
Differential Equations with Linear Algebra, Math 3280
Lab #9: Systems of Differential Equations: Phase plane solutions

B. Peckham

Directions: Do the following tasks. Either provide the Lab Instructor with a writeup of your results,
or have the Instructor check off each task you do. Your previous Spring-Mass Lab may be useful for
problem 2. Choice of scale may be crucial, especially in problems 2 and 3.

Grading: 10 points per problem, 20 points total. 10 points extra credit. Details for grading points
are indicated below.

1. A linear system of two equations. Consider the system

ẋ = −y, ẏ = x, x(0) = 1, y(0) = 0.

(3pts) Analytic solution: an analytic solution can be obtained by the “eigenvalue-eigenvector”
method. Do this to find the general solution to the differential equation, and the specific solution
for the initial value problem (IVP).
(As a check, you should obtain the specific solution: x(t) = cos(t), y(t) = sin(t). Show the work
to obtain this answer.)

(3pts) Single numerical solution: determine a numerical solution to the same IVP using the
Mathematica command NDSolve. (Check syntax of NDSolve for systems.) Make the following
plots of the numerical solution: x(t), y(t), and y vs x. (The y vs x plot is the phase plane.) For
the phase plane plot, you will need to use the command ParametricPlot.

(4pts) Phase plane: Use the StreamPlot command to plot multiple phase curves at once. On the
output of the StreamPlot, locate the point corresponding to the initial conditions and highlight
the corresponding phase curve. Sketch the velocity vector corresponding to the initial conditions.
Locate and label any equilibria.

2. A second order linear differential equation converted to a system of differential equations. The
differential equation we investigated for the spring-mass lab was
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When converted to a system (make sure you know how to do this), it becomes

ẋ = y, ẏ = −2x− .4y +
F0

25
cos(γt) (2)

(a) (2pts) Choose parameter values of F0 = 0 and γ = anything. Numerical solutions: compute
two numerical solutions using NDSolve and any two sets of initial conditions you would like
to specify. Plot the two (projections of) solutions in the (x, y) phase plane.
(1pt) Are these solutions consistent with what you would expect for a spring-mass system?
Explain.
(2pts) Sketch by hand, or use Mathematica to plot the vector field or direction field in the
(x, y) plane. By hand, sketch several phase curves on the vector field plot/sketch. Compare
with the numerically obtained phase curves.

(b) Now consider the full nonhomogeneous differential equation with F0 6= 0.

Analytic solution: given in spring-mass lab. Recall from Lab 7 the particular solution to
equation (1) was

xp(t) =
F0

100− 96γ2 + 25γ4
[(2− γ2) cos(γt) +

2

5
γ sin(γt)].

(1pt) Plot this solution, xp(t), in the (x, t) plane, its deriviative, y(t) = x′p(t) in the (y, t)
plane, and the two together in the (x, y) plane, using ParametricPlot. Use F0 = 4 and
γ = 1.386.(the resonant frequency from Lab 7).

(2pts) Numerical solutions: For F0 = 4 and γ = 1.386, and initial conditions (x(0), y(0)) =
(8, 0), use NDSolve to obtain a numerical solution to eq. (2) and then plot solution the
three views: x(t), y(t), and (x(t), y(t)). Compare the phase plane plot to the phase plane
plot of the analytical solution. Note that this numerical solution is the full solution, not
just the particular part of the solution.

(1pt) Why doesn’t it matter (much) what initial conditions you choose? (Hint: Recall from
the spring-mass lab what happens to the homogeneous part of the solution as t → ∞?)
(1pt) Why am I not asking you to do a StreamPlot or look for equilibria?



3. Extra Credit: A nonlinear system. Assume a Rabbit and Fox population, measured in 100’s,
behaves according to the differential equations:

Ṙ = R−R2 − RF

.25 +R
, Ḟ = −0.5F +

FR

.25 +R

None of our analytic solution techniques work!! But we can still understand a lot about the
behavior of solutions.
(2pts) Find all equilibria. (Hint: there are three.)
(2pts) Compute and display phase curves in the (R,F ) plane using the ‘StreamPlot’ command
in Mathematica.
(1pt) Determine the velocity vector at (R,F ) = (1, 1). Verify that your velocity vector is consis-
tent with the StreamPlot.
(1pt) Use the Manipulate command to change the PlotRange for both the R and F variables
and focus on the region in the phase space near the equilibria.
(4pts) Determine and describe the long-term bahavior of the Rabbit and Fox populations and
how this behavior depends on the initial populations. You can restrict your answers to the first
quadrant where the populations are nonnegative.


