Math 3280
Differential Equations with Linear Algebra

Test, 2

B. Peckham
October 23, 2018
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Name

Directions: Do all problems. Make no mistakes. SHOW ALL WORK.
Closed book. Calculators may be used for algebraic computations, but not for
solving differential equations or doing row reduction.
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1. Consider the differential equation 3" + ¢’ — 6y = 0.
(a) (8 pts) Find the general solution by guessing solutions of the form y = e"®. Show your
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work from this guess.
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(b) (6 pts) Find one solution to the related nonhomogeneous differential equation: y" +y

6y = 3z by guessing a soution of the form y = Az + B
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(¢) (2pts) Use (a) and (b) to determine the general solution to ¥ + 3" — 6y = 3z7 If you
did not answer (a) or (b), indicate how you would use those answers to determine the

answer to this problem.
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2. Consider the differential equation 3" +4y = asezm_ One solution to this differential equation is
yp(z) = 3. The complementary solution, to y” +4y = 0, is yc(z) = c1 cos(2z) +c2 sin(2z).

(a) (2 pts) What is the general solution to y” + 4y = 3e®*?
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(b) (6 pts) What is the solution to y” + 4y = 3¢*® that also satisfies the initial conditions
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. Define a matrix B so that BA = as asn ass3
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4. (@ pts) If A is a 3 x 3 matrix, and det(A) = 5, what is det(2A4)7 Explain briefly.

bt (24] = 2 At

5. (8 pts) Solve the following linear system USING GAUSSIAN ELIMINATION (row reduction
to echelon or reduced echelon form). Leave your answers as exact fractions - not calculator

approximations.
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6. (a) (8 pts) Find all solutionsto [0 1 2 0 ; = [0|. Write your answer in vector
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(b) (2'pts) What is the dimension of the set of solutions to part (a) Y =¢t
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(a) (6 pts) Find A~! using the Gauss-Jordan (row reduction) technique.
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8. (; pts) Write the vector equation c¢; [2
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That is, identify A, Z and 5. Do not solve.
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9. (6 pts) Evaluate the following determinant. Show your work.
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10. (641 pts) Give an example of a 2 x 2 matrix A and a vector b for which 4b = 0, but the
entries of A are not all zero, and the entries of b are not all zero. Bonus point if no entry of
A is zero and no entry of b is zero.

11. Let W = { [3] eR?:ne Z}. Recall that Z is the set of all integers, or whole numbers:

{.,-2,-1,0,1,2,3,..}.

(a) (4pts) Is W closed under vector addition? Explain briefly.
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(b) (4 pts) Is W closed under scalar multiblication? Explain briefly.
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(c) (2pts) Is W a vector subspace of R2? Justfy briefly.
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2. (6 pts) (True or False) {6] is in the span of { l ] , [1] } Justify using the definition of
3
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13. (10 pts) Let P; = {a + bz : a,b € R}. It turns ot that P, is a subspace of the set of all
functions (with domain all real numbers and range in the real numbers). Show that the set
{1,z + 1} is a basis for P;. Work directly from the definitions of linear independence and
span.
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14. Extra credit (6 pts) Consider the vector equation AZ = 0, where A is an m x n matrix. Let
W be the subset of all solutions to this vector equation. Assume that ¢ is a function in W.
Show that ¢ is also in W, where ¢ is any real number. o vecter
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