Separation of variables Template

Math 3280 B. Peckham

Goal: Find an analytic solution to a separable DE: $f(y) d y=g(t) d t$
Example: $y^{\prime}=2 y, y(0)=3$. Solve this IVP and determine how long it takes for the initial amount to double.
Clear variables
$\mathrm{y}=$.
$\mathrm{t}=$.
Separate by hand first: $1 / y d y=2 d t$
$\mathrm{f}=1 / \mathrm{y}$
1
y
$\mathrm{g}=2$
2
Integrate both sides:
LHS = Integrate[f, y]
Log [y]
RHS = Integrate [g, t] + C
C +2 t
LHS = RHS would be an implicit solution. Solve for y to obtain an explicit solution:

```
gensln = Solve[RHS == LHS, y]
```

$\left\{\left\{y \rightarrow \mathbb{e}^{\mathrm{c}+2 \mathrm{t}}\right\}\right\}$
Trick to eliminate both sets of braces from gensln:

```
gensln = y /.gensln[[1]][[1]]
```

$\mathrm{e}^{\mathrm{C}+2 \mathrm{t}}$
Specify initial conditions:
$\mathrm{t} 0=0$
0
$y 0=3$
3
Use the initial conditions to olve for the arbitrary constant.

```
IC = Solve[y0 == gensln /.t t t0, C]
Solve::ifun : Inverse functions are being used by Solve, so some
    solutions may not be found; use Reduce for complete solution information. More...
{{C->\operatorname{Log}[3]}}
```

Use the value of the constant in the general solution to obtain the particular solution.
$\operatorname{sln}=$ gensln /. IC[[1]]
$3 e^{2 t}$
Simplify[sln]
$3 e^{2 t}$
doubletime $=$ Solve $[s \ln ==2 * y 0, t$, Reals $]$
Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information. More...
$\left\{\left\{t \rightarrow \frac{\log [2]}{2}\right\}\right\}$

Find the numerical value of $\log (2) / 2$:
n [doubletime]
\{ $\{t \rightarrow 0.346574\}\}$

