Name /} K. Diff. Equations and Lin. Alg.
Math 3280

Quiz 1, Spring 2018

B. Peckham

1. (1 pt) Consider the following differential equation. Is it separable, linear, both or
neither? (Do not solve.)

y=yer  Thbh

2. (1 pt) Is the function ¢(z) = €°* a solution to ¥’ — 3y + y = 3e%*? Justify your
answer.

Zx ~ 5F @ 5
I€ G = 57/ o ﬁ'{n =5e” 5‘5“"3 25e

pl‘*f;” ¢:;" o fj 23’&5"'- 33 e/s‘p+ (;7)‘ = //35'-" # 353"‘ S /Ua

3. (4 pts) Obtain the general solution to the following differential equation and the
solution that satisfies the initial value problem. Show your work and clearly indicate
your final answer.
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4. (2 pts) Consider the differential equation i (2P +t)*>. Make the substitution

u = 2P + ¢ to eliminate the variable P. Write the new differential equation. Show
your work. Do not solve the differential equation. Extra Credit (+1 pt) Is this
substitution useful in solving the differential equation? Why?
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5. (2 pts) Write a differential equation for the following heating/cooling model: assume
that the rate of change of the temperature inside a house is proportional to the

difference between the indoor temperature and the outdoor temperature. Define
Your yariables . Porolt Solie., - - e '




Name A : k Diff. Equations and Lin. Alg.
Math 3280, B. Peckham
Quiz 2, Fall 2014

1. (3 pts) Use USING GAUSSIAN ELIMINATION (row reduction operations) on the “aug-
mented matrix” to convert it to row echelon form to find all solutions to the following system.

Write your answer in vector form. o x yo} < ]
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2. (2 pts) Does the set of solutions to problem 1 form a vector subspace of ®37 Justify briefly.
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3. (3 pts) Find a linear combination of the three vectors [ } , ll:l , and [0] which equals [ 5 ] .
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4. (2 pts) If A is a 5 x 5 matrix, and det(A4) = 1, what is det(2A4)? Explain briefly. il r—f
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5. (2 pts) Assume A and B are both 3 x 3 invertible matrices with respective inverses A~ and
B~!. Show that the inverse of the product AB is B~1A~!.

6. (3 pts) Consider the differential equation: (t) = (3z(¢)® + t)2. Make the substitution
v(t) = 3z(t)% + ¢ to eliminate z(t). What is the new differential equation in v and ? Is this
a useful substitution to solve the original differential equation?
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> 7. Extra Credit: {3 pts) Give an example of a 2 x 2 matrix A, and two vectors & and ¥ in R?

such that AZ = AT but & # 7.
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Quiz 3, Spring 2018

B. Peckham

1. (4 pts) Find the general solution to the following differential equation:

yll + 3y1 + 2y — esz
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2. (3 pts) Write down the form of particular solution for the following differential equations. Do
not include “extraneous” terms. Do not evaluate the “undetermined” coefficients.
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3. (4 pts) Find the general solution to the following differential equation:
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4. (2 pts) Extra Credit: Give an example of a linear, constant coefficient homogeneous differen-

tial equation that has two solutions: cos(z), and e’™. (Hint: what order must the differential
equation be?)  cos x sk F VL Cz" b =
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B. Peckham
1. Consider the initial value problem: y’ + 2y = e%,y(0) = 3.
(a) (4pts) Solve completely using the method of Laplace transforms. Hint: T&I-_S;ﬁ'lsl—jf =
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(b) (4pts) Solve completely by “guessing” et for the complementary solution (y.), and
finding y, by the method of undetermined coefficients.
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2. (2pts) Find the inverse Laplace transform of ezsgg—:—:-:z.
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3. (2pts) Find the form of a guess for a particular solution to the following differential equation.
Do not include any terms that are solutions to the complementary {homogeneous) differential
equation. Do not evaluate the undetermined coefficients.
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4. (2pts) EC What is the annihilator of e2® + ¢~27

(D~alwery =9



Name /4 k. Diff. Equations and Lin. Alg.
Math 3280, B. Peckham
Quiz 5, Spring 2018

1. Condider the differential equation y' — 3y = 2¢%%,

(a) (3pts) Find the general solution using the first order linear technique by finding an
integrating factor. ( -Fr .
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(b) (3pts) Solve using ”guess €™ “for y. and undetermined coeficients for yp. Give the

general solution. N , ¢ 7k
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2. (4 pts) Use USING GAUSSIAN ELIMINATION (tow reduction operations) on the “aug-

mented matrix” to convert it to row echelon form to find all solutions to the following system.
Write your answer in vector form, and find a basis for the set of solutions.
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3. (5pts} Let 8§ = {.'1: A
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o Assume A is a 5 x 7 matrix. For what value of k is S a subspace of ®*? #

* Prove that S a subspace. (You need not prove the "inherited” properties, only the two
closure properties.)
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