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AUTOMATIC DETECTION OF RWIS SENSOR MALFUNCTIONS 

(PHASE I) 

 
 

Objective 
 

The overall goal of this project (Phases I & II) is to develop computerized procedures that detect 
Road Weather Information System (RWIS) sensor malfunctions. In this first phase of the research we 
apply two classes of machine learning techniques to data generated by RWIS sensors in order to 
predict sensor malfunctions and thereby improve accuracy in forecasting temperature, precipitation, 
and other weather-related data.  

 
Project Overview 
 

The Minnesota Department of Transportation (MN/DOT) uses environmental sensor station data, that 
is, Road Weather Information System data, to ascertain optimal deployment and use of winter 
maintenance crews, equipment, and deicing materials. [1, 2] These sensors collect data on weather 
conditions every 10 to 20 minutes at or near the road surface. The data is broadcast to a central 
monitoring station and used to forecast winter road conditions. Since forecasts are only as good as the 
sensor data on which they are based, it is critical that RWIS sensors be properly calibrated and 
functioning correctly. At present, routine maintenance and calibration are performed annually at each 
site. Yet missing from the RWIS system are automated procedures to monitor sensor data 
continuously for availability and accuracy and to detect sensor malfunctions. This needed RWIS 
component is the essence of this project.  
 
Our research focuses on developing procedures to identify malfunctioning RWIS sensors by 
analyzing the sensor data. Repairing and/or recalibrating these sensors as malfunctions are detected or 
at least identifying those sensors that are misreporting weather conditions can assure confidence in 
the overall accuracy of the data. In this section, we provide an overview of this pilot project and 
introduce the environment in which we are conducting this research. 
 
Minnesota has 91 RWIS meteorological measurement stations positioned alongside major highways 
to collect local pavement and atmospheric data. The State is laid out in a fixed grid format and RWIS 
stations are located within each grid.  The stations themselves are positioned some 60 km apart. Each 
RWIS station utilizes various sensing devices, which are placed both below the highway surface and 
on towers above the roadway. Road sensors are used to determine if the road surface is wet, dry, 
frosted, snow covered, or iced. Tower sensors record such weather conditions as air temperature, 
relative humidity, wind speed, wind direction, and precipitation. Some of the stations use video 
cameras and visibility sensors to gather data about related conditions such as rain, fog and snow. 
 
The sensor data, that is, the variables that will be used in determining sensor malfunctions, are 
dependent on the particular type of sensor being evaluated. Each sensor data item consists of a site 
identifier, sensor identification, date, time (Greenwich Mean Time), and the raw sensor values. The 
primary variables encountered when working with RWIS data include the following: 
 

• Air Temperature - recorded in units of 0.01 degrees Celsius.  Values range from -999 to 
9999. 

• Visibility - horizontal visibility. Values range from 0 to 99999 and are recorded in one tenth 
of a meter.  All sites can report visibility up to 1.1 miles. Some detect and record visibility up 
to 10 miles.  
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• Surface Temperature - road surface temperature in units of 0.01 degrees Celsius. Values 
range from -999 to 9999.  

• Precipitation Type - the form of current precipitation represented by one of the following 
codes: 

 
 
 
 
 
 
 

 
• Precipitation Intensity - the intensity of current precipitation represented by one of the 

following codes: 

 

 

 

 

 

 

 

• Precipitation Rate - rate of rain/snow fall measured in mm/hour with values ranging from 
000 to 999.   

• Precipitation Accumulation - the total amount of rain/snow reported in millimeters.  Values 
are available for 1, 3, 6, 12 and 24 hour periods.   

• Wind Speed - measured in units of 0.1 meters/second.  Values range from 0 to 9999. 

• Wind Direction - measured as an angle, where 0° indicates north. Values range from 0° to 
360°. 

• Air Pressure - measured in units of 0.1 millibar. Values range from 0 to 9999. 

• Dew Point - recorded in units of 0.1° Celsius.  Values range from -999 to 9999. 

Not all sensors (nor all RWIS sites) are being studied during this project. Our research focuses on a 
subset of sensors that includes precipitation, air temperature, and visibility. These sensors were 
identified by Mn/DOT as being of particular interest. However, data from other sensors will be used 
to determine if these particular sensors are operating properly.  

A set of 13 RWIS stations were chosen for this phase of the project. The selected sites are not subject 
to microclimatic conditions and are contained in the same or adjacent grids located in the Northern 
part of the State. Each RWIS station is located near one or more regional airports so that the data 
generated by their Automated Weather/Surface Observing System (AWOS/ASOS) sensors can be 
compared with the data generated by the RWIS site. Airport AWOS/ASOS sites are located no more 
than 30 miles from each of the selected RWIS sites (a distance ensuring that each RWIS site is linked 
to at least one regional airport yet keeping to a minimum the number of airports lying within the 30-
mile radius of any given RWIS site). The airports associated with each RWIS site are noted in Table 
1. Figure 1 illustrates the location of each site and its adjacent airports. As may be noted, the 13  
 

Code Type 
0 No precipitation detected 
1 Precipitation detected, not identified
2 Rain 
3 Snow 
41 Moderate Snow 
42 Heavy Snow 

Code Intensity 
0 None 
1 Light 
2 Slight 
3 Moderate 
4 Heavy 
5 Other 
6 Unknown
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Table 1. RWIS sites and associated AWOS/ASOS sites. 

--------------------------------------------------------------------------------------------------------------------------

----- 

 
Figure 1. Location of RWIS/AWOS sites. 

RWIS 
Site Id

Airport 
Code

Distance 
(miles)

14 KFFM 15.6
19 KELO 9.71

KAIT 16.3
KBRD 21.8

25 KROX 12.2
27 KINL 2.82
35 KBRD 17.6
35 KLXL 17.8
49 KPKD 16.5
56 KROX 29.2
60 KCKN 13.9
62 KDTL 11.2

KINL 27.3
KORB 19.9
KCKN 29.2
KFSE 16.2
KTVF 22.1
KBDE 20.4
KROX 29.7

20

67

68

78
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sites cluster naturally into three groups; this clustering was used to advantage as we refined our 
analysis of the sensor data. 

The data generated by the airport sensors represent information from either an AWOS or ASOS site. 
[3] Data values are generally reported every hour and in units of measurement that often differ from 
those of the RWIS sites. Following are the variables of interest for the AWOS/ASOS data. 

 
• Air temperature - measured in whole (integer) degrees in Fahrenheit. Range is from –140° F 

to 140° F. 

• Visibility - prevailing horizontal visibility, coded as one of 19 values ranging from 3/16 mile 
to 10+ miles. 

• Weather Code - prevailing weather condition occurring at the time of the observation.  There 
are over 80 different possible codes available. [We note that 12 specific sites seem to report 
only from a subset of 15 codes.] 

• Dew point temperature - the temperature at which dew forms.  This variable is reported in 
whole (integer) degrees Fahrenheit.  It ranges from -140F to 140F. 

• Air pressure - the atmospheric pressure, when reduced to sea level, expressed in units of 0.1 
millibars. 

• Wind speed and Wind direction - encoded in the same variable Wind. Speed is in knots and 
direction is in compass degrees of the source of prevailing wind. When variable winds are 
detected (when no single direction is present for more than half the time), a value of 0 is 
recorded.  The range of wind speed is between 0 (calm) and 999 knots. 

 
The RWIS and AWOS/ASOS data was downloaded to our local server. For the initial 13 RWIS and 
corresponding AWOS/ASOS sites, we have historical sensor data from March 2001 to October 2005. 
We have converted the data to common units of measurement to support direct comparison of various 
system data.  
 
We have also acquired and downloaded approximately 4 years of maintenance data for the RWIS 
sensors within the State – a total of 624 records. Since there is little standardization to the recording 
of maintenance data, we cast this data into a form that can be tied to the data of those sensors that 
have been recalibrated. Each maintenance record identifies a sensor as being in one of four states: 

• Fully Operational – 338 entries 

• Not Commissioned (offline on purpose) – 4 entries 

• Problem Reported – 55 entries 

• Problem Verified – 227 entries 
 

An explanation field is also included in each record that may be used to better classify the data entry. 
The five most frequently occurring states included in this field for the historical data are listed below: 

• Status to Fully Operational – 145 entries 

• Log Appended – 144 entries 

• No Data Received – 137 entries 

• Incomplete Data – 33 entries 

• Incorrect/Suspicious Data – 21 entries 
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One of the methodologies we explored to identify defective sensors and sensor calibration errors may 
be referred to as neighborhood associations. This technique uses AWOS/ASOS sensor data to predict 
the values of the corresponding RWIS sensors for sites that are nearest neighbors (as defined by Table 
1). Disparity among results may imply RWIS sensor malfunction. This method can only be employed 
if the data values produced by the RWIS and AWOS/ASOS sensors are actually comparable; earlier 
research raised the question whether they are. [4] For example, unlike AWOS/ASOS sensors, RWIS 
temperature and dew point sensors are not aspirated. 
 
We conducted a series of calculations to determine if data from the RWIS and nearby AWOS/ASOS 
sites are actually compatible. In particular, we computed the correlation between each pair of RWIS 
and AWOS/ASOS sites, a total of 19 data sets. The variables examined were air temperature, 
visibility, and precipitation. For illustration, we limit our discussion here to air temperature. Similar 
results were obtained for the other two variables. 
 
Table 2 contains the correlation values for air temperature. The average correlation was 0.923, a 
significant degree of correlation. This suggests that although some calibration may be necessary to 
account for differences in RWIS and AWOS/ASOS sensors, the different systems allow for direct 
comparisons. Thus, we concluded that we should be able to build reliable prediction models using 
neighborhood associations for RWIS sites based on AWOS/ASOS data and data from nearby RWIS 
sites.  
 
-------------------------------------------------------------------------------------------------------------------------- 

 
 

RWIS 
Site Id 

Airport 
Code Correlation

14 KFFM 0.968 
19 KELO 0.908 
20 KAIT 0.948 
20 KBRD 0.917 
25 KROX 0.963 
27 KINL 0.912 
35 KBRD 0.914 
35 KLXL 0.915 
49 KPKD 0.943 
56 KROX 0.971 
60 KCKN 0.948 
62 KDTL 0.919 
67 KINL 0.945 
67 KORB 0.865 
68 KCKN 0.892 
68 KFSE 0.888 
68 KTVF 0.900 
78 KBDE 0.904 
78 KROX 0.918 

 
Table 2. Correlation of air temperature for RWIS and AWOS/ASIS pairs. 
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In Phase I of this project, we developed methods for recognizing malfunctions in RWIS sensors by 
building models using machine learning methods that employ data from nearby sensors in order to 
predict likely values of the sensor we are interested in. For example, consider the situation shown in 
Figure 2. In this case we are interested in predicting values such as the temperature of RWIS sensor 
67. Our approach involves taking data from surrounding sensors (in this case RWIS sensors 19 and 
27) and AWOS sensors INL, ORB and LYU) and using the values of these sensors to make 
predictions about sensor 67. A sensor that begins to deviate noticeably from values inferred from 
nearby sensors serves as an indication that the sensor has begun to fail. Figure 3 exemplifies the result 
of such a prediction model. In this figure the actual sensor values are shown along with the model’s 
predicted values. The fault is easy to detect due to the abrupt differences in the predicted values.  
 
We developed models to predict values of the temperature, precipitation and visibility sensors using a 
variety of different methods, including machine learning algorithms and basic statistical methods such 
as linear regression, naïve Bayes, decision trees, neural networks, and Bayes networks. To make the 
data more uniform and to remove some of the variance due to time of year and day, we normalized 
the data to obtain for each data point a normalized measure of how the value of each sensor related to 
the expected value of that sensor. For example, to report the temperature value from other sensors we 
first normalized with respect to the historic average values for that time frame. A temperature reading 
for sensor 19 of 25 degrees Fahrenheit would be considered out of the norm for August but perhaps 
reasonable for March at noon. After normalizing the data, we tested our methods by dividing the data 
repeatedly into training and testing groups using 10-fold cross validation, repeated 10 times. In 10-
fold cross validation the data is randomly permuted and then divided into 10 equal sized groups. Each 
group is then in turn used as test data while the other 9 groups are used to create a model (in this way 
every data point is used as a test point exactly once). The results for the ten groups are summed, and 
the overall result for the test data is reported. 
 
-------------------------------------------------------------------------------------------------------------------------- 
 

Figure 2: Predictions for a sensor are made using neighboring sensor data. 

67 
Temp(67,now) = ??

19 

27 

ORB LYU

INL 
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Figure 3: Sample of prediction of sensor temperature values over a 12-hour period 
 
-------------------------------------------------------------------------------------------------------------------------- 
 
Testing was conducted using several years of RWIS and AWOS data. For each set of tests each 
RWIS site was in turn used as the site to be predicted. All data from the other sites (relating to 
temperature, precipitation, etc.) that had been collected immediately preceding the time to be 
predicted were input to the model. Results indicate that temperature is relatively easy to predict. 
While there is much greater variability in the precipitation and visibility sensors, we still found 
significant prediction capability even for these sensors.  
 

Machine Learning Models 
 

In this section we will describe the machine learning models used in the first phase of this project. 
Machine learning (ML) is a subfield of artificial intelligence whose concern is the development, 
understanding and evaluation of algorithms and techniques to allow a computer to learn. Since many 
ML algorithms use analysis of data for building models, statistics plays a major role in this field. 
 
A process or task that a computer is assigned to perform can be termed the knowledge or task domain 
(or just the domain). The information that is generated by or obtained from the domain constitutes the 
knowledge base. The knowledge base can be represented in various ways using Boolean, numerical, 
and discrete values, relational literals, and their combinations. The knowledge base is generally 
represented in the form of input-output pairs, where the information represented by the input is given 
by the domain and the result generated by the domain is the output. The information from the 
knowledge base can be used to depict the data generation process (i.e., output classification for a 
given input) of the domain. Knowledge of the data generation process does not define the internals of 
the working of the domain, but can be used to classify new inputs accordingly.  
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As the knowledge base grows in size or becomes more complex, manually inferring new relations 
about the data generation process (the domain) increases in difficulty for humans. ML algorithms try 
to learn from the domain and the knowledge base to build computational models that represent the 
domain in an accurate and efficient way. The model captures the data generation process of the 
domain; algorithms use the model to match previously unobserved examples from the domain. 
 
Models assume different forms based on the ML algorithm itself, including, for example, decision 
lists, inference networks, concept hierarchies, state transition networks, and search-control rules. 
Although the concepts and working of various ML algorithms may differ from one another, their 
common goal is to learn from the domain they represent.  
 
In order to build a model of the domain, the ML algorithms must have a dataset, which constitutes the 
knowledge base. The dataset is a collection of instances from the domain. Each instance consists of a 
set of attributes which describe the properties of that example from the domain. An attribute takes in a 
range of values based on its attribute type, which can be discrete or continuous. Discrete (or nominal) 
attributes take on distinct values (e.g., weather = sunny) whereas continuous (or numeric) attributes 
take on numeric values (e.g., temperature = 20ºF). Each instance consists of a set of input attributes 
and an output attribute. The input attributes are the information given to the learning algorithm, and 
the output attribute contains the feedback of the activity on that information. The value of the output 
attribute is assumed to depend on the values of the input attributes. The attribute along with the value 
assigned to it define a feature, which makes an instance a feature vector. The model built by an 
algorithm can be seen as a function that maps the input attributes in the instance to values of the 
output attribute. 
 
ML algorithms are used to learn a model that describes the data generation process based on the 
dataset given to it. The data given to the algorithm for building the model is called the training data, 
as the computer is being trained to learn from this data, and the model built is the result of the 
learning process. The resulting model can be used to predict or classify previously unseen examples. 
New examples used to evaluate the model are called a test set. The accuracy of a model can be 
estimated from the difference between the predicted and actual value of the target attribute in the test 
set. 
 
ML algorithms can be used to predict weather conditions. Using the weather data collected from a 
location for a certain period of time, we can build a model to predict variables such as temperature at 
a given time based on the input to the model. As weather conditions tend to follow patterns and are 
not totally random, we can use current meteorological readings along with those taken a few hours 
earlier at a location and also readings taken from nearby locations to predict a condition such as the 
temperature at that location. Thus, the data instances that will be used to build the model may contain 
current and previous readings from a set of nearby locations as input attributes. The sensor value that 
is to be predicted at a given RWIS site is the target attribute. The type and number of conditions that 
are included in an instance depend on the sensor value that we are trying to predict and on the 
properties of the ML algorithm used. 

 
Consider the following example. Suppose we want to predict the current temperature at a site C (see 
Figure 4). To do this, we use eight input attributes: temperature values for the previous two hours at C  
and two nearby locations A and B together with the current temperature values at A and B. The output 
attribute is the predicted current temperature at C. Let temp_<site><hour> denote temperature taken at 
time <hour> at location <site>, then the data instance for this case will take the form: 

temp_At-2, temp_At-1, temp_At, temp_Bt-2, temp_Bt-1, temp_Bt, temp_Ct-2, temp_Ct-1, temp_Ct 

with the last attribute, temp_Ct, being the output attribute.  
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Figure 4: Using data from nearby sites to predict temperature for location C 
 

-------------------------------------------------------------------------------------------------------------------------- 
 

ML algorithms can be broadly classified into two groups: classification and regression algorithms. 
These algorithms take input in any form, discrete or continuous, although some require all the input to 
be discrete. Classification algorithms use a training set to identify a set of rules that classify a given 
input into one of a set of discrete values; output is always in the form of a discrete value. Regression 
algorithms, on the other hand, develop a model based on equations or mathematical operations on the 
input attribute values and produce as output a continuous value. We used both classification and 
regression algorithms in this study; in particular, we used three classification algorithms: J48 decision 
trees, naïve Bayes, and Bayesian networks, and six regression algorithms: linear regression, least 
median squares, M5P, multilayer perceptron, RBF network, and the conjunctive rule algorithm. We 
will briefly describe these nine algorithms. 
 
J48 Decision Tree Algorithm 

 
J48 is a decision tree learner based on algorithm C4.5 [6]; C4.5 is an update of the ID3 algorithm [7]. 
A decision tree classifies a given instance by passing it through the tree starting at the root node and 
moving downward through the tree until a leaf node is reached. The value at that leaf node gives the 
predicted output for the instance. At each non-terminal node an attribute is tested and the appropriate 
branch taken based on the value of the attribute of the instance. A possible decision tree that could be 
used to predict the current temperature for site C (Figure 4) is illustrated in Figure 5.  
 
The ID3 algorithm builds a decision tree based on a given set of training instances. It employs a 
greedy top-down approach to construct the tree, starting with the creation of the root node. For each 
node the attribute that best classifies all the training instances that have reached that node is selected 
as that node’s test attribute; only those attributes that were not used for classification at other nodes 
above it in the tree are considered. To select the best attribute at a node, the information gain for each 
attribute is calculated; the attribute with the highest information gain is selected. Information gain is 
defined as the reduction in entropy caused by splitting the instances based on values taken by the 
attribute. The information gain for an attribute A at a node is calculated as follows: 

∑
∈

⎟⎟
⎠

⎞
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⎝

⎛
−=
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||
||

)(),(
AValuesv

v SEntropy
S
S

SEntropyASnGainInformatio , 

where S is the set of instances at that node, |S| is its cardinality, and Sv is the subset of S for which 
attribute A has value v.  
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Figure 5: A decision tree to predict temperature at site C using input from sites A and B 
 

 
-------------------------------------------------------------------------------------------------------------------------- 
 

Entropy of the set S is calculated as 

∑
=

−=
numclasses

i
ii ppSEntropy

1
2log)( , 

where pi is the proportion of instances in S that have the ith class value as output attribute. 
 
A new branch is added below the node for each value taken by the test attribute. The training 
instances that have the test attribute value associated with the branch taken are passed down the 
branch and subsequently used for the creation of further nodes. If this subset of training instances has 
the same output class value, then a terminal node is generated, and the output attribute is assigned that 
class value. In the case where no instances are passed down a branch, then a terminal node is created 
that assigns the most common class value in the training instances as its output attribute. This process 
of generating nodes is continued until all the instances are correctly classified, all the attributes have 
been used, or it’s not possible to divide the examples.  
 
In order to use the ID3 algorithm for predicting RWIS sensor values, the algorithm must be modified  
(1) to deal with continuous valued attributes, (2) to allow for instances that have missing (unknown) 
attribute values, and (3) to prevent over fitting the data. When a discrete valued attribute is selected at 
a node, the number of branches formed is equal to the number of possible values taken by the 
attribute. In the case of a continuous valued attribute, two branches are formed based on a threshold 
value that best dichotomizes the instances. For example, suppose that in building the tree in Figure 5, 
the attribute at the root node, temp_At-2, has a value of 32. This threshold is selected as the value of 
the attribute that maximizes the information gain of the given training instances. It should be noted 
that Fayyad [9] further extended the ID3 algorithm to allow a continuous-valued attribute to be split 
into more than two intervals. 
 
If an instance has no value for an attribute, the missing value can be replaced by the most common 
value for that attribute among the training instances that reach the node where this attribute is tested. 
The decision tree algorithm C4.5 incorporates this modification of ID3. In particular, the probability 
for each possible value taken by the attribute with a missing value is calculated, based on the number 
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of times it is seen in the training instances at a node. The probability values are then used for to 
calculate the information gain at the node. 
 
In the ID3 algorithm, over fitting may occur if the training set is relatively small. In this case, the 
resulting tree correctly classifies the training instances but fails when applied to the entire distribution 
of data; this over fitting occurs because the algorithm focuses on the spurious correlation in the data. 
To avoid over fitting, algorithm C4.5 uses the so-called rule post-pruning technique. In rule post-
pruning, the tree is first built and then converted into a set of rules. For example, in Figure 5, the rule 
generated for the leftmost path of the tree is 

IF (temp_At-2 > 32 AND temp_At > 30 AND temp_Bt > 40) THEN temp_Ct= 40-45 . 
 

Naïve Bayes Algorithm 
 

Naïve Bayes [9, 10] is a simple probabilistic classifier based on Bayes rule. The naive Bayes 
algorithm builds a probabilistic model by learning the conditional probabilities of each input attribute 
given a possible value taken by the output attribute. This model is then used to predict an output value 
for a given set of inputs by applying Bayes rule1 on the conditional probability of seeing a possible 
output value when the attribute values in the given instance are seen together.  
 
The naive Bayes algorithm uses a set of training examples to classify a new instance using the 
Bayesian approach. For an instance, the Bayes rule is applied to find the probability of observing each 
output class given the input attributes; the class that has the highest probability is assigned to the 
instance. The probability values used are obtained from the counts of attribute values in the training 
set.  
 
Consider the example given in Figure 4. For a given instance with two input attributes temp_At and 
temp_Bt, with values a and b respectively, the value vMAP assigned by the naive Bayes algorithm to 
the output attribute temp_Ct is the one that has the highest probability across all possible values taken 
by the output attribute. The probability of the output attribute having value vj when the given input 
attribute values are seen together is given by P(vj|a,b). Applying Bayes theorem, P(vj|a,b) can be 
calculated using the following expression: 

)()|,(   
),(

)()|,(
),|( jj

jj
j vPvbaP

baP
vPvbaP

bavP == , 

where P(vj) is the probability of observing vj as the output value,  
 
If the number of input attributes (a, b, c, d, ....) is large, then there may not be enough data to estimate 
the probability P(a, b, c, d, .... | vj). The naïve Bayes algorithm solves this problem by assuming 
conditional independence for all the input attributes yielding vj for the output. The probability value 
P(a, b | vj) can then be simplified as 

)|()|()|,( jjj vbPvaPvbaP = , 

where P(a | vj) is the probability of observing the value a for the attribute temp_At when output value 
is vj. Thus the probability of an output value vj being assigned for the given input attributes is 

)|()|()(),|( jjjj vbPvaPvPbavP = . 
 

                                                 
1 Bayes rule states that P(A|B) = [ P(B|A) P(A) ] / P(B), 

where P(A|B) is defined as the probability of observing A given that B occurs. Bayes’ rule allows one to find P(A/B) when the individual 
probabilities of A and B are known, and the probability of observing B given A is also known. 
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Learning in the Naive Bayes algorithm involves finding the probabilities of P(vj) and P(ai|vj) for all 
possible values taken by the input and output attributes based on the training set provided. P(vj) is 
obtained from the ratio of the number of times the value vj occurs for the output attribute to the total 
number of instances in the training set. For an attribute at position i with value ai, the probability 
P(ai|vj)  is obtained from the number of times ai occurs in the training set when the output value is vj.  
 
The naive Bayes algorithm requires all attributes in the instance to be discrete. Continuous valued 
attributes have to be discretized before they can be used. Missing values for an attribute are not 
allowed, as they can lead to difficulties when calculating the probability values for that attribute. A 
typical solution is to replace missing values by a default value for that attribute. 

 
Bayesian Belief Networks (Bayes Nets) 

 
The naive Bayes algorithm assumes that the values of the input attributes are conditionally 
independent for a given value of the output attribute. However, there may be cases where this 
assumption results in inappropriate predictions. Bayesian belief networks or Bayes nets applies 
conditional independence to a subset of inputs rather than all of them, therein avoiding a global 
assumption of conditional independence among the inputs while still maintaining some amount of 
conditional independence, 
 
A Bayesian belief network [11, 12] is a directed acyclic graphical network model that yields the joint 
probability distribution for a set of attributes. Each attribute in the instance is represented as a node in 
the network. A directed link from node X to node Y indicates that X is a parent of Y and reflects that Y 
is dependent on X. Y may have multiple parent nodes. In the Bayes network, an attribute is 
conditionally independent of any attributes that are not its children. Only the parents are considered 
for calculating the joint probability, as only the direct parents of a node influence the conditional 
probabilities at this node. Using conditional independence between nodes, the joint probability for a 
set of attribute values y1,y2,..,yn represented by the nodes Y1,Y2,..., Yn is given by 

))(|(),.....,(
1

1 i

n

i
in YParentsyPyyP ∏

=

= , 

where Parents(Yi) are the immediate parents of node Yi. The probability values for a node are 
represented in a tabular form called a Conditional Probability Table (CPT). In the case of nodes with 
no parents, the CPT gives the distribution of the attribute at that node. It should be noted that a 
Bayesian network requires that both input and output attributes be discrete.  
 
Consider again the example illustrated in Figure 4. A simple Bayesian network for predicting 
temperature at site C, using only a few of the input instances of sites A and B, is shown in Figure 6. 
Each node in the tree is associated with a CPT; for example, the CPT for the node temp_At-2 will 
contain the probability of each value taken by it when all possible values for temp_At-1 and temp_Ct 
(i.e., its parents) are seen together. For a given instance, the Bayesian network can be used to 
determine the probability distribution of the target class by multiplying all the individual probabilities 
of values of the individual nodes. The class value with the highest probability is selected. The 
probability of a class value taken by the output attribute temp Ct for the given input attributes, using 
parental information of nodes from the Bayesian network in Figure 6, is 

P(temp_Ct|temp_At-1, temp_At-2, temp_Bt, temp_Bt-2, temp_Ct-2) =  

P(temp_Ct)*P(temp_At-1|temp_Ct)*P(temp_At-2|temp_At-1,temp_Ct)*P(temp_Bt|temp_Ct)* 

P(temp_Bt-2|temp_At-1,temp_Ct)*P(temp_Ct-2|temp_At-2 ,temp_Ct). 
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Figure 6: A Bayesian network to predict temperature at site C using input from sites A and B 
 

-------------------------------------------------------------------------------------------------------------------------- 
 
 

Learning in Bayes' Nets involves finding the best performing network structure for the training set 
and calculating CPTs. To build the network structure, we start by assigning each attribute a node. 
Learning the network connections involves moving though the set of possible connections and finding 
the accuracy of the network for the given training set. The accuracy of the network can be determined 
by using a scoring criterion such as the Akaike's information criterion [13], the minimum description 
criterion [14], or the cross-validation criterion. Allen and Greiner [15] present a brief description of 
these scoring criterions along with their empirical comparisons. 
 
The K2 algorithm [16] can be used to learn the Bayesian network structure. K2 puts the given nodes 
in an order and then processes one node at a time. It adds an edge to this node from previously added 
nodes only when the network accuracy is increased after this addition. When no further connections 
can be added to the current node that increase the accuracy, the algorithm moves to another node. 
This process continues until all nodes have been processed.  When all variables present in the network 
are seen in the training data, the probability values in the CPTs can be generated by counting the 
required terms. In the case of training data with missing variables, the gradient ascent training method 
[17] can be used to learn values for the CPTs. 

 
Linear Regression 

 
The Linear Regression algorithm of WEKA [5] performs standard least squares regression to identify 
linear relations in the training data. This algorithm gives the best results when there is some linear 
dependency among the data. It requires the input attributes and target class to be numeric and it does 
not allow missing attributes values. The algorithm calculates a regression equation to predict the 
output (x) for a set of input attributes a1,a2 ... ,ak. The equation to calculate the output is expressed in 
the form of a linear combination of input attributes with each attribute associated with its respective 
weight w0,w1,....,wk, where wi is the weight of ai  and a0 is always taken as the constant 1. An equation 
takes the form 

kk awawwx +++= ..........110 . 
 

For the temperature example in Figure 4, the regression equation would take the form 

temp_Ct =  w0 + wAt-2 temp_At-2 + wAt-1 temp_At-1 + wAt temp_At + wBt-2 temp_Bt-2 +  
  wBt-1 temp_Bt-1 + wBt temp_Bt + wCt-2 temp_Ct-2 + wCt-1 temp_Ct-1 , 

where temp Ct is the value assigned to the output attribute.  



15 

 
The accuracy of predicting the output by this algorithm (that is, the error) can be measured as the 
absolute difference between the actual output observed and the predicted output as obtained from the 
regression equation. Weights must be chosen in such a way as to minimize the error. To obtain better 
accuracy, higher weights must be assigned to those attributes that influence the result the most.  
 
A set of training instances is used to update the weights. Initially, weights can be assigned random 
values or a constant (such as 0). For the first instance in the training data the predicted output is 
obtained as 

∑
=

=+++
k

j
jjkk awawaww

0

)1()1()1(
110 .......... , 

where the superscript for attributes gives the instance position in the training data. After the predicted 
outputs for all instances are obtained, the weights are reassigned so as to minimize the sum of squared 
differences between the actual and predicted outcome. Thus the aim of the weight update process is to 
minimize 
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the sum of the squared differences between the observed output for the ith training instance (x(i)) and 
the predicted outcome for that training instance obtained from the linear regression equation.  

 
Least Median Squares 

 
The WEKA Least Median Squares of Regression algorithm [18] is a linear regression method that 
minimizes the median of the squares of the differences from the regression line. The algorithm 
requires input and output attributes to be continuous, and it does not allow missing attribute values. 
Standard linear regression is applied to the input attributes to get the predict the output. The predicted 
output x is obtained as 

∑
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110 .......... , 

where ai are input attributes and wi ,the weights associated with them. 
 
Using the training data, weights are updated in such a way that they minimize the median of the 
squares of the difference between the actual output and the predicted outcome using the regression 
equation. Weights can be initially set to random values or assigned a scalar value. The aim of the 
weight update process is to determine new weights to minimize 
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where i ranges from 1 to the number of instances in the training data that is being used and x(i) is the 
actual output for the training instance i. 
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M5 Prime Algorithm 
 

The M5 Prime algorithm (M5P) [19] is a regression-based decision tree algorithm, based on the M5 
algorithm by Quinlan [20]. For a given instance the tree is traversed from top to bottom until a leaf 
node is reached. At each node in the tree a decision is made to follow a particular branch based on a 
test condition on the attribute associated with that node. Each leaf node has a linear regression model 
associated with it of the form 

kko awaww +++ ..........11 , 

where the input attributes are represented by a1,a2,...,ak and the weights w0,w1,....,wk are calculated 
using standard regression. 
 
An M5 tree is built using a divide-and-conquer method. At each interior node, a test condition is 
chosen that splits the instances into subsets based on the test outcome. A test is based on an attribute’s 
values. In M5 the test that maximizes the error reduction is used:  
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where S is the set of instance passed to the node, stdev(S) is its standard deviation, and Si is the subset 
of S resulting from splitting at the node with the ith outcome for the test. This process of creating new 
nodes is repeated until a there are too few instances to proceed further, or the variation in the output 
values in the instances that reach the node is small. 
 
Once the tree has been built, a linear model is constructed at each node. The linear model is a 
regression equation. The attributes used in the equation are those that are tested or are used in linear 
models in the subtrees owned by the node. The attributes that are ancestors of the node are not used in 
the equation, since their effect on predicting the output has already been captured. The linear model is 
further simplified by eliminating attributes whose removal leads to a reduction in the error. The error 
is defined as the absolute difference between the output value predicted by the model and the actual 
output value seen for a given instance.  
  
An M5 tree can be complex. To simplify the tree without losing its basic functionality, it may be 
pruned. Starting from the bottom of the tree, the error is calculated for the linear model at each node. 
If the error is less than the model subtree owned by the node, then the subtree for this node is pruned.  
 
In the case of missing values in training instances, M5P changes the expected error reduction 
equation to 
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where m is the number of instances without missing values for that attribute, S is the set of instances 
at the node, β(i) is the factor multiplied in case of discrete attributes, and j assumes values L and R 
with SL and SR being the sets obtained from splitting at that attribute.   
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MultiLayer Perceptron 
 

A MultiLayer Perceptron (MLP) [21] is a neural network that is trained using back propagation. 
MLPs consist of multiple layers of computational units with connections from lower units to units in 
a subsequent layer. The basic structure of MLP consists of an input layer, one or more hidden layers, 
and one output layer. Output from units in the hidden layer is used only in the network and is not seen 
outside the network. An MLP that can be used to predict temperature for the example in Figure 4 is 
shown below in Figure 7. The output from a unit is used as input to units in the subsequent layer. The 
connection between units in subsequent layers has an associated weight. 
 
The hidden units and output units are based on sigmoid units (Figure 8). A sigmoid unit calculates a 
linear combination of its input and then applies the sigmoid function to the result. The sigmoid 
function for net input x is  

)1(
1)( xe

xsigmoid −+
= . 

Sigmoid(x) is a continuous function of its input (x) and ranges from 0 to 1. 
 
An MLP establishes values for its weights using the back propagation algorithm applied to a set of 
training instances. [22] The back propagation algorithm takes a set of training instances for the 
learning process. For the given feed forward network, the weights are initialized to small random 
numbers. Each training instance is passed through the network and the output from each unit is 
computed. The target output is compared with the output computed by the network to calculate the 
error; this error value is fed back through the network. The error value is used to adjust the weights of 
its connections. To adjust the weights, back propagation uses gradient descent to minimize the 
squared error between the target output and the computed output: 

jijjiji xww ηδ+= , 

where wji is the weight from unit i to unit j, xij is the input from unit i to unit j, η is the learning rate 
and δj is the error obtained at unit j. This process of adjusting the weights using training instances is 
iterated for a fixed number of times or continued until the error is small or cannot be reduced.  

 
-------------------------------------------------------------------------------------------------------------------------- 
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Figure 7: A multilayer perceptron with two hidden layers to predict temperature at a site. 
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Figure 8: A sigmoid unit that takes inputs xi with weights wi 
 

-------------------------------------------------------------------------------------------------------------------------- 
 

 
To improve the performance of the algorithm, the weight update made at the nth iteration of the back 
propagation is made partially dependent on the amount of weight changed in the n-1st iteration. The 
contribution to the weight change by the n-1st iteration is determined by a constant term called 
momentum (α). The new rule used for weight-update at the nth iteration is 

)1( )( −Δ+=Δ nwxnw jijijji αηδ . 

This momentum term is added to achieve faster convergence to a minimum.  
 
Radial Basis Function Network 

 
A Radial Basis Function (RBF) network [23, 24] is a feed forward neural network with three layers: 
input, hidden and output. It differs from an MLP in the way the hidden layer units perform 
calculations. An RBF Network can build both regression and classification models. We utilize the 
regression model.  
 
In an RBF network, inputs from the input layer are mapped to each of the hidden units. The hidden 
units use radial functions such as the bell-shaped Gaussian function for activation. The activation h(x) 
of the Gaussian function for a given input x decreases monotonically as the distance between x and 
the center c of the Gaussian function increases. The Gaussian function is of the form 
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AN RBF network treats the inputs and the hidden units as points in space. The activation of a hidden 
unit depends on the distance between the input values and the hidden unit. The distance is converted 
into a similarity measure by the Gaussian function. The point in space for the hidden unit is obtained 
from the center of the Gaussian for that unit; the width of the Gaussian is a learned parameter as well. 
An RBF network is trained to learn the centers and widths of the Gaussian function for hidden units, 
and then to adjust weights in the linear regression model that is used at the output unit.  
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Conjunctive Rule Algorithm 
 
The Conjunctive Rule algorithm learns a single rule that can predict an output value. An example of a 
rule that could be developed for our temperature example is 

IF ( temp_At-2 > 30 AND temp_Ct-1 < 90 AND temp_Bt-1 > 40 ) THEN temp_Ct = 30. 

A conjunctive rule consists of a set of relations between relevant attributes whose consequent yields 
an output value. The learning process in the conjunctive rule algorithm attempts to define a rule for 
all relevant attributes based on the training data. The algorithm learns by calculating the variance 
reduction for all possible antecedents and selects the one that reduces the variance the most.  
 
Summary 
 
These nine machine learning algorithms will be used to build models to detect abnormal behavior of 
various types of RWIS sensors. A model provides us with a predicted output value for a given sensor 
at the current point in time. The actual value reported by the sensor can be compared with the 
predicted value; the difference between the two is an indication of the probability of a sensor 
malfunction.  
 
To test this theory, we developed an M5P decision tree to predict temperature values of an RWIS site 
We utilized two data elements in performing these predictions: the temperatures of neighboring 
RWIS and AWOS sites and the distance between the sites. We included distance to aid in the 
generation of a realistic decision model. The M5P decision tree automatically discards variables that 
do not contribute to prediction. We chose neighbors using the three clusters shown on the map in 
Figure 1 to prevent comparisons across macroclimates. 
 
We used three months of data for the training set and one month for the test set. Each set included 
data from different years. We performed this experiment for various RWIS sites. Figure 9 contains 
the predicted results and actual results for temperature predictions for January 2003 for a given RWIS 
site. As may be noted, prediction results were very good. 
 
We conducted a similar experiment for another site that was known to have failed during May 2003. 
Table 3 contains a partial list of the actual and predicted temperature values during the period of time 
when a sensor failure occurred. We note the large differences between the corresponding values near 
the point of failure.  
 
These exploratory experiments suggested that we can successfully build models to predict sensor 
values for RWIS sites and in some cases actually use these results to identify sensor failures. In the 
following section we will describe the general performance of the various models in predicting sensor 
malfunctions. 
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Figure 9. Predicted temperature values versus actual sensor values for January 2003.  

 
 
 

------------------------------------------------------------------------------------------------------------------------------- 
 
 

Actual Predicted Error 

67.58 66.86 -0.73 
68.27 65.90 -2.37 
67.88 63.20 -4.68 
66.26 62.30 -3.96 
64.58 60.84 -3.74 
30.73 59.37 28.64 

  56.58   
18.95 52.54 33.59 
54.71 53.20 -1.51 
52.64 52.77 0.13 
51.20 52.68 1.48 
50.93 53.43 2.50 
50.72 51.90 1.18 

 
Table 3. Actual and predicted temperature values around a sensor failure. 
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Evaluating the ML Models 
 

To detect RWIS sensor malfunctions, we seek significant variations and/or deviations between the 
values reported by a sensor and our models’ predictions of the values of the sensor for a given time 
period. Of course, it is imperative that the predictions made by the ML models be highly accurate. To 
ensure reliability in our assessments of sensor performance, the performance of an algorithm is 
evaluated using cross-validation. In cross-validation, a subset of the data provided is reserved as a test 
set and the remaining data, the training set, is used by the algorithm to build a model. The test set is 
used to evaluate the performance of the model by measuring the accuracy with which the model 
classifies the test set instances.  
 
In n-fold cross-validation, the dataset (historical RWIS/AWOS sensor data) is divided into n subsets 
of equal size. One subset is used as a test set and the remaining n-1 subsets are used for training. 
Cross-validation is performed n times with each of the subsets being used as a test set exactly once. 
The average performance of the all the test sets reflects the overall performance of the algorithm. The 
advantage of using n-fold cross-validation is that each instance of the dataset is a member of some 
test set and is used to evaluate the performance of the model within a single dataset. Kohavi [25] 
suggests using 10-fold or 20-fold cross-validations for optimal estimates.  
 
In this study, we used both classification and regression algorithms to model sensor data. 
Classification algorithms are used to classify a given instance into a set of discrete categories; 
precipitation type and temperature are predicted using this approach. The three classification 
algorithms preciously described, namely J48 decision trees, naive Bayes, and Bayesian Networks are 
used to predict values for these types of sensors. Since classification algorithms allow continuous 
input, the data used to build the models included both current and historical temperature readings for 
nearby RWIS/AWOS sites.  
 
Each dataset was constructed according to an input format we derived based on the weather data 
available for the RWIS and the AWOS sites. The dataset was then split into a training set and a test 
set using the cross-validation method. Multiple 10-fold cross-validation was used to obtain estimates 
of the model’s performance. 
 
Classification algorithms predict the class value taken by the output attribute, in our case precipitation 
type and temperature class value, for a given instance in the test set. The accuracy of the prediction 
results is represented in the form of a confusion matrix, with rows representing sensor values and 
columns representing predicted values for the output attributes. Each cell in the confusion matrix 
contains the number of times the actual class given by the column is predicted. The numbers along 
the main diagonal indicate the number of times the predicted class values are equal to the actual class 
values. Thus, the sum of entries along the diagonals divided by the total number of instances present 
in the test set yields the percentage of the number of correctly classified instances. In the case of 
multiple n-fold cross-validations, the confusion matrices obtained for each test set are averaged to 
obtain a confusion matrix for the model as a whole. An example of confusion matrices employing 
only two test sets is shown in Figure 10. 
 
For precipitation, we can use the percentage of instances that were classified correctly (when no 
precipitation was present and when precipitation was present) to determine the accuracy of the model 
built. This method is particularly important for determining the accuracy of predicting precipitation 
because in most cases no precipitation is reported; thus, in cases when precipitation is reported, the 
algorithm may try to classify it as no precipitation by assuming the data is noise. 
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Figure 10: Example of Confusion Matrices 
 
------------------------------------------------------------------------------------------------------------------------------------ 
 
For temperature, the error in the results is obtained using the absolute distance between actual and 
predicted class values. A distance between two adjacent classes is taken as 1; for identical class 
values, the distance is 0. The greater the distance the poorer the prediction is.  

 
Regression algorithms may be used to predict temperature and visibility. The performance of 
regression algorithms can be determined by the difference between the actual value and predicted 
value, which gives the amount of prediction error (as previously illustrated in Table 3). The mean of 
the absolute errors across all instances in the test set represents the performance of the algorithm. In 
the case of multiple n-fold cross-validations, the error value of course is averaged across all the test 
sets. For a model whose prediction accuracy is high, even a slight difference between the reported 
sensor value and the predicted value may indicate sensor malfunction. We evaluated the performance 
of each regression algorithm using the 10-fold cross-validation technique. 
 

Empirical Analysis 
 

We conducted a set of experiments to predict temperature, precipitation type, and visibility at various 
RWIS sites using the machine learning methods discussed previously. We used regression algorithms 
to predict visibility, classification algorithms to predict precipitation, and both machine learning 
methods to predict temperature. For each experiment we present the methodology, summarize the 
results obtained, and classify the performance of each method in predicting sensor values. The raw 
results of each experiment are detailed in the Appendix. 
 
Predicting Temperature using Regression Algorithms 
 
In this set of experiments, we used linear regression (LR), least median squares (LMS), M5 Prime 
(M5P), multilayer perceptron (MLP), RBF Network (RBF), and Conjunctive Rule (CR) to predict the 
current temperature at an RWIS site. We used the current temperature and three hours of historical 
temperature data from neighboring RWIS/AWOS sites to create a model for each algorithm. As noted 

 
Matrix 1  Matrix 2 

  Predicted     Predicted  
 Class A Class B Total   Class A Class B Total

Class A 10 20 30  Class A 15 15 30 

A
ct
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l 

Class B 30 40 70  A
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Class B 30 40 70 
 Total 40 60 100   Total 45 55 100 

 
 

Average Matrix 
  Predicted  

 Class A Class B Total 
Class A 12.5 17.5 35 

A
ct

ua
l 

Class B 30 40 65 
 Total 42.5 57.5 100 
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in Figure 1, we are working with three clusters containing a total of 13 RWIS sites and 14 AWOS 
sites. 
 
We calculate temperature as the difference between the temperature values reported at an RWIS site 
and the projected hourly temperature at its corresponding AWOS site. To calculate the projected 
hourly temperature for an AWOS site, we used temperature data from 1997 to 2004 for this site. The 
projected hourly temperature for a given hour of the day is defined as the sum of the average 
temperature reported for that day and the monthly average difference in temperature of that hour in 
the day for the respective month. For example, if the temperature at the RWIS site 67 is 32°F at time t 
and the projected hourly temperature at time t for its corresponding AWOS site, KLYU, is 30°F, then 
the temperature of site 19 for hour t is 2°F. Using historical data to extract temperature values as 
deviations from the average provides additional information apart from what we already have (i.e., 
the RWIS and the AWOS data).  
 
We used the regression algorithms mentioned above and the dataset generated to try to predict the 
current hour temperature value at the selected 13 RWIS sites. Our testing involved ten 10-fold cross-
validation runs; each instance in the dataset is predicted 10 times (i.e., one in each cross-validation). 
The average of these 10 values gives the final predicted value. We used absolute error between the 
actual value reported by the sensor and the value predicted by the algorithm to evaluate the 
performance of the algorithm.  

 
Figure 11 shows the mean absolute error and the standard deviation obtained across all RWIS sites 
for each regression algorithm. The actual performance values are contained, in a more detailed format 
in the Appendix. 

 
-------------------------------------------------------------------------------------------------------------------------- 
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Figure 11: Performance of Regressions Algorithms for Predicting Temperature 
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The radial basis function network and the conjunctive rule algorithm failed to predict temperature 
values for all sites. These two algorithms are very sensitive to parametric values and would have 
performed better if we had significantly tuned the parameters. The other four models performed well 
and were accurate to ±1°F.  
 
The standard deviation value for the mean absolute errors across different sites for an algorithm 
measures the variation in the error values across the sites. A small standard deviation suggests the 
model is fairly independent of the site location and can predict temperature with similar accuracy for 
any site. This is desirable since such a model can be used across all sites. The RBF and CR algorithms 
have higher standard deviations in comparison to the other algorithms, but this is likely a function of 
their high error in predicting temperature values. The best standard deviation results are obtained for 
the M5 prime algorithm with 0.058 as the standard deviation value across sites.  
 
Combining the results and giving priority to the algorithms that have a low absolute error and exhibit 
similar performance across all sites, we find that M5 prime and linear regression performed best, 
closely followed by least median squares. It can be clearly seen that CR and RBF did not do well 
concerning prediction of temperature; they are not used in the experiments that follow.  
 
To detect RWIS temperature sensor malfunctions, we recommend building models from M5P, LR, or 
LMS. When the difference between the error reported for an hour and the mean absolute error 
obtained from testing the model is greater than 1.96 standard deviations, with standard deviation of 
error calculated from the test results, we can say with 95% accuracy that the sensor has failed.   

 
Due to the fact that the presence of precipitation affects the temperature at a location, we decided to 
investigate the use of models for predicting temperature that also include precipitation as part of their 
input data (in addition to temperature values). We used the regression algorithms LMS, LR, and M5P 
to predict the current temperature class value at an RWIS site. Our input dataset consists of the 
current and the previous three hour temperature values for clustered RWIS and AWOS sites and the 
precipitation type observed at the current hour at the RWIS sites.  
 
We again used the mean absolute error obtained from the ten 10-fold cross-validation runs to evaluate 
the performance of these algorithms. Figure 12 shows the mean absolute error and the standard 
deviation averaged for all RWIS sites. For comparison, the results of the first experiment for each 
method are included for each algorithm.  
 
Of the three algorithms (LR, LMS and M5P) used, we see that M5P again yields better results in 
predicting temperature with lesser mean absolute error and consistency in predictions across the sites 
(with respect to the standard deviation of errors across various sites). Significant variation of absolute 
errors reported by these three algorithms was not seen, with all predicting temperature with accuracy 
close to 0.95°F.  
 
Including precipitation type in the dataset as an additional source of information does not improve 
performance of the models. It can be observed from Figure 12 that the mean absolute error for the 
algorithms LR, LMS and M5P is slightly higher for this experiment when compared with the first 
experiment; the mean absolute error increased by approximately 0.09°F when precipitation type was 
included in the dataset.  
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Fig 
Figure 12: Performance of Regressions Algorithms for Predicting Temperature 

without Precipitation (1) and with Precipitation (2) 
 

-------------------------------------------------------------------------------------------------------------------------- 
 

 
Predicting Temperature using Classification Algorithms 

 
In this experiment we built models to predict temperature at an RWIS site using classification 
algorithms. As in the previous work, we used the current temperature and three hours of historical 
temperature data from neighboring RWIS/AWOS sites to create a model for each algorithm. The 
temperature values had to be discretized for use with these algorithms. 
 
Discretization of temperature involves finding a set of values that split the continuous sequence into 
intervals, each interval having a single discrete value. We use the projected hourly temperature for an 
AWOS site along with the average current temperature at the closet RWIS neighboring site to 
determine the class value for the current RWIS temperature value. Specifically, the reported 
temperature at an RWIS site is subtracted from the projected hourly temperature for the AWOS site 
closest to it for that specific hour. This difference is then divided by the standard deviation of the 
projected hourly temperature for that AWOS site. The result indicates how much the actual value 
deviates from the projected value, that is, the number of standard deviations from the projected value: 

num_stdev = (actual_temp – proj_temp) / std_dev 

Classes may be defined based on the number of standard deviations from the mean. 
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Class Value  Class Value  

1 num_stdev < -2 6 0.25 < num_stddev  ≤ 0.5 

2 -2 ≤ num_stdev  ≤ -1 7 0.5 < num_stddev  ≤ 1 

3 -1 < num_stdev  ≤ -0.5 8 1 < num_stddev  ≤ 2 

4 -0.5 < num_stdev  ≤ -0.25 9 num_stdev > 2 

5 -0.25 < num_stdev  ≤ 0.25   

 
Table 4: Classes used in Discretization of Temperature 

 
-------------------------------------------------------------------------------------------------------------------------- 

 
 

Consider the class values defined in Table 4. To discretize temperature, the number of standard 
deviations from the mean obtained for a given temperature value is mapped to one of the nine ranges 
in the table and the temperature is assigned the respective class value. For example, to convert the 
actual temperature 32ºF at an RWIS site into a class value, we calculate the projected temperature for 
that hour at the associated AWOS site KORB, say 30ºF, and the standard deviation of projected 
temperatures at KORB for the year, say 5.06. Our new representation for 32ºF is calculated as 0.396. 
We thus arrive at the class value of 6 for the temperature of 32ºF. Such a representation has an 
advantage as the effect of season and time of day are at least partially removed from the input data. 
 
We used two classification algorithms, J48 decision trees and naïve Bayes, to predict temperature. We 
ran a series of experiments to predict the class for each temperature sensor at the 13 RWIS sites used 
previously. We used the absolute distance between the class value of the temperature reported by the 
RWIS sensor and the predicted temperature class to evaluate the performance of the classification 
algorithms; a distance of 0 indicates that the predicted class value is the same as the class value 
reported by the sensor. The percentage of instances that were reported with a distance ranging from 1 
to 6 for both J48 and NB are shown in the Figure 13.  
 
The J48 decision tree clearly outperforms the Naive Bayes algorithm by classifying 93.6% of the 
instances in the dataset; only 32.3% of the instances were correctly classified by the NB algorithm. 
No instances were reported having a distance of more than 3 between actual and predicted class value 
when prediction was done using J48; in fact, 99.4% of the instances in the dataset were predicted with 
a distance of either 0 or 1. Using the J48 algorithm, we can readily predict RWIS sensor malfunctions 
when the distance between the actual and predicted temperature class value is greater than 1. For all 
the known malfunction cases in our dataset, the difference in the class value is actually 2 or greater. 
Thus, malfunctions can be detected with high accuracy with the J48 algorithm. 
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Figure 13: Performance of Classification Algorithms in Predicting Temperature 
 
 
-------------------------------------------------------------------------------------------------------------------------- 
 
 
Predicting Precipitation Type using Classification Algorithms 

 
We conducted experiments to determine the performance of J48 decision trees, naive Bayes, and 
Bayesian networks to predict precipitation type. We focused on classification algorithms because 
precipitation is reported by RWIS sensors in the form of class values. Since the output of 
classification models are also class values, we can readily compare these values with the sensor’s 
reported values. Temperature data at the neighboring RWIS/AWOS sites along with the precipitation 
type reported at the RWIS sites are used to form the input dataset. We included the temperature 
information to help in the prediction process as there is a correlation between temperature and 
precipitation observed at a location. Precipitation information from AWOS sites was not used because 
the effect of precipitation is localized and does not affect the occurrence of precipitation at nearby and 
other locations.  
 
The output of our models is presented as a confusion matrix; in addition, statistical results such as the 
classification error, root mean squared errors, and the percentage of correctly classified instances are 
calculated. Figure 14 shows, for each of the three algorithms, the classification error and standard 
deviation obtained from predicting precipitation type across all 13 RWIS sites. These values were 
obtained after averaging the reported values for each cross-validation run. The classification error and 
standard deviation values obtained for each individual site as well as a detailed analysis of the 
confusion matrices are given in the Appendix. 
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Figure 14: Performance of Classification Algorithms in Predicting Precipitation 
 

-------------------------------------------------------------------------------------------------------------------------- 

 
The overall results in Figure 14 reveal that J48 performs best in predicting precipitation type, but its 
high standard deviation reveals that this method is inconsistent in its predictions across the sites. An 
analysis of the raw data (see the Appendix) indicates a 0.077 classification error for site 35 and a 
0.356 classification error for site 67. Other than site 67, none of the sites have a classification error 
above 0.26, a value lower than the mean absolute errors reported by NB and Bayes net.  
 
Depending on the type of sensor, some RWIS sites report precipitation as present or not present, 
while other sites actually report the type of precipitation observed. In order to compare sites, we 
combined the different types of precipitation together and just reported any type as precipitation 
present. This allows comparison of the percentage of instances when precipitation was correctly 
classified between sites. Figure 15 shows the percentage of instances that were correctly classified by 
the classification models when precipitation was present and when no precipitation was present. 
Instances with precipitation present were very few, because precipitation does not exist for a long 
period and, in fact, may only be present for an hour or two (leading to very few positive observations 
being reported over any given period of time).  
 
As seen in Figure 15, naive Bayes and Bayesian networks predict only about 19% of the instances as 
no precipitation present, when in actuality 81% of the instances were reported as no precipitation. 
These algorithms perform poorly for classifying no precipitation. However, J48 classifies instances 
with no precipitation present correctly, identifying 75% of the instances as no precipitation present. 
But it fails to report the presence of precipitation with the accuracy it predicts precipitation.  
 
In general, none of the algorithms perform well in correctly classifying precipitation. The 
combination of J48 and Bayes Net can be used to detect malfunctions, with J48 being used to predict 
the absence of precipitation and Bayesian networks, the presence of precipitation. We choose 
Bayesian networks over naive Bayes because of its smaller mean absolute error and standard 
deviation.  
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Figure 15: Accuracy of the Classification Algorithms in Predicting Precipitation 
 

---------------------------------------------------------------------------------------------------------------- 
 
 
Due to varying accuracies in prediction among different sites (see Appendix), each individual site 
requires its own model and specific percentages with which they correctly classify precipitation.. For 
example, for site 62, J48 misclassifies 3.84% of the instances when predicting no precipitation and 
Bayes nets misclassifies 0.77% of instances when reporting presence of precipitation. For this site, 
when J48 predicts incorrectly that no precipitation is present, we can say with 95% accuracy that the 
sensor has failed. A similar rate of accuracy may be concluded when Bayes nets wrongly reports 
presence of precipitation. The combination of J48 and Bayes nets produces high accuracy in detecting 
sensor malfunctions when each model is individually responsible for classifying absence of 
precipitation and presence of precipitation, respectively.  
 
Predicting Visibility using Regression Algorithms 

 
In this set of experiments we predict visibility for a given RWIS site using four regression algorithms: 
least median square, linear regression, M5 prime, and multilayer perceptron. The temperature data 
from the RWIS site and the nearby RWIS/AWOS sites along with the precipitation type and visibility 
reported at the RWIS sites are used to form the input data set. Precipitation is included as an attribute 
since visibility is affected by its presence. The mean absolute error obtained from site 67 was 
excluded from calculating performance results, since it reports visibility up to ten miles whereas all 
other sites report only up to about one mile.  
 
Figure 16 shows the mean absolute error and standard deviation obtained across all sites for 
predicting visibility, excluding site 67. The overall mean absolute error for each algorithm was 
obtained by averaging the values reported for each cross-validation run. Raw performance results are 
included in the Appendix. 
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Figure 16: Performance of Regression Algorithms for Predicting Visibility 
 
-------------------------------------------------------------------------------------------------------------------------- 
 
 
The LMS and M5P algorithms yield similar performance in predicting visibility and exceed the 
performance of LR and MLP. However, the standard deviation of errors across various sites was 
lower for M5P. Thus, M5P would serve as a good predictor of visibility across different sites; in fact, 
an M5P model created using one site can be used to predict values at another site. When the 
difference between prediction error and the mean absolute error for M5P is greater than 1.96 standard 
deviations (with standard deviation being calculated from the error values obtained during cross-
validations), one can reasonably conclude that the sensor is malfunctioning.  
 

Conclusion 
 

In this project, we built various machine learning models that employ data from nearby sensors in 
order to predict likely values of the sensors we are interested in. We used both classification and 
regression algorithms; in particular, we used three classification algorithms: J48 decision trees, naïve 
Bayes, and Bayesian networks, and six regression algorithms: linear regression, least median squares, 
M5P, multilayer perceptron, RBF network, and the conjunctive rule algorithm. We performed a series 
of experiments to determine which of these models can be used to detect malfunctions in RWIS 
sensors. We compared the values predicted by the various ML methods to the actual values observed 
at an RWIS sensor to detect sensor malfunctions.  
 
Accuracy of an algorithm in predicting values plays a major role in determining the accuracy with 
which malfunctions can be identified. From the experiments performed to predict temperature at an 
RWIS sensor, we concluded that the classification algorithms LMS and M5P gave results accurate to 
±1°F and had low standard deviation across sites. Both models were identified to be able to detect 
sensor malfunctions accurately. RBF Networks and CR failed to predict temperature values. A 
threshold distance of 2°F between actual and predicted temperature values is sufficient to identify a 
sensor malfunction when J48 is used to predict temperature class values. The use of precipitation as 
an additional source of decision information produced no significant improvement on the accuracy of 
these algorithms in predicting temperature. 
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The J48, naive Bayes, and Bayes net exhibited mixed results when predicting the presence or absence 
of precipitation. However, a combination of J48 and Bayes nets can be used to detect precipitation 
sensor malfunctions, with J48 being used to predict the absence of precipitation and Bayesian 
networks, the presence of precipitation.  
 
Visibility was best classified using M5P. When the difference between prediction error and the mean 
absolute error for M5P is greater than 1.96 standard deviation, one can reasonably conclude that the 
sensor is malfunctioning.  
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  ML Algorithms 

 RWIS Site LMS LR M5P RBF CR MLP 

Set 1 19 0.908 0.960 0.936 9.521 11.150 1.059 

 27 1.217 0.896 0.873 9.465 10.199 1.058 

 67 1.069 0.918 0.885 10.062 11.596 1.108 

Set 2 14 0.659 0.795 0.751 8.478 10.605 0.789 

 20 0.743 0.820 0.776 9.417 10.821 1.001 

 35 0.553 0.977 0.864 9.523 10.817 1.051 

 49 0.916 0.913 0.898 9.579 11.017 1.074 

 62 0.800 0.779 0.769 9.383 11.040 0.892 

Set 3 25 0.984 1.062 0.889 10.386 11.957 1.097 

 56 0.925 0.913 0.807 10.510 11.512 1.133 

 60 0.889 0.867 0.833 9.675 11.078 1.002 

 68 0.958 1.015 0.901 9.017 10.439 1.235 

 78 0.929 0.875 0.809 8.945 10.449 1.012 

Mean of Abs. Errors 
(ºF) 0.888 0.907 0.845 9.535 10.975 1.039 

StdDev of Abs. Errors 0.171 0.083 0.058 0.559 0.503 0.110 

 
 
Results obtained from using regression algorithms to predict temperature at an RWIS site (see Figure 11). 
Input consists of temperature information from RWIS/AWOS sites along with temperature offset for the 
RWIS sites. The table has mean absolute error values averaged over ten 10-fold cross-validations.
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Mean absolute errors for different RWIS sites obtained from predicting temperature using regression 
algorithms. 
 
 



36 

 
 
 
 

  ML Algorithms 
 RWIS Site LMS LR M5P 

Set 1 19 1.023 1.115 1.001 

27 0.935 0.959 0.931 

67 1.001 1.006 0.984 

Set 2 14 0.726 0.788 0.771 

20 0.862 0.872 0.827 

35 1.052 1.062 0.938 

49 1.051 1.014 1.022 

62 0.848 0.827 0.815 

Set 3 25 1.217 1.222 1.004 

56 1.084 1.077 0.992 

60 1.007 0.981 0.924 

68 1.046 1.154 0.973 
 78 0.876 0.891 0.856 

Mean of Abs Errors (ºF) 0.979 0.997 0.926 

StdDev of Abs Errors 0.127 0.130 0.083 

  
 

Results obtained from using regression algorithms to predict temperature. Input consists of 
temperature information from RWIS/AWOS sites along with precipitation type for the RWIS sites. 
(see Figure 12) The table has mean absolute error values averaged over ten 10-fold cross-validations. 
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Mean absolute errors for different RWIS sites obtained from predicting temperature using regression 
algorithms, with precipitation type information included in the input data set. 
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 ML Algorithms 

 RWIS Site J48 NB Bayes Net 

Set 1 19 0.064 0.325 0.346 
 27 0.256 0.420 0.363 
 67 0.356 0.472 0.414 

Set 2 14 0.213 0.384 0.330 
 20 0.265 0.450 0.379 
 35 0.077 0.312 0.337 
 49 0.062 0.328 0.328 
 62 0.061 0.312 0.341 

Set 3 25 0.068 0.342 0.342 
 56 0.072 0.345 0.333 
 60 0.095 0.317 0.323 

 68 0.061 0.253 0.315 
 78 0.065 0.318 0.231 

Mean of Classification 
Errors 0.132 0.352 0.337 

StdDev of 
Classification Errors 0.102 0.062 0.041 

            
 
 

Results obtained from using classification algorithms to predict precipitation type at an RWIS site. 
(see Figure 14) Input data consists of temperature information from RWIS/AWOS sites along with 
precipitation type for the RWIS sites. The table has classification error values averaged over ten 10-
fold cross-validations. 
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Classification errors for different RWIS sites obtained from predicting precipitation using classification 
algorithms.  
 
 



40 

 
 
 

 Actual Data J48 

RWIS 
Site NP P NP->NPP P->PP P->NPP NP->PP

19 86.43 13.57 81.99 5.59 4.44 7.98 

27 76.29 23.71 68.78 13.31 7.51 10.40 

67 63.65 36.35 50.74 18.55 12.91 17.79 

25 84.92 15.08 80.49 6.61 4.43 8.47 

56 86.09 13.91 81.31 4.73 4.78 9.18 

60 79.59 20.41 71.95 8.82 7.63 11.59 

68 87.74 12.26 85.31 5.29 2.43 6.97 

78 83.33 16.67 78.30 9.46 5.03 7.21 

14 78.48 21.52 73.66 10.33 4.82 11.19 

20 70.49 29.51 60.79 15.77 9.70 13.74 

35 84.15 15.85 78.15 6.22 6.00 9.63 

49 86.41 13.59 82.47 5.90 3.94 7.69 

62 85.87 14.13 82.03 6.99 3.84 7.13 

Average 81.02 18.98 75.06 9.05 5.96 9.92 

Std Dev 7.23 7.23 9.97 4.36 2.84 3.12 

 
NP:   No precipitation reported 
P:   Precipitation reported 
NP->NPP:  No precipitation predicted when No precipitation was reported 
P->PP:   Precipitation predicted when precipitation was reported 
P->NPP:  No precipitation predicted when precipitation was reported 
NP->P:   Precipitation predicted when precipitation was reported 
 
 
 
Percentage of instances predicted correctly using the J48 classification algorithm to predict precipitation 
type at an RWIS site. (see Figure 15)  
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 Naive Bayes Bayes Nets 

RWIS 
Site NP->NPP P->PP P->NPP NP->PP NP->NPP P->PP P->NPP NP->PP

19 7.88 13.11 78.55 0.46 1.81 13.48 84.62 0.09 

27 43.72 14.14 32.57 9.57 52.02 11.92 24.27 11.79 

67 27.66 12.55 35.99 23.80 40.62 18.89 23.03 17.46 

25 2.53 14.92 82.38 0.16 2.29 15.02 82.63 0.07 

56 2.99 13.78 83.10 0.13 4.63 13.75 81.46 0.16 

60 3.33 19.95 76.26 0.46 1.17 20.32 78.41 0.09 

68 28.22 10.78 59.52 1.48 13.82 11.43 73.90 0.86 

78 13.18 15.68 70.15 0.99 35.23 13.41 48.10 3.26 

14 49.44 12.06 29.04 9.46 57.24 9.69 21.24 11.83 

20 35.03 19.88 35.45 9.63 45.98 16.11 24.50 13.40 

35 9.00 14.79 75.15 1.06 2.44 15.65 81.71 0.20 

49 7.44 13.20 78.97 0.39 6.81 13.41 79.60 0.18 

62 10.29 13.36 75.58 0.76 2.28 13.97 83.60 0.16 

Average 18.55 14.47 62.47 4.51 20.56 14.39 60.46 4.60 

Std Dev 16.31 2.73 21.19 6.98 22.01 2.90 27.49 6.47 

 
 
NP:   No precipitation reported 
P:   Precipitation reported 
NP->NPP:  No precipitation predicted when No precipitation was reported 
P->PP:   Precipitation predicted when precipitation was reported 
P->NPP:  No precipitation predicted when precipitation was reported 
NP->P:   Precipitation predicted when precipitation was reported 
 
 
 
Percentage of instances predicted correctly using the naïve Bayes and Bayes net classification algorithms 
to predict precipitation type at an RWIS site. (see Figure 15)  
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  ML Algorithms 
 RWIS Site LMS LR M5P MLP 

Set 1 67 1.6519 1.7436 1.6584 1.8020 

Set 2 35 0.0785 0.1204 0.1024 0.1838 
 49 0.0491 0.0756 0.0613 0.0643 
 62 0.0511 0.0785 0.0618 0.0716 

Set 3 56 0.0456 0.0722 0.0573 0.0975 
 68 0.0160 0.0296 0.0244 0.0478 
 78 0.1791 0.2081 0.0845 0.1545 

 
 
Results obtained from using regression algorithms to predict visibility at an RWIS site (see Figure 16). 
Input data set consists of temperature information from RWIS-AWIS sites in a set along with 
precipitation type and visibility for the RWIS sites. The table has mean absolute error values averaged 
over ten 10-fold cross-validations. 
 
 
--------------------------------------------------------------------------------------------------------------------- 
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Mean absolute errors for different RWIS sites obtained from predicting visibility using regression 
algorithms. 
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