Math 3280

Differential Equations with Linear Algebra Practice Test 2 B. Peckham

1. Consider the differential equation $y^{\prime \prime}+2 y^{\prime}-3 y=3 x-5$.
(a) (4 pts) Verify that $f(x)=-x+1$ is a solution to this differential equation.
(b) (8 pts) Use this information to help find the general solution to the differential equation.
2. (6 pts) Find the general solution to $y^{\prime \prime}+6 y^{\prime}+9 y=0$.
3. (8 pts) Show that the three functions $1, x, x^{2}$ are linearly independent. Work directly from the definition of linear independence/dependence. (That is, do not just compute a Wronskian determinant without indicating why it is being computed.)
4. The three functions $1, x$, and x^{2} are all solutions to the differential equation $y^{\prime \prime \prime}(x)=0$. (You do not need to verify this.)
(a) (4 pts) Use this information to write the general solution to $y^{\prime \prime \prime}(x)=0$.
(b) (4 pts) Find the one solution to $y^{\prime \prime \prime}(x)=0$ along with the initial conditions $y(0)=$ $1, y^{\prime}(0)=2, y^{\prime \prime}(0)=3$.
5. (4 pts) Write any system of equations in 5 variables, $x_{1}, x_{2}, \ldots, x_{5}$ which has a solution set which is a 3 -dimensional subspace of \Re^{5}. You can decide how many equations to use.
6. (6 pts) Evaluate the following determinant. Show your work.

$$
\left|\begin{array}{cccc}
0 & 3 & -1 & 2 \\
1 & 0 & 3 & 1 \\
0 & 1 & -1 & -1 \\
0 & 2 & -2 & 0
\end{array}\right|
$$

7. (4 pts) Give a geometric description in words of the set $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$. Include a statement of the space in which this set lives as well as the description of W.
8. (4 pts) Write the vector equation $r\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]+s\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}3 \\ 1 \\ -2\end{array}\right]=\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right]$ in the form $A \mathbf{x}=\mathbf{b}$.
9. (8 pts) Solve the following linear system USING GAUSSIAN ELIMINATION (row reduction to echelon or reduced echelon form). Leave your answers as exact fractions - not calculator approximations.

$$
\left[\begin{array}{ll}
2 & 1 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

10. (a) (8 pts) Find all solutions to $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Write your answer in vector form. (b) (2 pts) What is the dimension of the set of solutions to part (a)?
11. (4 pts) Write down any basis for \Re^{3} that includes the vector $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Justify briefly. Neither computation nor formal proof is required.
12. Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(a) (6 pts) Find A^{-1} using the Gauss-Jordan (row reduction) technique.
(b) (2 pts) Check your answer.
13. (6 pts) Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right]$. Define a matrix B so that $B A=\left[\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7}+2 a_{1} & a_{8}+2 a_{2} & a_{9}+2 a_{3}\end{array}\right]$
14. (4 pts) (True or False) $\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ is in the span of $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$. Justify using the definition of span.
15. (8 pts) Consider the following subset W of \Re^{2}. PROVE that W is a vector subspace of \Re^{2}.

$$
W=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \in \Re^{2}: x_{2}=0\right\}
$$

16. Extra credit (6 pts) Consider the differential equation $y^{\prime \prime}+x^{2} y^{\prime}+y=0$. Assume that $y_{1}(x)$ $y_{2}(x)$ are both solutions to this differential equation. Show that $y_{1}(x)+y_{2}(x)$ is also a solution to the same differential equation.
