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Executive Summary 

It is well known that vehicle tracking processes are computationally very intensive.  In the past, 
regardless of different algorithms employed in vehicle tracking, they have been implemented 
using software approaches. While software approaches have an advantage of flexibility in 
implementation and future modifications, its long computational time often prevents real-time 
vehicle tracking from high resolution spatial or temporal data. This gives rise to a need for direct 
implementation of tracking algorithms in hardware.  

The goal of the proposed project is to build a hardware-based vehicle tracking system to improve 
real-time high frame rate vehicle tracking, which would help improve tracking accuracy as well 
as response time.  The overall project is divided into two phases.  In phase I, which is this report 
describes, we plan the overall tracking algorithm for the hardware-based vehicle tracking 
systems, design each of building components in the system and finally actually implement it.  
Following phase I, we will be synthesize the overall vehicle tracking system, build a system 
prototype and actually test it in the field. 

Designing a hardware-based vehicle tracking system involves not only hardware 
implementation, but also the overall tracking algorithm that is well suited to hardware 
implementation.  Therefore, the two main tasks in this project are to first design the overall 
tracking algorithm and then implement it hardware.   

For the first task, we propose a new tracking algorithm based on vehicle motion estimation, 
which is implemented in hardware whenever possible so that the computation time for tracking is 
minimized.  The motion detection is based on the popular block-matching algorithm used in 
image processing applications.  The main idea is to of motion estimation is to divide each image 
frame into a number of smaller-size blocks and match two consecutive images frames to output 
motion vectors, which identify where and how each block of the image frame moves between the 
two consecutive image frames.  Depending the block size and vehicle size in the image frame, an 
object or a vehicle may consist of one or more image blocks.  Given motion vectors, the image 
blocks that have the same or very similar motion vectors are group as one or more vehicles.  This 
step of processing is called vehicle extraction. One or more vehicles can be extracted between 
any two consecutive image frames using motion estimation, and the other step of processing 
called vehicle association is used to relate vehicles extracted from two consecutive motion 
estimations which actually spans three consecutive image frames.  Therefore, the vehicles can be 
tracked by tracking what image blocks constitute the vehicles and how they move with the help 
of the motion vectors. 

The processing flow of the overall tracking system is then as follows: 
•  Step 1: an image sensor captures images at a high frame rate, for example, 30-60 
frames/sec. Note that this assumption has to be validated by relatively short 
computational time for our approach.  
•  Step 2: each captured image frame is subject to Gaussian noise filtering to remove the 
thermal noise. 
•  Step 3: two consecutive image frames are block-wise match to output motion vectors 
for each image block.  
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•  Step 4: the motion vectors are analyzed to identify moving vehicles and track how and 
where each vehicle moves.  
 

To verify the tracking algorithm, we implement the tracking system in MATLAB computing 
software in a PC.  Feeding realistic traffic images, the tracking system is shown to be able to 
track vehicles in most cases. 
 
After defining and verifying the overall vehicle tracking algorithm, we implement the overall 
tracking system in hardware to allow real-time vehicle tracking.  Therefore, the other main task 
of the project is to implement a CMOS hardware processor for vehicle motion detection.  As a 
short processing time is desired, the systolic array processing architecture is adopted to allow 
parallel block matching computation.  The hardware processor is first designed in Cadence using 
IBM 0.13µm technology and verified by behavioral-level simulators.  Then the hardware 
processor is mapped to Xilinx Spartar-3A DSP development board for actual implementation.  
Feeding the same traffic images, the results show that the developed hardware functions 
correctly.  In addition, the hardware processor completes one block matching for two 
consecutive images within 6 mille-seconds, which may paves the way for high frame rate vehicle 
tracking if the rest of the processing steps do not take significant time. 
 
The proposed vehicle tracking system and its hardware implementation have quite a few 
advantages compared to traditional systems and implementations.  First, the system is more 
adaptable to different whether conditions, as the tracking algorithm is based on relative vehicle 
shift without the use of a static background image.  Second, hardware implementation of the 
tracking the proposed tracking system achieve high frame rate tracking, thus improve real-time 
response and tracking accuracy.  In phase II of the project, we will synthesize the hardware 
processor with other components to build a prototype of the tracking system, and then test it in 
the field. 
  
In spite of the above potential advantages of the proposed tracking system, future work needs to 
be done to fully take advantage of the system.  For example, it is found that motion estimation 
may be vulnerable to camera jittering effect, which prevent the correct motion vectors output.  
Also, vehicle tracking based on the information provided solely by the motion vectors may limit 
the use of the system in highly-congested and highly-occluded traffic areas.  
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Chapter 1 
Introduction 

1.1 Introduction 

Vehicle tracking is an important area of Intelligent Transportation Systems (ITS), which could be 
applied in a wide range of transportation applications.  In vehicle tracking, the general purpose is 
to accurately track the vehicle moving trajectory.  General purpose vehicle tracking has many 
applications, such as vehicle detection, intersection monitoring, vehicle counting etc [1].  If high 
frame rate vehicle tracking is available, it can be applied in security monitoring and hazard 
warning applications.  For example, a collision warning can be issued when two vehicles are too 
close to each other [2].  Vehicle tracking systems have been previously developed using different 
methods, like microwave radar, video, or a combination of both [3].   

In our project, the video-based vehicle tracking method is used.  The video-based vehicle 
tracking approach has quite many advantages, such as convenience of installation, low cost 
operation, possible large coverage of the area of interests, and non-intrusiveness.  Today, many 
video-based vehicle tracking systems are available, such as those reported in [4][5][6], even 
some commercial systems, such as the AutoScope tracking systems from Image Sensing Systems 
Inc [7]. 

Vehicle tracking typically needs to monitor real-time vehicle movements, and thus real time 
operation is highly desirable.  However it is well known that vehicle tracking processes are very 
computationally intensive.  In the past, regardless of different algorithms employed in vehicle 
tracking, they have been implemented using software approaches, e.g., FPGA (Field 
Programmable Gate Array), micro-controllers, microprocessors, or Personal Computers (PC). 
While software approaches have an advantage of flexibility in implementation and future 
modifications, its long computational time often prevents real-time vehicle tracking from spatial 
or temporal high resolution data. It is well known in the area of VLSI (Very Large Scale 
Integrated) circuit design that a dedicated hardware implementation of any algorithm minimizes 
its computational time [8].  This is the motivation for direct implementation of tracking 
algorithms in hardware (i.e., device level), whether it is a partial or full implementation. 

1.2 Previous Work 

In this section, we briefly review some previous vehicle tracking systems and their 
implementations.  For example, reference [4] presents a method for tracking and counting 
pedestrians or vehicles using a single camera.  In order to accurately capture important 
movement information, the system must acquire pictures at a high-frame rate.  However, due to a 
large computational delay required by software implementation of the tracking algorithm, a high 
frame rate or a high resolution is difficult to achieve. 

The tracking algorithm in [4] is divided into three phases of operations: raw image processing, 
blobs graph optimization and Kalman filtering based estimation of object parameters.  First, at 
the raw image level, Gaussian noise filtering, background subtraction and thresholding is 
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performed to produce binary difference images in 256×256 pixels.  The difference images are 
then supplied to the next phase of operation, where the changes with respect to two consecutive 
difference images are described in terms of motions of blobs.  After extracting blobs from the 
difference images, blob motions with respect to two consecutive difference images is modeled as 
a graph optimization problem for which the overall goal is to find the blob motions that cause the 
smallest amount of size change with respect to two consecutive difference images.  Note that in 
this process, additional constraints are enforced in order to make the graph manipulation 
computationally tractable [4].  But these constraints are based on the assumption that images are 
captured in a very high frame rate (which may contradict the actual situation of being not high 
frame rate).  Blob graph optimization requires a lot of computational resources due to its iterative 
and enumerative processes.  In the final phase of the tracking algorithm, Extended Kalman 
Filtering (EKF) is used to estimate object parameters.  Note that, the computational requirement 
of Kalman filtering is quite high [4][9].  Without a proper timing control of Kalman filtering, the 
overall tracking performance may degrade significantly [4][9]. 

The overall tracking algorithm in [4] is implemented on a Datacube MaxVideo 20 video 
processor and a Max860 vector processor and is later ported to use 400MHz Pentium PC with 
C80 Matrox Genesis vision board.  For the software implementation of tracking algorithm, peak 
frame rate is reported to be 30 frames per second while in many cases it drops to a few frames 
per second depending on the number of objects and weather conditions, which may present 
significant problems in tracking accuracy [4].  An inherent conflict exists between the 
requirement of higher time and space resolution (or to have high frame rate) and the requirement 
of a longer computational time by the software implementation.  Note that the same tracking 
algorithm presented in [4] has been applied to many other cases, such as [5] [6] and the same 
software approach is used.  

Software implementation of tracking algorithm experiences a severe time-crunch problem when 
the algorithm is to improve the tracking performance by adding more processing steps.  For 
example, considering the shape of objects being tracked adds a considerable amount of 
computational overhead [4].  Detection and classification of vehicles can only be done for two 
general classes (cars versus trucks), because further classifying the vehicles for the two classes 
significantly lengthens the computational time and prevents real-time classifications of vehicles 
[6].  To improve the tracking accuracy, some other operations, such as shadow removing, is 
required, which again takes significant amount of computational time [10].  As a result, 
implementation approaches that are software dominant may not meet the computationally 
demanding requirement of real-time operations.  

1.3 Motivation 

The speed limitation of software approaches for vehicle tracking system implementation 
motivates us to look for alternative methods.  For vehicle tracking, there are two ways to 
improve real-time operations.  One is to develop a new tracking algorithm that is simpler and 
faster, thus requiring less computational time.  While this is feasible and has been under research 
[4], a tradeoff exists between the tacking accuracy and algorithm complexity.  In general, the 
more complex the tracking algorithm is, the more accurate the tracking is, so the longer the 
computational time is.  
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A more plausible solution to reduce computational delay of tacking algorithm is to implement 
the algorithm in hardware [8].  Motivated by the limitations of the software approaches for 
vehicle tracking, there have been recent research interests in hardware implementation of 
algorithms used in different areas of ITS applications.  Yang proposes a 256×256-pixle 
Complementary Metal Oxide Semiconductor (CMOS) image sensor used in line-based vision 
applications [11].  Nakamura implements a sensor with inherent signal processing functionalities 
[12].  Fish also implements a CMOS filter which can be used in lane detection applications [13].  
Hsiao uses circuit design techniques from previous works [11][12][13] and proposes a hardware 
implementation of a mixed-signal CMOS processor with built-in image sensor for efficient lane 
detection for use in intelligent vehicles [14].  Hsiao does not compare the computational time of 
the processor to that of software implementation for the lane detection algorithm, but it is shown 
that a hardware approach can even improve the performance of simple lane detection [14]. 

Drawing from current and future demands for real-time operations of vehicle tracking, this 
project intends to develop a new tracking system largely based on hardware implementation.  
Note that the main initiative to implement a CMOS vision processor is to improve real-time 
operation of vehicle tracking, since a hardware implementation of the tracking algorithm could 
significantly improve the processing speed compared to the software approach.  In addition, a 
few other advantages can be identified for hardware implementation of tracking algorithm.  First, 
the performance of real-time vehicle tracking will be improved.  Many other tasks that 
previously could not be incorporated in the tracking process due to computational time constraint 
may now be enabled.  Second, potential improvements on tracking accuracy are expected due to 
high-frame rate tracking.  For instance, the performance of lane detection for a CMOS processor 
is improved compared to that of the software approach, as reported in [14].  In fact, from the 
VLSI circuit design point of view, a dedicated hardware has less undesired effects, such as 
accumulated digitization error [8].  Another benefit is that the hardware size could be much 
smaller compared to micro-controllers (software implementation), thus the overall system will be 
more portable.  Moreover, the power consumption of dedicated hardware will potentially be 
much less compared to software implementations [8].  This feature would be especially 
important in the future effort to design low-power tracking systems.  Even more importantly, the 
cost of the tracking system could be reduced to a fraction of that of software implementations.  

But some potential disadvantages of the hardware approach are also identified.  First, the initial 
development cost may be huge, and the design cycle for a hardware processor is typically much 
longer than that of the software approach.  This possible huge design effort could be only 
compensated for by extensive usage of the developed hardware in real ITS applications.  Second, 
typically a hardware approach is not as flexible as a software approach.  In the software 
approach, designers only need to change the software codes to adapt to new situations, whereas 
the hardware approach may not be easily adapted to new situations.  Though reconfigurable 
design techniques can be applied during the hardware design to achieve flexibility, this is at the 
expense of extra design effort and hardware components [8]. 

The main initiative of hardware implementation of tracking algorithm is to minimize the 
computational time and thus to improve real-time operation of vehicle tracking, but directly 
proceeding to hardware implementation of a tracking algorithm may make the overall design 
process impractical considering other factors.  The other factors that have to be considered for 
hardware design include the overall development cost, the overall hardware complexity (design 
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cycle) and the required flexibility [8] as mentioned above.  If the overall development cost is 
prohibitively high, then a software approach to implement tracking algorithm should be favored 
since micro-controllers are much cheaper.  Similarly, if the design cycle is too long (time-to-
market is thus seriously delayed), hardware implementation is also at a disadvantage.  
Considering all these factors, a strong argument for hardware implementation is that the 
hardware can be designed in a way that is both time and cost effective, and the hardware will be 
designed to be re-useable in different tracking algorithms [8].  The later also relates well to the 
area of Hardware/Software Co-design [8] since some processing steps of the tracking algorithm 
are more suited to hardware implementation while the others are to software implementation.  
Considering all these factors, simply taking an existing tracking algorithm, such as the one in 
[4][5][6], and implementing it in hardware may not result in a good solution.  In fact, analysis 
shows that implementing the tracking algorithm in pure hardware [4][5][6] is very costly.  But on 
the other hand, if only some parts of the tracking algorithm are implemented in hardware, the 
overall computational time saving is not promising.  As a result, improving real-time operation 
of tracking is more than just pure hardware implementation, but instead it requires also 
innovation in both tracking algorithm design, which has to be well suited to hardware design 
with reasonable design effort. 

In this project, we propose a possible solution to design a hardware-based vehicle tracking 
system and its hardware implementations. 

1.4 Summary 

In this chapter a brief review of the traditional vehicle tracking system is provided.  The 
advantages and disadvantages of the conventional tracking systems based on software 
implementation are discussed. Possible hardware implementation of vehicle tracking system is 
also proposed in order to improve frame rate and the real time operation of the vehicle tracking. 

The organization of the rest of the report is described as follows:  

• In Chapter 2, an overview of the proposed vehicle tracking system is provided and its 
core tracking algorithm based on motion estimation is presented in detail;  

• Chapter 3 details on how to implement motion estimation algorithm in hardware and how 
to interface the hardware to image sensor and the PC; 

• Chapter 4 describes the design of the post-processing software for processing the motion 
vector outputs from the hardware processor;  

• In Chapter 5, some simulation and test results of the tracking system for validating the 
vehicle tracking algorithm are provided; 

• Chapter 6 summarizes and concludes the project report. 
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Chapter 2 
Overview of the Proposed Vehicle Tracking System 

2.1 Introduction 

Motivated by the limitation of software implementation for vehicle tracking systems discussed in 
Chapter 1, this chapter proposes a vehicle tracking system based on hardware implementation 
and discusses its overall processing flow.  The system includes two parts which are implemented 
by hardware and software separately.  The commercial image sensor, Micron MT9V111, is used 
to capture traffic images, and the data outputs are sequences of image frames [15].  The images 
frames will be transmitted to the hardware processor, which implements the core of the tracking 
algorithm, motion estimation based on block matching algorithm.  Once the motion vectors are 
computed, they are transmitted to the software part (a PC computer for current implementation) 
through a high-speed Universal Serial Bus (USB) interface.  Finally, the developed MATLAB 
code processes the motion vectors to track vehicles.  This completes one tracking cycle. 

2.2 Overall Processing Flow 

The processing flow of the proposed tracking system is explained as follows and the diagram is 
shown in Figure 2-1: 

•  Step 1: it is assumed that an image sensor captures images at a high frame rate.  However, this 
high frame rate needs to be validated by relatively short computational time for the proposed 
approach so that there is no contradiction between assumed high frame rate and actual low 
processing speed as in conventional tracking system [4][5][6].  

•  Step 2: two consecutive image frames are first stored and then matched to identify object 
motion (in this case, the objects are vehicles).  The motion detection is based on the full-search 
block matching algorithm.  The outputs of the block matching computation are the motion 
vectors of all blocks in the image frames. 

•  Step 3: the motion vectors are transmitted to the next stage of processing by going through the 
interface unit which is used to connect the designed hardware processor to the computer. 

•  Step 4: in this final step, blob extraction and blob association are conducted by processing the 
data transmitted from the previous step to identify moving vehicles and track how and where 
each vehicle moves.  

For the proposed tracking algorithm, step one to step three are well suited to hardware 
implementation, whereas the final step is currently put to software implementation, but can be 
mapped to hardware implementation too.  As a result, the proposed plan to implement the 
tracking system is to design a CMOS hardware processor for motion detection and then a 
software program on a PC for vehicle association and tracking.  It is a good tradeoff between 
computational time and development cost.  The hardware processor for motion detection can be 
widely used in many image processing applications and ITS applications [16].  Therefore, 
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hardware implementation of the core tracking algorithm is worthy of the possible high 
development cost and design effort. 

 

Figure 2-1: Overall system diagram of the proposed tracking system 

2.3 Step 1: Image Read In 

There is no need to build a customized image sensor since it is already commercial available.  In 
the proposed vehicle tracking system a MT9V111 Micron Image Sensor with demo kit [17] is 
used.  The Micron Imaging MT9V111 is a 1/4-inch Video Graphics Array (VGA)-format CMOS 
active-pixel digital image sensor, with the programmable frame rate up to 60 frames per second 
(fps), which can meet the real-time requirement of vehicle tracking [15].   

2.4 Step 2: Motion Estimation Based On Block Matching 

The hardware processor implements the core of the tracking algorithm, motion estimation based 
on block matching algorithm.  An illustration of block matching algorithm is shown in Figure 2-
2.  Suppose that the image size is M×S (in pixels) and the block size is n×n, then a total of 
(M×S)/(n×n) blocks are defined for each image frame (for illustration purpose, Figure 2-2 shows 
only 16 blocks for each frame).  With respect to two consecutive images, shown as “current 
frame” (say frame number N) and “previous frame” (frame number N-1) in Figure 2-2, reference 
block A (the dark shaded region) in “previous frame” can be considered as a moved version of 
block A’ in “current frame” and block A’ is in the neighborhood area of the A.  This 
neighborhood, called search area, is defined by parameter, p, in four directions (up, down, right 
and left) from the position of block A.  The value of p is determined by the frame rate and object 
speed.  If the frame rate is high, as assumed in the proposed tracking system, then parameter p 
can be set relatively small since the block A is not expected to move dramatically within a short 
period of time. In the search area of (2p+n)×(2p+n), there are a total of (2p+1)×(2p+1) possible 
candidate blocks for A and the block A’ in “current frame” (N) that gives the minimum matching 
value is the one that originates from block A in “previous frame” (N-1).  The most commonly 
used matching criterion, MAD (Mean Absolute Difference), is defined as follows [16]: 
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where             is the reference block of size n×n,                      is the candidate block within the 
search area and         represents the block motion vector.  The motion vectors computed from 
block matching contain information on how and where each block in the image moves within 
two consecutive image frames.  

 

Figure 2-2: Motion estimation based on full search block matching 

2.4.1 Illustration of Step 2 for Vehicle Tracking 

Due to multiple factors, such as noises, frame rate and block size, the motion vectors computed 
for the blocks that belong to the same vehicle may be different, which makes the tracking system 
hard to correctly identify the vehicle and extract it.  Therefore, in the proposed tracking system, 
the motion status is processed instead of the raw motion vectors.  To obtain the motion status, the 
motion vectors are quantized based on the following definitions.  Suppose that a block A has 
original coordinates as (x, y) in “previous frame” (N-1).  To be consistent, the origin (0, 0) is 
defined as the coordinates of the upper-left corner of a rectangular block.  Further suppose that 
the block A is found to be moved to (x’, y’) in “current frame” (N), computed from the block 
matching process.  Then the motion status of block A is defined as follows: 

motion status 1 represents moving down if block A has (y’<y && |y’-y|>=|x’-x|) 

motion status 2 represents moving up if block A has (y’>y && |y’-y|>=|x’-x|) 

motion status 3 represents moving right if block A has (x’>x && |x’-x|>=|y’-y|) 

motion status 4 represents moving left if block A has (x’<x && |x’-x|>=|y’-y| 

motion status 5 represents no move if block A has (x’=x && y’=y) 
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Note that it is possible to define more refined movements, for example, moving both up and 
right.  But it is typically accurate enough to identify the vehicle motion using the above five 
statuses due to high frame rate vehicle tracking and moderate image resolution.  Also note that 
the motion status 5 does not mean necessarily that the block is a background block.  In fact, a 
vehicle could also have the motion status of 5 if it is not moving.  

With the above definitions, the motion diagram showing the motion status of each block 
computed from block matching can be illustrated.  The following three figures, Figure 2-3, 2-4, 
2-5, obtained from MATLAB simulation, give an example of how the tracking algorithm detects 
the motion of the vehicles.  Figure 2-5 has a dimension of 90×24 blocks and each element 
represents the motion status of that corresponding block.  The red boxes in Figure 2-5 represent 
the same vehicles as in Figure 2-3.  It can be seen that vehicle motions for these vehicles are 
mostly accurately identified.  For example, vehicles A and E have mostly motion status of 3 for 
the blocks corresponding to the vehicle in the image.  Practically, the number of a continuous 
region of 3s is also a good measure of the size of the vehicle in the image.  Here, the red box A 
actually represents two vehicles due to merging.  Vehicles B, C and D have mostly motion status 
of 4 for the blocks and the number of 4’s can also be looked as a good indication of the size of 
the vehicles.  The left-most white vehicle and a few other vehicles beside B (refer to Figure 2-3) 
have no motion since they were waiting for the traffic signal.  So, the motion status for these 
vehicles should be 5, which is the case as shown in Figure 2-5.  But note that there are some 
noisy motion detections, which happened to the background blocks since the background is quite 
uniform and block matching computational might have made wrong decisions.  And this noisy 
motion detection also happened to the vehicle E.  The wrong decision could be partially 
corrected at the software part of the tracking algorithm, which will be discussed in Chapter 4.  
From this motion diagram the vehicles can be extracted using motion status and then tracked. 

2.5 Step 3: Transmission of Motion Vectors to PC 

After block matching computation, motion vectors are transmitted to the allocated buffer of the 
interface unit, which is a demo-kit included in original Micron image sensor system.  Then by 
calling the software routines designed for the sensor system (the software is coded in C++) in a 
host PC, the motion vectors could be transmitted to the PC via a high-speed USB 2.0 port that 
connects the hardware sensor system and PC.  We currently use MATLAB in a host PC to 
receive the motion vectors and post-process them.  Section 3.4 gives more details on this. 

2.6 Step 4: Vehicle Tracking In Software 

Once the motion vectors are transmitted to the PC, they are processed by the MATLAB software 
to track vehicles.  Therefore, the vehicle tracking software is developed in MATLAB.  Briefly, 
the software tracking algorithm consists of two main components that are blob extraction and 
blob association.  Referring to the example presented in section 2.4.1, the vehicle could be found 
by detecting a continuous region that contains elements of the same motion status.  This kind of 
region is called a blob and the task of blob extraction is to find the blobs and extract their 
information such as position and size.  Then the other component, blob association, is utilized to 
associate the blobs extracted by two consecutive blocking matching computations.  This process 
goes on to keep tracking the vehicles.  The details will be discussed in Chapter 4. 



 

C-9 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3: A traffic image captured at an intersection (frame N-1) 

 

 

Figure 2-4: A traffic image captured at an intersection (frame N) 
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Figure 2-5: Block motion of frame (N-1) with respect to frame (N) 

2.7 Comparison with Conventional Tracking Algorithm 

In this section, the proposed tracking algorithm is qualitatively compared to the conventional 
ones in [4][5][6].  Both algorithms adopt the video based tracking approach.  That is, the inputs 
to the tracking algorithm are image frames at different time instants.  Regarding the difference in 
general, motion detection in [4][5][6] is object-based, in contrast to block-based motion detection 
for the proposed tracking algorithm.  [4][5][6] rely on background subtraction and then 
thresholding to identify vehicle objects.  Using the terminology, these objects are called blobs 
[4].  The blobs can be extracted from the difference image using a contour following algorithm 
[4].  It does so for two consecutive image frames N-1 and N, so that these two difference images 
are compared to identify the blob motion.  To do that, it adopts a graph optimization approach.  
The blobs in each difference image is represented as a graph and the two consecutive graphs are 
optimized to find the best matching of the blobs in terms of minimum total size change with 
respect to the two consecutive difference images.  After this, blob motion data processing and 
Kalman filtering are used for prediction of the motion.  Figure 2-6 graphically illustrates how the 
conventional tracking algorithm works for the vehicle tracking. 

This section identifies several disadvantages of the conventional tracking algorithms and 
explains the difference from the proposed tracking algorithm.  First, the background subtraction 
involves a static background image, but the background may keep changing, which is not well 
addressed even with dynamic background updates [4].  Next, the image frame after background 
subtraction (the difference image) is thresholded to obtain a binary image.  The threshold value 
has to be obtained by background training and is set to the absolute maximum fluctuation of 
pixel values (range from 0 to 255, for instance).  This involves manual setting and could 
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introduce undesirable noise [4].  In contrast, the proposed approach of block matching does not 
require a static background image and the background change has negligible effect for block 
matching even when the frame rate is low.  This makes the proposed tracking algorithm more 
robust and environmental changes that include weather variations.   

 

Figure 2-6: An illustration of conventional tracking algorithms 

Second, after thresholding the image is a binary digital image and only objects (blobs) are 
preserved in the image.  Note that the pixel data information is now lost and all known is that 
whether each pixel corresponds to background or object.  But in the proposed tracking algorithm, 
the rich pixel data information is kept and intentionally used for block matching whereas all 
pixels are thresholded to obtain a binary image in [4].  This makes the block matching algorithm 
potentially more accurate in terms of identifying the moving object since it is based on pixel 
value difference instead of size difference [4] in graph optimization of conventional tracking 
algorithm.   

Third, the outputs of block matching are motion vectors, which can not only be used to extract 
the blob in the current image frame but also used to predict the position of the blob in the next 
image frame.  Thanks to the motion vectors, the task of vehicle tracking simplifies to the 
association of blobs based on the amount of overlap between the blobs at the predicted position
(obtained from the former block matching) and the blobs at the measured position (obtained from 
the later block matching).  Also, blob position prediction using motion vectors is much simpler 
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and saves more computational time than Kalman Filtering based prediction in conventional 
tracking systems [4].   

Fourth, the block matching algorithm in the proposed tracking system is more complicated than 
graph optimization in conventional tracking algorithm from algorithm point of view and 
typically takes longer computational time.  For example, block matching computation is in the 
order of minutes in MATLAB simulation.  This means that the proposed tracking algorithm can 
not be applied in real applications if it is implemented using a software approach, such as using 
MATLAB in a general purpose PC or a simple micro-controller.  On the other hand, the block 
matching algorithm is well suited to hardware implementation.  Therefore, in terms of 
implementation, most of the computation for the proposed tracking algorithm is done in 
hardware part, which is much faster than software implementations.   

Overall, combined hardware implementation of the proposed tracking algorithm and simple 
processing steps of the software part clearly give a great timing advantage for vehicle tracking.  
This makes high-frame rate and real-time vehicle tracking feasible.  

2.8 Summary 

This chapter provides an overview of the processing flow of the proposed vehicle tracking 
system.  The core of the tracking algorithm, motion estimation based on full-search block 
matching, is discussed and illustrated. 
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Chapter 3 
Hardware Design of Motion Estimation Algorithm 

3.1 Introduction 

This chapter presents the design details of the hardware processor which implement the block 
matching algorithm to process the captured frames and output the motion vectors, which 
corresponds to step 2 in section 2.4.  The hardware processor consists of four function blocks 
that are memories, a block matching module, a control signal generator and a system clock signal 
generator, as shown in Figure 3-1.  The hardware processor is implemented using digital circuits 
for better design efficiency compared to analog circuits.  We follow the four steps below to 
design the hardware processor.  Firstly, Verilog code [18] is written for the overall hardware 
processor.  Secondly, a Cadence CAD (Computer Aided Design) tool, NClaunch [19], is invoked 
to simulate the codes to verify the correct operation of the logic.  Thirdly, another Cadence tool 
called Encounter RTL (Register Transfer Level) Compiler [20] is used to automatically 
synthesize the Verilog codes to circuit schematics.  At last, the layout of the designed circuits is 
generated using the Cadence SOC (System-on-Chip) Encounter place and route [21].  The 
hardware processor is designed with the commercial IBM 0.13µm technology [22].  

 

Figure 3-1: The hardware processor for motion estimation 

3.2 Timing Budget 

The core of the tracking algorithm, motion estimation based on block matching, requires heavy 
computations, i.e. a huge number of subtractions (refer to Section 2).  Whether the tracking 
system can achieve real-time operation critically depends on the computational time of the block 
matching algorithm.  If the algorithm is implemented in software, for example in MATLAB on a 
PC [23], the computational time is in the order of minutes for M = 288, S = 352, n = p = 8 
(referring to section 2.4 for the definition of the parameters) and each pixel being a gray scale 8-
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bit integer.  Therefore, if the proposed algorithm relies on software implementation, it has a 
much larger computational time than conventional tracking algorithms [4] [5] [6], therefore 
making frame rate for vehicle tracking even lower.  However, if it is implemented in customized 
hardware, the block matching can be completed in much less time.  The following sub-section 
discusses the timing budget of the tracking system to find out whether the processing speed of 
hardware processor meets the requirement of real-time operation. 

3.2.1 Time of Frame Transmitting 

Referring to the tracking system diagram in Figure 3-1, the first hardware part is the image 
sensor.  But it has to be high-throughput to minimize the latency when outputting data (the data 
is pixel values of the image).  In the proposed tracking system, the commercial image sensor, the 
MT9V111 sensor from Micron Technology [15], runs at a frame rate of 30 frames/second with 
resolution of 352×288 pixels. The master clock is 27 MHz and the output format is 8-bits 
parallel.  That means each cycle of vehicle tracking has to finish within 1/30=33.33 milliseconds 
(ms) for real-time operation.  As provided in the data sheets of the image sensor [15], the amount 
of time taken to transmitting a frame, whose resolution is 640×480, to the buffer is 63.92ms in 
the case that the master clock is 12 MHz.  Note that the time for transmitting every pixel should 
be the same, which is one clock cycle.  Therefore, the transmitting time of one image frame in 
the proposed tracking system could be approximately calculated by a linear solution as follows: 
63.92 × 12/27 × (352×288) / (640×480) = 9.37ms.  This leaves 33.33-9.37=23.96ms for motion 
estimation based on block matching.  Note that there is no need to consider the time the software 
part takes because the processing of software part is independent from the hardware part, which 
is described in section 3.4 in detail.  

3.2.2 Time of Block Matching 

Whether the block matching computation in the proposed tracking algorithm can finish within 
such a time, 23.96ms, is next considered.  In our processor design, in addition to the sensor 
master clock which is 27MHz, another clock of 333MHz is provided (the period time is 3 
nanoseconds) for block matching computation itself in order to speed up the processing.  This 
clock is determined after extensive simulations of the transistor-level circuits in each pipeline 
stage as described next.  In the processor design, this clock is switched in after the current image 
frame is received and stored in the memory.   

Typically, to improve hardware throughput, pipelining technique can be used at the expense of 
extra hardware design.  One possible pipelining technique for block matching without incurring 
much extra hardware is called the systolic array processing technique [24].  In this approach, n×n 
adder circuits for block matching computation are used.  Referring to the size of search area 
discussed in the section 2.4, the total number of additions (or subtractions) for one block 
matching is (n+2p) × (n+2p).  Therefore, the total execution time (TET) for one block matching 
in this case would be approximately estimated (M=352, S=288, n=8, p=8) [28] as follows [25]: 

TET = (n+2p)×(n+2p)×(M×S)/(n×n)×clk = 24×24×(352×288) / (8×8) ×3 nanoseconds = 2.73ms 

Note that each addition (or subtraction) takes one clock period.  Thus, it can be seen that the 
execution time for block matching would easily meet the requirement of 23.96ms in order to 
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achieve 30 frames/second vehicles tracking.  Moreover, the rest 21.23ms (23.96-2.73=21.23ms)
means that it is possible to increase the frame rate or more processing can be added in the
hardware part if needed.  However, the processing speed of software part may limit the frame 
rate. 

3.3 Design Details of Hardware Processor

This section presents the details of how to design the hardware processor for the tracking system.  
As described in section 2.2, the hardware part consists of three components that are image 
sensor, hardware processor for motion estimation and interface unit.  In the commercial Micron 
image sensor system, the sensor-head, which holds the lens and sensor core chip, and the demo-
kit, which is used to transmit the image to the computer via a USB interface are included [17], as 
shown in Figure 3-2.  Therefore, the main task is to design the hardware processor motion 
estimation.  

 

Figure 3-2: Commercial Micron image sensor system 

3.3.1 Memory Design  

Since the image sensor captures and outputs images frame by frame and the block matching uses 
two consecutive frames for processing, two stacks of memories are needed to store the frames N 
and N+1.   

To design the memory, the Artisan Standard Cell Library in IBM 0.13µm technology [26] is 
used.  The SRAM Generator in the library is used to create instances of memory whose 
parameters meet the requirement.  Figure 3-3 that is provided by the document of User Guide 
[26] shows every pin in the Synchronous Single-Port SRAM.  The function of the memory is 
controlled by two inputs CEN and WEN.  When the signal of CEN is high, the memory stays in 
the mode of standby.  Then the address inputs are disabled and the data stored in the memory is 
retained, therefore memory cannot be accessed for new reads or writes.  Data outputs remain 
stable.  When both CEN and WEN are low, the memory stays in the mode of writing.  The data 
on the data input bus, D[n-1:0], is written to the memory location specified by the address bus, 
A[m-1:0], and is driven through to the data output bus Q[n-1:0].  When CEN is low and WEN is 
high, the memory stays in the mode of reading.  The data on the data output bus Q[n-1:0] takes 
that of  the memory location specified on the address bus A[m-1:0] and is read (by other external 
components). 
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The number of pixels in one image frame is 352×288=101,376, within 216 and 217, which means 
that the address bus A has to have at least 17 bits.   However, referring to the User Guide [26], 
the maximum number of words that one block of memory could store is 16384=214.  It is far 
from enough to store one frame, hence seven memory blocks are needed in order to store the 
entire frame.  In the design, 14 out of the 17-bit address bus, A[13:0], specify the locations of 
pixels.  The rest three bits are used as select signals to control a multiplexer to access one of the 
seven memory blocks.  For example, suppose a 17 bit address, 101-01100111110010, is sent into 
the memory stack.  The first three bits, 101 (equal to 5 in decimal), control the multiplexer to 
access the sixth memory block.  Then the rest 14 bits are provided as an address to this memory 
block for writing or reading the data. 

 

Figure 3-3: Synchronous Single-Port SRAM Diagram 

3.3.2 Block Matching Algorithm Implementation  

This section presents a VLSI architecture for implementing motion estimation based on full 
search block matching algorithm (FBMA), as described in reference [24].  Figure 3-4 shows the 
overall system architecture consists of three main functional blocks that are a systolic array 
combined with shift register arrays, a best match selection unit, and a control unit.  The pixel 
data of the reference block and search area enters the systolic array serially from the input pins R 
and S.  Then the output of the systolic array, the mean absolute difference (MAD), is sent into 
the best match selection unit to find the smallest value and output the motion vectors 
corresponding to that MAD value.  The whole processing flow is synchronized by the control 
unit.  Next, we detail on the design of each functional block. 

A. Systolic Array Structure 
The systolic array is constructed by n2 processing elements (PEi, j), (n-1) shift register arrays 
(SRAi), and an n-input adder, as shown in Figure 3-5 [24].  The pixel data of the reference block 
are serially delivered into the R input bus while the pixel data of the search area are serially fed 
into the S input bus.  Once they are shifted to the correct locations, the PE’s of every column 
calculates the partial sums of the absolute differences in parallel and then sends them to the n-
input adder to compute the MAD value of block matching for each candidate block.  Since the 
number of pixels of the reference block, n2, is less than that of the search area, (n+2p) 2, before 
the first search pixel arrives at the PE1, 1, all the reference block data {R (i, j) | 1≤i, j≤n} have 
been shifted to and stored in all the PE’s, respectively.  PEi, j store R (i, j) for i, j = 1~n until the 
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full-search block-matching is finished.  Therefore, there are two clock signals, i.e., clk and clkr. 
clkr is used to control the shift operation of the reference block data to PE’s.  The clkr is 
generated in the control unit (shown in Figure3-4) and it provides n2 (the number of PE’s) clock 
periods to shift all the reference pixels to all PEs (as last, the first reference pixel is stored in PE1, 

1).  clk is the system clock, which is used to shift the pixels of the search area into the PEs as well 
as control the internal addition (or subtraction) of all PEs. 

 

Figure 3-4: The hardware architecture to implement FBMA 

Note that though the data flow of the architecture is serially in and serially out, the inherent 
spatial parallelism and temporal parallelism are fully exploited in the computation to speed up 
the processing [24].  From the definition of MAD in Section 2.4, there are n×n additions of pixel 
absolute difference for every MAD value.  It takes n×n clock cycles if no parallel processing is 
used, which make the computational time of motion estimation much longer.  However in this 
architecture, the two-dimensional systolic array and shift register arrays, which include (2p-1) 
shift registers, are used to achieve the goal of parallel processing while avoiding multiple data 
inputs.   

Assume the first search area pixel shifting in the array is S (1, 1).  In the first clock cycle, it is 
shifted to PE1, 1 while S (1, n) is in PE1, n.  That means the first row data of the first candidate 
block have been shifted into the PE1, j, j = 1~n and their absolute difference (AD) values AD1, j, j 
= 1~n are calculated simultaneously.  In the second clock cycle, these values are shifted up and 
added with the AD2, j, j = 1~n calculated by the PE2, j, j = 1~n, which process S (2, j), j = 1~n, the 
second row data of the first candidate block.  Thus, the n sums AD1, j + AD2, j, j = 1~n are 
obtained.  Note that in the same clock cycle, the PE1, j, j = 1~n get S (1, j), j = 2~n+1, which are 
the first row data of the second candidate block.  Similarly, in the third clock cycle, the sums 
AD1, j + AD2, j + AD3, j, j = 1~n for the first candidate block, the sums AD1, j + AD2, j, j = 2~n+1 
for the second candidate block, and AD3, j, j = 3~n+2 for the third candidate block are calculated.  
By following this parallel processing pipeline, after n clock cycles, the parallel adder adds the n 
column partial sums AD1, j + … + ADn, j, j = 1~n to obtain the first matching result MAD.  In 
clock cycle n+1, the second MAD value outputs, and the third one in clock cycle n+2, and so on. 
This means one MAD value is computed in a single clock cycle, which improves the throughput. 

B. PE Design 
Figure 3-6 illustrates the block diagram of PEi, j [24].  Each PE is constructed by an absolute 
difference calculator (ADC), an adder, and four shift registers (L1~ L4).  ADC computes the AD 
between the search pixel shifted from the left-neighbor PEi, j+1 (or from SRAn-i) and the reference 
pixel R (i, j) stored in the L2.  The AD value delayed one clock period by L3 is added to the result 
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shifted from the down-neighbor PEi-1,j.  Then the sum is passed to the up-neighbor PEi+1, j after 
being delayed one clock period by the L4.  The L1 implements an independent path for the 
shifting of the search pixel.  Note that different with L1 L2 L3, whose widths are 8 bits, the width 
of L4 is (8+k), while i=2k since the maximum sum of AD values of each column is i×28=2k+8.  

 

Figure 3-5: The architecture of systolic array 

 

Figure 3-6: Block diagram of PEi, j  
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C. Shift Register Arrays  
Depending on several factors, such as the vehicle size, the vehicle speed, or the frame rate, the 
size of the search area could be set larger or smaller.  Therefore, the length of each SRA is 
designed to be programmable to meet the requirement of the changeable size of the search area.  
Figure 3-7 shows the diagram of the programmable SRA that provides four sizes to the search 
area [24].  In the design, n=8, p=5, 6, 7, or 8, so the dimensions of the search area could be 18, 
20, 22, or 24, respectively.  15 shift registers are separated to four groups of 9, 2, 2, 2 registers by 
four control blocks SW1 ~ SW4.  SWn, controlled by the signal cn generated in the control unit, is 
a switch used to open or close the path between the groups.  For example, if the desirable size of 
the search area is 22, then the control signal c1c2c3c4=1110.  In this case, SW3 blocks the last 
group of 2 shift registers, and the length of the SRA is thus 9+2+2=13. 

 

Figure 3-7: Block diagram of the shift register array (SRAi) 

D. Best Match-Selection Unit 
Figure 3-8 shows the block diagram of the best match-selection unit [24].  The champion register 
is used to store the smallest MAD value from the block matching computation.  The champion 
register is connected to the comparator to compare to the new MAD value for the following 
candidate block.  If the coming challenger is smaller and the input signal Y indicates that the 
coming MAD is valid, it will replace the current champion in the champion register and the 
corresponding motion vector will be recorded in the row and column registers.  Otherwise, the 
registers will be disabled and the previous data remains locked.  Before the next block matching 
computation for a new reference block, a reset signal is sent to initialize the champion register to 
a large value (as motion estimation looks for minimum MAD).   

 

Figure 3-8: Block diagram of the best match-selection unit 
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E. Control Unit 
Figure 3-9 shows the block diagram of the control unit [24].  The row and column counters 
provide the coordinates of the candidate blocks.  Moreover, to prevent the invalid candidate 
blocks from resulting in the wrong motion vectors, the signal Y is generated to check if the 
coordinates corresponding to the current MAD value is valid or not.  As shown in Figure 3-10, 
the first valid MAD value is obtained when the shifted search pixel reaches the coordinates (n, n) 
and PE (1,1) in the systolic array.  Besides, the control code generator produces the control 
signals c1 ~ c4 to change the length of the shift register arrays as described in last sub-section.  It 
is specified by the two parameters, n and p, which are preset by users.   

As described in the design of the systolic array, a special clock signal clkr is needed to control 
the shifting of the reference pixels.  It is produced by the reference clock generator which has a 
counter for counting the number of clock periods of the system clock clk.  The clkr equals to clk 
until the counter counts to n2  when it is forced to low. 

 

Figure 3-9: Block diagram of the control unit. 

 

Figure 3-10: The regions of valid and invalid MAD values. 
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3.3.3 Design of Control Signal Generator  

The function of the control signal generator is to synchronize and control the timing within all 
parts of the hardware processor.  Figure 3-11 shows the structure of the generator. 

Referring to the data sheets of the Micron image sensor [15], there are 26 pins for the image 
sensor outputs.  Among the 26 output pins, the 8-bit pixel output, the pixel clock, the frame valid 
signal, and the line valid signal are used in our hardware processor.  The timing of these signals 
is shown as Figure 3-12.  The rising edge of the frame valid signal means the captured frame is 
ready to output and the frame pixel data is transmitted when the frame valid signal is high.  Since 
the size of the original frame captured by the sensor core is larger than the standard resolution 
due to blanking, the line valid signal is used to specify the valid pixel data in rows.  During the 
high level of line valid, one row of pixel data of the image frame is transmitted.   

Thus, both the frame valid and line valid signals control memories’ timing of either writing or 
reading data.  As the main component of the control signal generator, SRAM controller generates 
not only the control signals of CEN and WEN, but also the memory addresses for writing and 
reading data.  In the case that the frame valid signal is high and line valid signal is also high, both 
the CEN and WEN are set to low to make the SRAM stay in the mode of writing data and a 
counter produces the corresponding addresses to the input bus A of the SRAM.  Otherwise, when 
the line valid signal flips to low, the invalid pixel data is blocked from SRAM.  In this case, the 
CEN is set to high and mode of SRAM to standby.  Meanwhile, the address generation is halted
until the next rising edge of the line valid signal comes.  Since the single-port SRAM does not 
allow writing and reading in the same time, the wanted data cannot be read until the whole frame 
is stored, which is the time of the falling edge of the frame valid signal.  The dual-port SRAM 
could solve the problem since it has two ports for simultaneous reading and writing, which could 
help reduce the overall processing time of motion estimation.  However, it was not adopted in the 
design since its memory size is only half of the single-port.  On the other hand, the reduction of 
processing time is not significant even with dual-port SRAM [26].  

 

Figure 3-11: Block diagram of the control signal generator 
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When the frame valid signal is low, the SRAM stays in the mode of reading data by setting the 
CEN to low and the WEN to high.  Note that when reading data from the memory to supply into 
the block matching hardware, the faster clock of 333MHz is switched in.  Suppose that two 
consecutive frames have already been stored in two SRAM stacks, a counter generates the 
addresses of the reference pixel data for frame N while another one is responsible for the 
addresses of the search pixel data for frame N+1.  Then the two sets of pixel data are sent to the 
systolic array serially as described before.  To be efficient, the two memory stacks alternatively 
store the new coming frame.  Assume that the frame N is stored in SRAM1, the SRAM2 is 
accessed to store the frame N+1, and the search pixels are read from it while the reference pixels 
are read from SRAM1.  Then next time, SRAM1 gets the frame N+2 and this time SRAM2 
supplies the reference pixels.  The data access scheme could be easily implemented by 
multiplexers, as shown in Figure 3-13.  For instance, suppose that Dout is connected to D1, AA to 
A1, AB to A2, O1 to S, and O2 to R (AA, AB denote address bus inputs).  Once the rising edge of 
the frame valid signal comes, the connections change to that Dout to D2, AA to A2, AB to A1, O1 
to R, and O2 to S.   

As described in last section, every time before the computation of block matching for one 
candidate block, a reset signal is needed to initialize champion registers and counters in best 
match selection circuit.  Note that in theory every computation of block matching takes 
(n+2p)×(n+2p) clock cycles (576 if n=p=8).  Therefore, a reset occurs after every this number of 
clock cycles. 

Referring to the sensor data sheets [15], the pixel clock, the frame valid and the line valid signals 
are used to control the demo kit to store valid pixels of image frames.  In our design, the 
hardware processor for motion estimation is inserted between the sensor and the demo kit.  With 
the new system, the motion vectors computed from block matching are stored in the buffer 
instead of pixels of image frames.  To be able to re-use the commercial demo-kit, different 
control signals that are compatible to the motion vectors outputs need to be generated.  How to 
generate these signals is explained as follows.  In the same way as producing the reset signal, a 
new pixel clock is generated at the ending time of every block matching (when the motion 
vectors are stored in the result registers).  Since the valid time for outputting motion vectors is 
when the block matching finishes computation, which is the same time when the original frame 
valid signal is low, the new frame valid signal is obtained by simply inverting the original one.  
The new line valid signal is the same as the new frame valid signal because different from the 
original image pixels outputs, there is no invalid motion vectors output.  The timing diagram of 
the new control signals is shown in Figure 3-12. 

3.3.4 Design of System Clock Signal Generator  

According to Micron image sensor data sheets [15], the pixel output format chosen is “YCbCr”, 
which uses two bytes to represent a pixel.  The full-search block matching algorithm only needs 
the grayscale value, i.e., the data of Yi, which is in the second byte.  Therefore, a writing clock 
signal is generated to pick up Yi from the sensor output and then write it into SRAM.  The clock 
period of this clock is double of the sensor’s master clock period (called pixel clock in Micron 
image sensor system referring to Figure 3-2) [15].  Moreover, as described in Section 3.2.2, 
another clock signal with frequency 333MHz is provided to read data from SRAM for block 
matching computation.  This means that two different clocks are used when reading from and 
writing to SRAMs.  From Figure 3-3 there is only one clock input pin in SRAM.  Hence, the 
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function of the system clock signal generator is to combine the two different clocks to produce a 
system clock that is connected to SRAM’s clock input. 

 

Figure 3-12: The original and new buffer control signals 

 

Figure 3-13: Alternative SRAM switching to store new frame data 

3.3.5 Entire Hardware Part  

For the proposed tracking system, Figure 3-14 shows the diagram of entire hardware part.
Compared to the original Micron image sensor system shown in Figure 3-2, a hardware 
processor is designed and assembled into the original sensor system. 

 

Figure 3-14: The diagram of entire hardware part 
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3.4 Interface Unit 

In the commercial Micron image sensor system, the frames captured by the sensor head is stored 
in the buffer of demo-kit and transmitted to a computer with a USB 2.0 port (refer to Figure 3-2 
and 3-14) [17].   

However, as described in section 3.3.3, in the proposed tracking system the data that should be 
stored in buffer is motion vectors (refer to Figure 3-14).  Also as discussed in Chapter 2, the 
hardware in Figure 3-14 takes care of the tasks 1 to 3 whereas task 4 is decided to be 
implemented in the traditional software approach.  Therefore, the motion vectors stored in the 
buffer of demo kit needs to be sent to a PC for further processing.  

Currently, task 4 is implemented in the commercial software MATLAB [23] in a host PC.  The 
Micron Imaging Device Library [17] provides a device independent API (Application 
Programming Interface written in C/C++ programming language) for seamless device control 
and data transport.  By calling these APIs, the motion vectors can be read into MATLAB from 
the buffer.  Figure 3-15 presents the pseudo-codes of how to control the sensor system to obtain 
the motion vector data from the buffer. 

1. Find a camera connected to the computer 
2. Allocate the buffer to store the data  
3. Turn on the camera 
4. Grab a frame of data and store it in the buffer 
5. Send the data to MATLAB workspace through the pointers of API 
6. Turn off the camera and free the buffer 

Figure 3-15: Pesudo-codes of reading data from the buffer 

3.5 Logic Simulation Result 

To verify the design of the hardware processor, Verify code is written for the hardware processor 
and simulated in NClaunch, a CAD Tool of Cadence [19].  The simulation results verify the 
correction operation of the hardware processor.  Figure 3-16 presents only a glimpse of the 
simulation results.  The output data “HDQ” is the smallest MAD value from every block 
matching computation, and “HDC” and “HDR” are the corresponding coordinates, also the 
motion vectors.  The waveform of the new buffer control signals of frame valid, line valid and 
pixel clock are denoted as “NewFV”, “NewLV” and “NewCLK” (refer to Figure 3-11). 

 

 

Figure 3-16: Logic simulation result 
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3.6 Summary 

This chapter discusses the timing requirements of the hardware processor and presents the design 
details of every functional block in it.  The entire hardware processor is coded in Verilog 
hardware description language and verified by simulation.  
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Chapter 4 
Design of Software Part of the Tracking System 

4.1 Introduction 

This chapter presents the developed software program in MATLAB that is used to track vehicles 
by processing the motion vectors that are outputs from the hardware processor described in 
Chapter 3.  The software here implement step 4 of the overall processing algorithm (refer to 
Figure 2-1).  The software program consists of two sections that are blob extraction and blob 
association [27].  As shown in Figure 4-1, there are three steps in the blob extraction process, 
which are noise removal, blob segment detection and complete blob detection.  The blob 
association considers three cases: one-to-many association, many-to-one association and no 
association.   

4.2 Blob Extraction 

Blob extraction processes the motion vectors resulting from motion estimation, which are stored 
in a BMRF (Block Matching Result Frame).  The BMRF is of size (M/n) * (S/n) (refer to 
Chapter 2 for the definition of M, S, and n) and each element contains the motion vector of the 
corresponding block of the element.  Note that only the motion status (either up, down, right, left 
and still quantized from motion vectors, refer to Chapter 2) is used to extract blobs, which is 
more efficient compared to using directly motion vectors themselves.  Also, using motion status 
to extract blobs may be more flexible in the general case of occlusion [4].  However, on the other 
hand, it may also have a disadvantage.  For example, two vehicles that are close may be 
extracted as one if using motion status, whereas they may be differentiated if using motion 
vectors.  Blob extraction involves three steps of processing, which are noise removal, blob 
segment detection and complete blob detection. 

 

Figure 4-1: An overview of the proposed tracking algorithm 
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4.2.1 Noise Removal 

The BMRF may contain some noisy detection, which typically appear as elements with different 
motion status from those neighboring elements which have almost the same motion status.  This 
is very similar to the “holes” found in a binary difference image in [4].  The noise may prevent 
correct identification of valid blobs, therefore, a step of noise removal is performed first.  The 
algorithm scans the BMRF twice (column scan and row scan).  For each scan, the criterion for a 
noisy element is that it has a motion status different from the upper/left one in the column/row 
and the upper/left one that has the same motion status (except still) as the lower/right one in the 
column/row.  If the condition is satisfied, the current element is declared as a suspect.  And for 
that suspect element, the eight neighboring elements around it are checked.  If seven or more out 
of the eight elements have the same motion status, the suspect element is declared as a noisy 
element and its motion status is re-written with that of its majority neighbors. 

Noise removal can be simply illustrated in the following Figure 4-2.  Note the noisy elements 
marked by the red circles in the upper figure disappear in the lower one.  The pseudo code for 
implementing the noise removal algorithm is presented in Figure 4-3. 

 

Figure 4-2: An illustration of noise removal 
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01. for each column 
02.    for each row 
03.       if the motion status of the current element is different from the upper/left one in 
            the column/row 
04.          if the motion status (except still) of the upper/left one is same as the lower/right 

                one in the column/row 
05.             scan the eight neighboring elements around the current element 
06.             if seven or more of them have the same motion status 
07.                rewrite the major motion status to the nine elements (the current one and 
                     eight neighbors) 
08.             end if 
09.          end if 
10.       end if 
11.    end for 
12. end for 

Figure 4-3: Pseudo-code for noise removal 

4.2.2 Blob Segment Detection 

Next, to extract the blob, the algorithm finds a series of continuous columns with each column 
having a series of continuous elements of the same motion status.  First the blob segment in the 
column is detected.  When the process starts a scan of each column of the BMRF, if the current 
element does not hold motion status of still and the next one has the same status as the current 
one, this indicates the beginning of a blob segment in the column.  Then it continues to scan 
while counting the number of continuous elements having the same motion status and sums the 
row numbers of every element, until the condition is violated which indicates the end of the blob 
segment.  At that point, information of the blob segment is extracted, such as size (the number of 
elements in the blob segment) and location (the column number and average row number of the 
blob segment).  Once a blob segment is detected, the size is compared to a pre-determined 
threshold, which is derived based on vehicle length (obtained from camera calibration), in order 
to declare a valid segment.  For a valid blob segment, the size and motion status of the blob 
segment are stored separately in two matrices of the same size as the BMRF.  The entry in the 
two matrices that holds the data is indexed by the location of the blob segment.  Then, the above 
process continues to detect the next blob segment until all columns of the BMRF are traversed.  
Note that all other entries in the resulting two matrices that are not written with valid blob data 
are set to zero.   

Figure 4-4 presents the pseudo-code for blob segment detection and two generated matrices for 
holding data are partially shown in Figure 4-5 (size of the blob segment) and Figure 4-6 (motion 
statuses of the blob segment).  A red seven located in the coordinate (4, 5) of Figure 4-4 an 
example.  It means the seven neighboring elements (1~7, 5) in the column are identified as a 
blob segment.  And the corresponding red three in the same location of Figure 4-6 is the motion 
status of these seven elements. 
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01. for each column 
02.    for each row 
03.       if the motion status is not zero and same as the next one 
04.          record blob segment beginning 
05.          element counter adds one 
06.       else 
07.          record blob segment ending 
08.          if element counter equal to or larger than pre-determined width 
09.             extract blob segment data (location, size etc) 
10.          end if 
11.          reset counter 
12.       end if 
13.    end for 
14. end for 

Figure 4-4: Pseudo-code for blob segment detection 

 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0 
0  0  0  0  7  7  0  5  0  0  0  0  0  0  0  0 
0  5  5  5  0  0  0  0  7  5  5  5  4  0  0  0 
0  0  0  0  0  0 0  0  0  0  0  0  0  4  0  0 
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
0  0  0 0  0  0 0  0  0  0  0  0  0  0  3  0 
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

Figure 4-5: A Matrix storing the size of blob segments 

 
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0 
0  0  0  0  3  3  0  3  0  0  0  0  0  0  0  0 
0  3  3  3  0  0  0  0  3  3  3  3  3  0  0  0 
0  0  0  0  0  0 0  0  0  0  0  0  0  3  0  0 
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
0  0  0 0  0  0 0  0  0  0  0  0  0  0  3  0 
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

Figure 4-6: A matrix storing motion status of blob segments 

4.2.3 Complete Blob Detection 

After blob segment detection, the algorithm moves to detection of the complete blob.  Note that 
the input data is the resulting two matrices obtained from the previous step, as the examples in 
Figure 4-5 and 4-6.  When the scan sees the entry that holds a non-zero value (which means that 



 

C-30 

a blob segment is detected here), the algorithm first checks the motion status of the nearest five 
neighbor entries in the left column.  If they hold the value of zero or their motion status are not 
equal to the motion status of the current entry, then the current column is treated as the head of a 
series of continuous blob segments (since one blob should have only one motion status).  The 
reason to set the threshold of five is that it is not practical for the centers of two blob segments in 
two continuous columns to deviate too much should they belong to the same vehicle/blob.  This 
threshold is empirical and is pre-determined from the camera calibration.  Once the head of a 
blob is found, the algorithm starts a sub-scan which begins from the current column to detect the 
next right column to see if the nearest five neighbor entries in that column have different motion 
status.  This serves as the condition to detect the tail of the blob.  The scan continues until the tail 
is found.  Once the complete blob is detected, the complete blob shape is recorded, and then from 
the shape other information like averaged center location, length and width can be derived.  In 
order to declare a valid blob, once again the blob width is compared to a pre-determined 
threshold.  The above described process is repeated to detect the next blob.   
Figure 4-7 presents the pseudo code for the algorithm for complete blob extraction, and Figure 4-
8 shows an example of the detected blob.  After the above three steps, the process has finished 
extracting the blobs from one BMRF.  Subsequently, it proceeds to the next BMRF to extract the 
blobs from that BMRF.  Figure 4-9 shows the extracted blob for the same vehicle.  Note that it 
can be seen that the shapes of the two extracted blobs do not exactly match due to noisy 
detection which can not be totally removed by the noise removal algorithm introduced in section 
4.2.1 (for example, the noise around the blob boundary cannot be handled). 
 

01. for each column 
02.    for each row 
03.       if the motion status is not zero and neighboring five entries in left column are all 
            zero or not equal to current one 
04.           record blob beginning 
05.           for each column starting from current column 
06.              column counter adds one 
07.              if  neighboring five entries in right column are all zero or not equal 
08.                 record blob ending 
09.                 if column counter equal to or larger than pre-determined width 
10.                    extract blob data (location, size, shape etc) 
11.                 end if 
12.                 reset counter and break the loop 
13.              end if 
14.            end for 
15.         end if 
16.     end for 
17. end for 

Figure 4-7: Pseudo-code for extracting the blob from BMRF 
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Figure 4-8: Extracted blob from BMRF (N-1) 

 

Figure 4-9: Extracted blob from BMRF (N) 

4.3 Blob Association 

When all blobs from two consecutive BMRFs are extracted, the blob-to-blob association is 
started (refer to Figure 4-1).  Note that a blob extracted from BMRF (N-1) represents the moving 
object in image frame (N-1), and its position in the next image frame (N) is predicted using the 
computed motion vector.  Similarly, a blob extracted from BMRF (N) represents a moving object 
in image frame (N) and its position in image frame (N+1) is well predicted using the motion 
vector of BMRF (N) (see the illustration in Figure 4-10).  Therefore, to track the object, the blobs 
from two consecutive BMRFs need to be properly associated.  The association is performed by 
simple overlap detection [4].  Theoretically, if the predicted blob in image frame (N) by motion 
vectors of BMRF (N-1) has 100% overlap with the blob extracted from BMRF (N), then the two 
blobs from the two consecutive BMRFs are associated.  This is also illustrated in Figure 4-10.  In 
practice, a threshold of overlap need to be set in order to account for other cases, like blob 
merge, split, occlusion and noisy detection.  In the system implementation, a threshold of at least 
50% is set [4].  The threshold, called the overlap rate, is a ratio of the overlap area between the 
blobs (measured in terms of the number of pixels that have overlap) and the area of the smaller 
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blob.  Note that the overlap area is calculated from the blobs using their original shapes (not the 
rectangle representation of the blobs) for accuracy.  

 

Figure 4-10: An illustration of the proposed tracking algorithm 

In practice, a blob may be composed of more than one vehicle due to a variety of factors.  
However, if two or more vehicles enter the scene and leave the scene as always one blob, there is 
no need to claim exactly how many vehicles there are in the blob (of course, one can do that by 
applying other techniques such as motion vector analysis and shape/size analysis).  Also, if a 
blob splits to two or more blobs, the total blob count increases and the resulting blobs are then 
always tracked separately in the tracking process (even they merge again) until they disappear. 
Therefore, the algorithm focuses on tracking the blobs and do not strictly differentiate blobs from 
vehicles.  Also to simplify the processing, it assumes that a blob/vehicle cannot split from a 
previously merged blob and merge with another blob/vehicle to form a new merged blob
simultaneously [5].  This would rule out the case of multiple blobs from BMRF1 associated to 
multiple blobs from BMRF2.  In the proposed hardware-based tracking system, this is a 
reasonable assumption due to the high frame rate.  With this assumption of no many-to-many 
association, blob tracking would not miss tracking any vehicle as long as it is not merged with 
other vehicles throughout the scene. 

Figure 4-11 shows that the algorithm associates blobs from BMRF2 to blobs from BMRF1.  It 
consists of three segments of code for detecting the three cases of one-to-many association, no-
association and many-to-one association.  For every blob Ai extracted from BMRF1, each blob 
Bi extracted from BMRF2 is tested to check whether it has enough overlap with the predicted Ai 
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using motion vectors.  If Bi is associated to Ai, they are paired and stored in a database.  In the 
following, how to deal with the three general cases is discussed in detail.  

 
01. for each blob Ai extracted from BMRF1 
02.    for each blob Bi extracted from BMRF2 
03.  if (overlap of Ai and Bi exceeds 50% of the smaller one) 
04.      split counter adds one 
05.  end if 
06.    end for 
07.    if split counter larger than 1 
08.  that blob from BMRF1 splits to multiple blobs from BMRF2 
09.  record all pairs 
10.    end if 
11.    if no blobs from BMRF2 is associated with the current blob from BMRF1 
12.  either detection miss or blob not moving (no-association) 
13.    end if 
14. end for 
15. for each remaining blob in BMRF2 
16.    either no-association or new blobs appear 
17. end for 
18. for each blob from BMRF2 
19.    count the number of times the blob appears in all the recorded pairs 
20.    if (merge) counter larger than 1 
21.  multiple blobs from BMRF1 merge to the blob from BMRF2 
22.    end if 
23. end for 
24. update BMRF2 (a merged blob is replaced with multiple ones that merge to it) 

Figure 4-11: Pseudo-code for blob association 

4.3.1 One-to-many association  

When at least two blobs extracted from BMRF2 have enough overlap with a blob extracted from 
BMRF1, it implies the blob from BMRF1 splits to multiple blobs.  To deal with this case, the 
multiple blobs from BMRF2 are recorded and paired to the blob from BMRF1.   

4.3.2 Many-to-one association  

When more than two blobs extracted from BMRF1 have enough overlap with one blob from 
BMRF2, this implies multiple blobs merge to one blob from BMRF2.  Similar to the above case, 
the multiple blobs from BMRF1 are recorded and paired to the one from BMRF2. 

It should be noted that for the above two cases of one-to-many and many-to-one association, it is 
possible that blobs lose some of its shape due to inherent limitation of block matching.  For 
example, two blobs in image frame N-1 merges to one blob in image frame N and again splits to 
two in frame N+1.  When block matching is applied to image frames N-1 and N, part of the two 
blobs in frame N-1 can not find matching in frame N.  The motion vectors for those blocks 
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would then be incorrect, which may effectively shrink its shape.  The problem similarly occurs to 
the block matching of frames N and N+1.  This loss of part of the original blob shape may not be 
recovered.  Therefore, it is fair to say that block matching works best for traffic scenes with little 
occlusion, which is one of the limitations of the proposed approach. 

4.3.3 No association  

When some new vehicles enter the scene, an ordinary case is that they appear as new blobs from 
BMRF2 for the first time and there are no blobs from BMRF1 having enough overlap with them.  
Therefore, after all blobs from BMRF2 find their pairs, the remaining blobs from BMRF2 could 
potentially represent new vehicles.  For new vehicles entering the scene, it is known in priori that 
the new vehicles can only enter at specific boundary locations of the image frame.  Therefore, 
the process also uses the location of the blobs as a condition to justify new vehicles.  This prior 
knowledge helps to prevent mistakenly declaring new vehicles that suddenly appear somewhere 
else in the image frame due to noise [4].  

On the other hand, it is also possible that there are remaining blobs from BMRF1 that are not 
associated to any blob from BMRF2.  One special case is that the vehicles drive out of scene.  In 
order to distinguish this special case, the process needs to first check the location of the vehicles 
in the BMRF.  If the blobs from BMRF1 are at the boundary locations of the image frame, they 
may be considered exiting.  But the general case is that the above phenomenon happens when the 
blobs from BMRF1 are not at the boundary locations.  Note that this in reality implies two cases.  
The first case is that the blob/vehicle does not move between two consecutive image frames.  But 
what may be more complicated is the second case of a miss of vehicle motion detection.  For 
example, due to noise the shape or the size of the blob is significantly changed (although the 
vehicle does move between two consecutive image frames), which does not justify itself as a 
valid blob from BMRF2.  To differentiate these two cases, the process starts two sub-tracking 
processes for the two cases and maintains the processes until the issue is resolved.  For the sub-
tracking process in the case of detection miss, the new positions of blobs can be easily predicted 
based on the previously calculated motion vectors.  In fact, due to motion estimation, detection 
miss rarely occurred for more than two consecutive image frames in the tests. 

4.4 The Entire Software Implementation 

The processes of blob extraction and blob association are coded in MATLAB.  For combining 
the C++ code of the interface unit described in Section 3.4 with the MATLAB codes, a library, 
called MATLAB Engine [23], which allows C++ to call defined routines for controlling the 
MATLAB computation engine is used.  Figure 4-12 presents the pseudo code of the entire 
software component. 

01.Find a camera connected to the computer 
02.Allocate the buffer to store the data  
03.Turn on the camera 
04.Start up MATLAB engine 

 
05.Grab data of BMRF 1 and store it in the buffer 
06.Send the data to MATLAB workspace through the pointers of API 
07.Execute MATLAB function: blob extraction 

 
08.While (any key on the keyboard is clicked) 
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09.   Begin 
10. Grab data of BMRF N and store it in the buffer 
11. Send the data to MATLAB workspace through the pointers of API 
12. Execute MATLAB function: blob extraction 
13. Execute MATLAB function: blob association 
14. Store the data of blobs in BMRF N 
15. N=N+1 
16.   End 

 
17. Turn off the camera and free the buffer 

 
Figure 4-12: Pseudo code of the entire software component 

4.5 Summary 

This Chapter describes the rest of the tracking algorithm, blob extraction and association, which 
are currently implemented in MATLAB on a host PC.  The frames in the test are picked up from 
the video which is captured by the Micron MT9V111 image sensor.  Figure 4-13 shows how the 
blob moves from BMRF (N-1) (shown in Figure 4-8) to BMRF (N) (shown in Figure 4-9) after 
the blob association.  The square of the size 22×47 has the same area with the BMRF.  The start 
of the arrowhead, whose coordinate is (15, 16), presents the location of the extracted blob in 
BMRF (N-1), and the coordinate (16, 17) which the arrowhead points to is the location of the 
blob in BMRF (N). 

 

Figure 4-13: An illustration of the result of blob association 
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Chapter 5 
Test of the Vehicle Tracking Algorithm 

5.1 Introduction 

In this section, a few tests are experimented on the hardware-based tracking system to validate 
the vehicle tracking algorithm.  Figure 5-1 illustrates the timing of the overall tracking system.  
Note that the points on every line represent the moment of the next update of the data. 

It should be noted that since the actual hardware processor discussed in Chapter 3 is not 
physically manufactured (to be done in Phase II of the project), we will test the vehicle tracking 
algorithm using a PC (the software approach), which is useful to validate the algorithm. 

 

Figure 5-1: System timing 

For the following two tests, the image frames are recorded from realistic traffic scenes.  Note that 
the following set of parameters needs to be pre-set.  They are: 

1, the threshold of blob segment length (refer to Section 4.2.2) 

2, the threshold of blob width (refer to Section 4.2.3) 

3, overlap rate (refer to Section 4.3) 

5.2 Tracking of Two Vehicles  

Figure 5-2 shows the image frame (20) and frame (40) of the first test.  The intersection where 
the frames are captured is between Mesaba Avenue and Highway I-194 in Duluth, MN.  The 
image size is 160×200.  There are two vehicles approaching the intersection in frame (20).  After 
20 frames, the white vehicle is found in a new location, while the black one has driven out of the 
scene.  Also, the trajectories of the vehicles starting from frame (1) to frame (40) are shown in 
Figure 5-3.  The green and blue lines plotted in the figure represent the moving trajectories of the 
two vehicles for 20 tracking cycles.  Comparing the images and the trajectories, it could be found 
that they match very well. 
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Figure 5-2: The image frame (20) and (40) for the first test 

 

Figure 5-3: The tracked trajectories of the vehicles for the first test 

5.3 Tracking of Four Vehicles 

The second test, whose image frames is obtained from the same intersection as the first test,
gives a case of complex interactions between vehicles including occlusion, repeated merge and 
split.  Also, there was a detection miss.  The image size is again set to 128×200.  The image 
frame (20) and frame (80) are shown in Figure 5-4 and the moving trajectories of the vehicles 
from frame (1) to frame (80) are shown in Figure 5-5.  Note that the trajectories are not straight 
as it theoretically should be, due to the effect of multiple factors such as noisy detection and 
quantization of the center locations of the blobs.  The point marked by the red circle presents the 
blob merged with the track and the smaller vehicle at the beginning.  They split to two blobs in 
the next frame.  Overall, the trajectories still give good tracking of the vehicles in spite of a 
super-size truck.  
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Figure 5-4: The image frame (20) and (80) for the second test 

 

Figure 5-5: The tracked trajectories of the vehicles for the second test 

5.4 Tracking of Vehicle Turning 

The third test focuses on tracking of vehicle turning.  Figure 5-6 shows two image frames (1) and 
(30) of a ring intersection located on Trunk Highway 61 at Jamaica Avenue.  The image size is 
352×288.  In this frame series, two vehicles marked in blue and red circles drive around the 
roundabout.  Depending on the camera angle and scene coverage, one possible issue to be 
noticed is that when a vehicle is turning, the direction of vehicle head may be different with that 
of its tail.  Thus, after block matching, the motion status of the vehicle head and tail may be 
different.  This issue could affect whether the blob can be successfully extracted.  It is illustrated 
in Figure 5-7.  The left figure presents that the vehicle head has a right movement while the tail 
is moving down.  The right one shows the BMRF from frames (10) and (11).  A vehicle should 
be represented as a blob in the red circle.  However, black blocks, whose values are 1 (down 
movement), and grey blocks, whose values are 3 (right movement), are mixed and the complete 
blob is difficult to be accurately extracted.  In order to solve this problem, an additional step is 
added before the step of noise removal.  It needs prior knowledge of where the turning lane is, 
and what the direction is for the turning vehicle.  Then, the directions of the vehicle before and 
after turning could be treated as a same motion status.  Figure 5-8 illustrates how the problem in 
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Figure 5-7 is solved.  In the left figure, an area marked by the square is claimed as a turning 
zone.  The prior knowledge determines that the vehicles driving on these two lanes, which are 
located in the turning zone, can only turn from down to right.  That means in this zone, only two 
motion status of down and right that represent movement of the vehicle could be components of 
the blob.  Therefore, the process uses one motion status of either down or right to replace both of 
them.  In the right figure of Figure 5-8, down is used, and after this process, the blob extraction 
algorithm could extract the black blob from the turning vehicle. 

Figure 5-9 shows the tracked trajectories of vehicles from frame (1) to (30) in the test.  The green 
line shows the trajectory of the vehicle in the green circle in Figure 5-6.  The blue and red lines 
correspond to the two vehicles marked in blue and red circles respectively.  The turning 
movements of these two vehicles are tracked.   

 

Figure 5-6: The image frame (1) and (30) for the third test 

 

Figure 5-7: An illustration of the possible issue for vehicle turning 
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Figure 5-8: An illustration of how to solve the issue  

 

Figure 5-9: The tracked trajectories of the vehicles for the third test 

5.5 Limitations 

From the several experiments reported above and others we have performed, we identify several 
limitations of the block matching algorithm, such as noise, frame resolution, vehicle size, and 
scene coverage.   

Noise, especially the camera jittering noise, can negatively affect the block matching result. 
Figure 5-10 shows three consecutive frames of a ring intersection.  It can be recognized that the 
scene moves down for the last two image frames due to camera jittering.  Figure 5-11 presents 
two BMRF’s and the left one is obtained from the motion estimation of the first two frames in 
Figure 5-10 while the right one is from that of the last two frames.  From the left BMRF which is 
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a robust result frame, at least two blobs corresponding to real vehicles could be extracted 
(marked by red circles) since most motion statuses of the background blocks are standing still 
(present as white in figures).  However, the right BMRF presents an unacceptable result.  It is 
hard to extract correct blobs from this BMRF that is corrupted by camera jittering.  Since the 
camera jittering has a down movement, refer to the definition of motion status in Section 2.4.1, 
most motion status in the background hold the value one (present as black in figures) not five 
(stand still).  Therefore, the full-search block matching algorithm requires stable cameras with no 
or little jittering.   
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Figure 5-10: Three consecutive image frames of a ring intersection 

 

Figure 5-11: Two resulting BMRFs  

Generally the larger the frame resolution is, the more computations will be, which makes block 
matching slower.  A larger frame resolution gives more vehicle detail, which may make block 
matching more accurate.  However, low frame rate means the vehicle movement between two 
consecutive frames is long.  If the vehicle moves out of the search area, block matching will fail 
to compute correct motion vectors.  A solution of extending size of search area may be 
considered.  But a larger search area gives more candidate blocks to be matched, which means 
more computation and more probability to get errors.   

If the vehicle size is too small, the number of blocks for representing a vehicle will be too few, 
which is more likely to be affected by noise.  For example, by observing the frames of Figure 5-
10 and the left BMRF of Figure 5-11, the vehicles located in the upper half of the frame are too 
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small to be extracted.  Empirically, the recommended vehicle size should not be less than 20×20 
pixels (corresponding to 3×3 blocks in block matching while n=8).   

Moreover, the scene coverage, which concerns to camera angle and distance, has to be 
considered while setting up the system.  

5.6 Summary 

Overall, from the results of the three tests the vehicle tracking algorithm can track vehicle with 
reasonable accuracy.  However, we also identify several limitations of the block matching 
algorithm, which need to be addressed in the future work.   
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Chapter 6 
Conclusion 

6.1 Summary 

In this report, a motion-estimation based tracking algorithm and a hardware-based tracking 
system to implement it are proposed.  The overall processing flow of the tracking algorithm and 
its implementation is detailed in Chapter 2.  In Chapter 3, core of the tracking algorithm, the 
motion estimation based on full-search block matching algorithm, is implemented by a 
customized hardware processor.  We discuss in detail the design of the hardware processor in 
IBM 0.13µm technology and verify its correct operation using simulation methods.  Chapter 4 
presents C++ and MATLAB codes to implement blob extraction and blob association of the 
tracking algorithm.  A few experiments are conducted in Chapter 5, and it is shown that the 
tracking system tracks vehicles with reasonable accuracy in spite of some limitations.  

6.2 Conclusions 

The proposed tracking algorithm and its hardware-based implementation have the potential to 
achieve high frame rate vehicle tracking, thus improve real-time operation of vehicle tracking. 
The main contribution of the project is that an efficient design of the hardware processors is 
accomplished with reasonable effort. 

However, as concerned in Section 5.5, there are several limitations of block matching, such as 
camera jittering noise, frame resolution, vehicle size, and scene coverage.  These limitations may 
harm the accuracy of the motion estimation based tracking system and need to be tackled in 
phase II of the project in order to make real-time vehicle tracking practically possible. 

6.3 Future Work 

In phase II of the project, our main task is to map the design of the hardware processor in a 
realistic physical circuit and then integrate the hardware processor into the overall tracking 
system to build a prototype and finally field test it.  To improve design efficiency, we will use 
high-performance Xilinx Field Programmable Gate Array (FPGA) to build the physical hardware 
processor.  This work is currently in the process. 

Secondly, as mentioned in Chapter 4, some part of the tracking algorithm is currently 
implemented in MATLAB in a host PC, and this software approach makes the overall 
computation slower.  Therefore, hardware implementation of that part needs to be considered 
too.  On the other hand, simplifying the algorithm is helpful too. 

Thirdly, from the discussion of Section 5.5, it is necessary to thoroughly study the limitations of 
block matching algorithm and understand the effect of camera jittering on block matching.  An 
algorithm to remove this kind of noise is to be explored. 

 



 

C-45 

References  

[1] H. Veeraraghavan, S. Atev, O. Masoud, G. Miller, N. P. Papanikolopoulos, “Development of 
a Tracking-based Monitoring and Data Collection System”, Final Report, Minnesota Department 
of Transportation, MN/RC-2005-40, Oct 2005. 

[2] S. Atev, O. Masoud, R. Janardan, N. P. Papanikolopoulos, “Real-Time Collision Warning 
and Avoidance at Intersections”, Final Report, Minnesota Department of Transportation, 
MN/RC 2004-45, Nov 2004. 

[3] N. P. Panpanikolopoulos, O. Masoud, C. A. Richards, “Pedestrian Control at Intersections 
(Phase I)”, Final Report, Minnesota Department of Transportation, MN/RC-97/02, 1996.  

[4] O. Masoud, N. P. Papanikolopoulos, “A Novel Method for Tracking and Counting 
Pedestrians in Real-Time Using a Single Camera”, IEEE Transactions on Vehicular Technology, 
Vol. 50, No. 5, Sep. 2001, pp. 1267-1278. 

[5] O. Masoud, N. P. Papanikolopoulos, “ The Use of Computer Vision in Monitoring Weaving 
Sections”, IEEE Transactions on Intelligent Transportation Systems, Vol. 2, No. 1, Mar. 2001, 
pp. 18-25. 

[6] S. Gupte, O. Masoud, R. F. K. Martin, N. P. Papanikolopoulos, “Detection and Classification 
of Vehicles”, IEEE Transactions on Intelligent Transportation Systems,Vol. 3, No. 1, Mar. 2002, 
pp. 37-47. 

[7] Image Sensing Systems Inc, 2008. 

[8] J. Rabaey, A. Chandrakasan, B. Nikolic, “Digital Integrated Circuits: A Design Perspective”, 
2nd Edition, Chapter 8, Prentice Hall, 2003. 

[9] S. S. Blackman, “Multiple-Target Tracking with Radar Applications”, Chapter 2, Artech 
House Inc, 1986. 

[10] Z. Jia, A. Balasuriya, “Vision Based Target Tracking for Autonomous Vehicles Navigation: 
a Brief Survey”, Proc. of IEEE International Conference on Systems, Man and Cybernetics, 
2006. 

[11] N. Yang, G. Jianhong, “ A 256×256 Pixel Smart CMOS Image Sensor for Line Based 
Stereo Vision Applications”, IEEE Journal of Solid State Circuits, Vol. 50, No. 3, Aug. 2004, 
pp. 1055-1061. 

[12] J. Nakamura, B. Pain, T. Nomoto, T. Nakamura, E. R. Fossum, “On-focal-plan  Signal 
Processing for Current-mode Active Pixel Sensors”, IEEE Transactions on Electron Devices, 
Vol. 44, No. 10, Oct. 1997, pp. 1747-1758. 



 

C-46 

[13] A. Fish, O. Yadid-Pecht, “ CMOS Current/Voltages Mode Winner-Take-All Circuit with 
Spatial Filtering”, Proc. of IEEE International Symposium on Circuits and Systems, Vol. 3, May 
2001, pp. 636-639. 

[14] P. Hsiao, H. Cheng, S. Huang, L. Fu, “A Mixed-Signal CMOS Imager with Lane Detector 
for Use in Smart Vehicles”, Proc. of IEEE International Conference on Systems, Man and 
Cybernetics, 2006. 

[15] “MT9V111-1/4-Inch SOC VGA Digital Image Sensor”, Micron Inc, 2004.  

[16] A. M. Tekalp, “Digital Video Processing”, Prentice Hall, 1995. 

[17] “Demonstration System User’s Guide”, Micron Inc, 2006. 

[18] Verilog Standard, http: www.verilog.com/IEEE verilog.html. 

[19] “NClaunch User Guide”, Product Version 5.5, Cadence Design System Inc, 2005. 

[20] “Using Encounter RTL Compiler”, Product Version 7.2, Cadence Design System Inc, 2007. 

[21] “Encounter Menu Reference”, Product Version 7.1.1, Cadence Design System Inc, 2008. 

[22] “IBM 0.13µm 8RF ATTENTION”, Version 4.0, MOSIS Inc, 2007. 

[23] “SIMLINK and MATLAB Users Guides”, The Mathworks Inc., 2006. 

[24] C. H. Hsieh, T. P. Lin, “VLSI Architecture for Block-Matching Motion Estimation 
Algorithm”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 2, No. 2, 
Jun 1992, pp. 169-175. 

[25] H. Tang, T. Kwon, Y. Zheng, H. Chang, “Designing CMOS Processors for Vehicle 
Tracking”, Proc. of 50th IEEE International Midwest Symposium on Circuits and Systems 
(MWSCAS’07), Montreal, Canada, Aug 5-8th, 2007. 

[26] “Artisan Standard Library 130nm-250nm SRAM Generator User Manual”, Revision 
2007q2v1, ARM Inc, 2007. 

[27] Y. Zheng, H. Tang, “Towards a Hardware-based System for Real-Time Vehicle Tracking”, 
Proc. of IEEE Intelligent Vehicle Symposium (IV’08), June 4-6th, Eindhoven, Netherlands, 2008. 

 




