.2 Example for Relational Matrix

If the relational matrix R is given as
 0.8 0.5 0.4 0.3 0.9 0.6 0.9 0.5 0.9 0.5 1.0
 0.7 0.9 0.4 0.6 0.9 0.9 0.8 0.2 0.2 0.5 0.6
 0.2 0.4 0.4 0.2 0.3 0.0 0.5 0.7 1.0 0.4 0.3
 0.3 0.2 0.4 0.5 0.4 0.5 0.3 1.0 0.8 0.9 0.7
 0.4 0.1 0.9 0.5 0.9 0.7 0.3 0.7 0.5 0.9 0.9
R = 0.2 0.3 1.0 0.7 0.9 0.3 0.8 0.7 0.0 0.3 0.9
 0.1 0.2 0.9 0.7 0.6 0.9 0.1 0.9 0.6 0.4 0.0
 0.0 0.2 0.0 1.0 0.3 0.2 0.1 0.3 0.2 0.9 0.2
 0.7 0.4 0.6 0.3 0.6 1.0 0.8 0.2 0.5 0.4 0.0
 0.0 1.0 0.8 0.1 0.3 0.8 0.6 1.0 0.6 0.5 0.2
 0.4 0.7 0.5 0.6 0.9 0.8 0.9 0.6 0.5 0.6 0.9

This is an 11 x 11 relational matrix representing a set of 11 Fuzzy equations. The matrix
is square since it has equal number of rows and columns.

4.3 Example for Input Matrix

The fuzzy input is a 1 x 11 matrix as given below in the transposed form

BT = 0.9 0.4 0.3 0.5 0.6 0.1 1.0 0.8 0.9 0.3 0.2

Each value represents the value on each row of the output matrix B. This is read
simultaneously into each processor

5. Solution

For the example, suppose there are only two processors. Since there are 11 rows, there
cannot be an equal distribution to each processor. In this case as mentioned before, we
send 5 rows to each processor, which accounts for 10 rows and the eleventh row, which is
the extra row for this case, is sent to the last processor (second processor). Observe that
since the height of the relational matrix is not less than the height of the output matrix, a
solution exists. The data in each processor looks as follows
Processor 1:

 0.8 0.5 0.4 0.3 0.9 0.6 0.9 0.5 0.9 0.5 1.0
 0.7 0.9 0.4 0.6 0.9 0.9 0.8 0.2 0.2 0.5 0.6
 0.2 0.4 0.4 0.2 0.3 0.0 0.5 0.7 1.0 0.4 0.3
 0.3 0.2 0.4 0.5 0.4 0.5 0.3 1.0 0.8 0.9 0.7
 0.4 0.1 0.9 0.5 0.9 0.7 0.3 0.7 0.5 0.9 0.9

A-6

 Processor 2:

 0.2 0.3 1.0 0.7 0.9 0.3 0.8 0.7 0.0 0.3 0.9
 0.1 0.2 0.9 0.7 0.6 0.9 0.1 0.9 0.6 0.4 0.0
 0.0 0.2 0.0 1.0 0.3 0.2 0.1 0.3 0.2 0.9 0.2
 0.7 0.4 0.6 0.3 0.6 1.0 0.8 0.2 0.5 0.4 0.0
 0.0 1.0 0.8 0.1 0.3 0.8 0.6 1.0 0.6 0.5 0.2
 0.4 0.7 0.5 0.6 0.9 0.8 0.9 0.6 0.5 0.6 0.9

According to the formula (2) we have local solution (in transposed form)

Both Processors

Processor 1:

 0.1 0.1 0.2 0.1 0.1

Processor 2:

 0.1 0.1 0.1 0.1 0.1 0.1

The local solution found in this manner is broadcast to each processor. The final solution
in each processor looks as follows

Final solution:

 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

This is a simple example of the solution procedure of fuzzy relational equation. Most
applications will have larger set of fuzzy relational equations. We will in the following
section, provide the experiments and results of computer simulations and compare the
time required for computing solution of large fuzzy equation sets on several processors as
against a uniprocessor system.

6. Experiments and Results

Experiments were carried out for various sizes of the relational matrix. Given below are
the results obtained for 11 x 11, 25 x 25, 100 x 100 and 400 x 400 dimensional matrices.
The values were generated randomly and experiments were run on SunBlade100 Unix
systems with UltraSparc IIe processors, having a clock speed of 500MHZ and each
machine having about 384MB of memory. The table’s show that the experiments were
carried out for a total of 11 processors and the time in seconds has been calculated. The
time on each processor is displayed according to the processor rank or identification
number in the pool of processors. We show that as the numbers of processors are
increased, the time required for finding solution decreases. Also as the problems get
bigger the savings in time is more significant as seen from the tabulated results.

A-7

Table 1: Experiment with 11 Fuzzy Equations

Number Of
Processors

 Max

1 0.033 0.033
2 0.061 0.091 0.091
3 0.172 0.113 0.175 0.175
4 0.157 0.144 0.190 0.262 0.262
5 0.312 0.183 0.222 0.277 0.261 0.312
6 0.231 0.178 0.255 0.292 0.253 0.295 0.295
7 0.215 0.202 0.156 0.212 0.190 0.165 0.168 0.215
8 0.224 0.202 0.138 0.209 0.207 0.178 0.175 0.188 0.224
9 0.115 0.111 0.113 0.110 0.100 0.102 0.084 0.081 0.092 0.115

10 0.115 0.116 0.118 0.104 0.098 0.100 0.084 0.074 0.091 0.096 0.118
11 0.040 0.036 0.038 0.039 0.033 0.034 0.032 0.029 0.030 0.027 0.022 0.040

Time on
Processor(sec)

0 1 2 3 4 5 6 7 8 9 10

Number
Of Processors

 Max

1 0.016 0.016
2 0.042 0.112 0.042

3 0.041 0.011 0.145 0.145

4 0.043 0.015 0.017 0.013 0.043

5 0.040 0.014 0.017 0.014 0.010 0.040

6 0.046 0.023 0.025 0.022 0.019 0.016 0.046

7 0.057 0.035 0.038 0.034 0.029 0.031 0.027 0.057

8 0.051 0.032 0.033 0.031 0.026 0.029 0.023 0.021 0.051

9 0.053 0.036 0.038 0.036 0.032 0.039 0.030 0.029 0.027 0.053

10 0.070 0.054 0.060 0.057 0.052 0.053 0.052 0.040 0.040 0.044 0.070

11 0.059 0.050 0.054 0.052 0.044 0.047 0.049 0.042 0.038 0.040 0.035 0.059

Time on
Processor(sec)

0 1 2 3 4 5 6 7 8 9 10

Table 2: Experiment with 25 Fuzzy Equations

A-8

7. Discussion

We observe from the tables that parallelization works well for problems involving a large number of
equations. The tables also show a maximum value for each row in the last column. This value is the
minimum amount of time that a pool of processors has to wait until a solution can be obtained. Table 1
is the experiment conducted for an 11 x 11 matrix. This problem is very small involving only 11 rows.
We observe that the time for computation does not show any significant decrease as we increase the
number of processors.

We can think of the following simple equation

Number Of
Processors

 Max

1 3.251 3.251
2 0.864 0.834 0.864
3 0.431 0.401 0.405 0.431
4 0.265 0.238 0.240 0.236 0.265
5 0.228 0.203 0.205 0.202 0.198 0.228
6 0.199 0.175 0.178 0.173 0.169 0.168 0.199
7 0.188 0.166 0.170 0.170 0.164 0.161 0.159 0.188
8 0.185 0.167 0.167 0.166 0.164 0.161 0.154 0.158 0.185
9 0.155 0.135 0.138 0.135 0.130 1.33 0.129 0.126 0.124 0.155

10 0.126 0.116 0.114 0.112 0.107 0.111 0.102 0.104 0.096 0.102 0.126
11 0.117 0.105 0.104 0.101 0.096 0.094 0.095 0.097 0.092 0.089 0.088 0.117

Time on
Processor(sec)

0 1 2 3 4 5 6 7 8 9 10

Table 3: Experiment with 100 Fuzzy Equations

Number
Of
Processors

 Max

1 245.3 245.3
2 196.2 196.5 196.5
3 152.2 152.9 152.6 152.9
4 83.11 83.42 83.11 83.70 83.70
5 51.10 51.22 51.08 51.19 51.07 51.22
6 37.74 37.72 37.72 37.73 37.71 37.78 37.78
7 30.15 30.24 30.25 30.19 30.28 30.33 30.24 30.25
8 25.87 25.88 25.86 25.83 25.86 25.88 25.85 25.8 25.87
9 19.67 19.65 19.65 19.65 19.65 19.55 19.65 19.65 19.64 19.67
10 15.55 15.54 15.54 15.54 15.54 15.54 15.54 15.38 15.31 15.5 15.55

11 12.29 12.28 12.27 12.26 12.26 12.26 12.26 12.25 12.25 12.2 12.2 12.29

Time on
Processors
(sec)

0 1 2 3 4 5 6 7 8 9 10

Table 4: Experiment with 400 Fuzzy Equations

A-9

Total time for computation = Parallelization time + solving time

For smaller problems the parallelization time could be significantly higher due to the communication
overheads encountered while exchanging data between processors. Same is the case for a 25 x 25 matrix
involving only 25. Table shows the results obtained for this case. Observe that there is not much
decrease in time since the problem is still relatively small. Table 3 is the experiment conducted for a 100
x 100 matrix involving 100 rows. The results obtained for this experiment however shows a significant
decrease in time as the number of processors is increased. Here we start to see the effectiveness of
parallelization. Table 4 is the experiment conducted for larger matrix of size 400 x 400. We can observe
that there is quite a bit of saving in time as the number of processors is increased and as the problem gets
bigger. In fact a super linear speedup is achieved for larger problems (Tables 3 and 4). This result is due
to the size of the problem that cannot be solved efficiently on a single processor (or a small number of
processors).

8. Conclusion

Through this paper we proposed to show that fuzzy relational equations of the form A o R = B, could be
parallelized to find a solution. Our experiments show that for large problems, parallelization works
efficiently as the number of processors is increased. As we can see from the results of 11 x 11 and 25 x
25 relational matrix, since the problems are relatively small, parallelization does not work very well.
Parallelization has communication overheads for the processors involved and for smaller problems this
overhead overcomes any advantage of distributing the problem to several processors. As the problems
get larger as in the case of 100 x 100 and 400 x 400 relational matrices as shown in the experiments,
these overheads become less significant and parallelization works by reducing the time required as
against the uniprocessor system. The entire matrix is not stored on one particular processor and only
significant portion is read into each processor saving memory and reducing computation time. This
makes parallelization a good choice for solving problems involving large number of fuzzy relational
equations.

9. Acknowledgements

This work is supported by Northland Advanced Transportation systems Research Laboratories
(NATSRL), University of Minnesota Duluth.

10. References

[1]Y. Wu, S. Guu and J. Liu, “An Accelerated Approach for Solving Fuzzy Relational Equations With a
Linear Objective Function,” Fuzzy Sets Syst., vol 10 No.4, Aug 2002.

[2]G.J. Klir and B. Yuan, “Fuzzy Sets and Fuzzy
Logic”, NJ: Prentice-Hall, 1995

[3]W.Gropp, E. Lusk and A. Skjellum, “Using MPI: Portable Parallel Programming with the

A-10

Message-Passing Interface”, second edition, MIT press, 1999

[4]T. Terano, K.Asai and M. Sugeno, “Fuzzy Systems Theory and Its Applications”, Academic Press,
1992

[5]K. Tanaka,”An Introduction to Fuzzy
Logic for Practical Applications”, Rassel Inc,
1996

[6]M.Stachowicz, L.Beall,”Fuzzy Logic Package for Mathematica”, Wolfram Research Inc, 2000

[7]L. Wang, “A Course in Fuzzy Systems and Control”, NJ: Prentice Hall, 1996

Appendix B

Sigmoidal Function Based Optimal Weighted Vector Directional Filters

B-2

Appendix B

Sigmoidal Function Based Optimal Weighted Vector Directional Filters

Rastislav Lukac1 and Marian S. Stachowicz2

1 Slovak Image Processing Center
Jarkova 343, 049 25 Dobsina, Slovak Republic, lukacr@ieee.org

2 Laboratory for Intelligent Systems, Department of Electrical and Computer Engineering, University of
Minnesota Duluth, 274 MWAH,

10 University Drive Duluth, MN 55812, USA, mstachow@d.umn.edu

Abstract
In this paper, we provide a new directional optimization of a recently developed class of weighted vector
directional filters (WVDFs) that represent a powerful tool for removing of impulsive noise, bit errors
and color artifacts in color images. Depending on the weight coefficients, the WVDFs can be designed
to perform a wide range of smoothing operations. The proposed optimization process based on
sigmoidal approximation of the sign function and utilizing local information allows to adapt the WVDF
behavior to statistical properties of both noise and useful signal, saves the memory space and is easy to
implement. The proposed sigmoidal function based optimal WVDFs find the application in denoising of
standard color images and digitized old color photos, they are able to remove impulsive noise and
outliers, and provide excellent signal-detail and color chromaticity preservation.

Note: The complete paper in this appendix is available on the CD as a pdf file.

Appendix C

Presentation at Mn/DOT Duluth on the Research Day
Vehicle Detection and Tracking in Traffic Control Systems

C-1

Appendix C

Presentation at Mn/DOT Duluth on the Research Day
Vehicle Detection and Tracking in Traffic Control Systems

Marian S. Stachowicz

A. Burlev, K. Seleznev,
N. Andrisevic, N. Agarwal, K. Vuppla

2 Laboratory for Intelligent Systems, Department of Electrical and Computer Engineering, University of
Minnesota Duluth, 274 MWAH,

10 University Drive Duluth, MN 55812, USA, mstachow@d.umn.edu

Abstract
This presentation was made by Marian S. Stachowicz at the Mn/DOT Duluth on the Research Day, i.e.
on 11/13/03. This presentation has been organized as follows

 Research Objective
 Summary of Research Methodology
 Summary of Previous Work
 Literature Search
 Implementation
 Comparison
 Expected Benefits and Users of this Research
 Snapshots of the software
 Possible Applications

Note: The complete presentation in this appendix is available on the CD as a ppt file.

