Math 3280 Differential Equations with Linear Algebra

Test 2 B. Peckham March 19, 2018

	AL
Name	11.1

Directions: Do all problems. Make no mistakes. SHOW ALL WORK. Closed book. Calculators may be used for algebraic computations, but not for solving differential equations or doing row reduction.

2._____/24
3._____/34
4._____/22
5._____/20
EC_____/+6
Total_____/100+6

- 1. Consider the differential equation y'' 4y' + 4y = 0.
 - (a) (4 pts) Verify that $f(x) = xe^{2x}$ is a solution to this differential equation.

$$f(x) = x 2e^{2x} + e^{2x}$$

$$f''(x) = x 4e^{2x} + 2e^{2x} + 2e^{2x}$$

$$= (4xe^{2x} + 4e^{2x}) - 4(2xe^{2x}) + 4xe^{2x}$$

$$= (4xe^{2x} + 4e^{2x}) - 4(2xe^{2x}) + 4xe^{2x}$$

$$= (4xe^{2x} + 4e^{2x}) - 4(2xe^{2x}) + 4xe^{2x}$$

$$= 0xe^{2x} + (4-4)e^{2x} = 0$$

(b) (4 pts) Use the information from (a) to help find the general solution to the differential Try y= er: 1. = r -4r 14 = 0 (1-2) 2 =0 = et is ash.

2. (6 pts) Use the fact that e^x is one solution to help find the general solution (all solutions) to $y'' - y' - 2y = -2e^x$

3. (6 pts) The general solution to $y'' - y = -x^2$ is $c_1e^x + c_2e^{-x} + x^2 + 2$. Find the solution to this differential equation which also satisfies the initial conditions: y(0) = 1, y'(0) = -1.

4. (4 pts) Write the vector equation
$$c_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix}$$
 in the form $A\mathbf{x} = \mathbf{b}$. Do not silve,

$$\begin{bmatrix} 1 & 3 & 3 \\ 2 & 1 & 1 \\ 3 & 0 & -2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix}$$

5. (6 pts) Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{23} \end{bmatrix}$$
. Define a matrix B so that $BA = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + 3a_{11} & a_{22} + 3a_{12} & a_{23} + 3a_{13} \\ a_{31} & a_{32} & a_{23} \end{bmatrix}$

 (8 pts) Solve the following linear system USING GAUSSIAN ELIMINATION (row reduction to echelon or reduced echelon form). Leave your answers as exact fractions - not calculator approximations.

$$\begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 0 & -9 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5 & 3 \\ 0 & 1 & \frac{5}{9} \end{bmatrix}$$

$$= \chi_2 = \frac{3}{9} \Rightarrow \chi_1 = 3 - 5\chi_2 = 3 - \frac{9}{9} = \frac{22 - 25}{9} = \frac{3}{9}$$

$$[x_1]$$

7. (a) (8 pts) Find all solutions to $\begin{bmatrix} 0 & 1 & 2 & 0 \\ 2 & 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Write your answer in vector

form.
$$-1\begin{bmatrix} 2 & 4 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \end{bmatrix} - 1\begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \end{bmatrix} = x_1 = t_1 x_2 = t_2 = t_3 = t_4$$

$$\begin{array}{c} x_1 = t_1 \\ x_2 = t_2 \\ x_3 = t_3 = t_4 = t_5 = t_4 = t_5 =$$

(b) (2 pts) What is the dimension of the set of solutions to part (a)?

8. Let
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
.

(a) (6 pts) Find A^{-1} using the Gauss-Jordan (row reduction) technique.

$$\begin{bmatrix} 1 & 0 & 3 & 1 & 6 & 6 \\ 0 & 1 & 0 & 1 & 6 & 6 \\ 0 & 0 & 3 & 0 & 6 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{3} \end{bmatrix} \rightarrow A^{-1} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{bmatrix}$$

(b) (2) pts) Check your answer by multiplying AA^{-1} .

$$\begin{bmatrix}
1 & 0 & 3 & 1 & 0 & -1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 2
\end{bmatrix}$$

9. (6 pts) Evaluate the following determinant. Show your work.

$$\begin{vmatrix} 1 & 3 & -1 & 2 \\ 1 & 0 & 3 & 0 \\ 0 & 1 & -1 & -1 \\ 0 & 2 & -2 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 0 \\ 1 & -1 & 7 \\ 2 & -2 & 0 \end{vmatrix} - \begin{vmatrix} 1 & 3 & -1 & 2 \\ 1 & -1 & 7 \\ 2 & -2 & 0 \end{vmatrix} + 0 - 0$$

$$= \begin{vmatrix} 1 & 3 & -1 & 2 \\ 1 & -1 & 7 \\ 2 & -2 & 0 \end{vmatrix} - \begin{vmatrix} 3 & -1 & 2 \\ 1 & -1 & 7 \\ 2 & 0 \end{vmatrix} - 1 \begin{vmatrix} 2 & -1 & 2 \\ -1 & -1 & 7 \end{vmatrix} - (-2) \begin{vmatrix} 3 & 2 \\ 1 & -1 \end{vmatrix}$$

$$= (-3) \cdot 2 - 1 \cdot 2 \cdot 3 + 2(-5)$$

$$= -6 - (6 - 10) = -2$$

10. (6 pts) Give an example of two 2×2 matrices A and B for which $AB \neq BA$.

$$\begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ i & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- 11. TRUE-FALSE. Justify your answer briefly. A formal proof is not required.
 - (a) (5pts) The set of all solutions to $y'' + 3y' y = e^x$ is a vector subspace of the set of all functions defined on \Re .

(b) (5 pts) The set of all solutions to

$$\begin{bmatrix} 2 & 1 & 4 \\ 3 & 3 & 2 \\ 6 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

is a vector subspace of \Re^3 .

12. (4 pts) (True or False) $\begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix}$ is in the span of $\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$. Justify using the definition of span.

S-loc:
$$C \begin{bmatrix} 2 \\ 0 \end{bmatrix} + C \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 4 \\ 1 & 1 & 5 \\ 0 & 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 5 \\ 0 & 1 & 3 \\ 2 & 0 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 5 \\ 0 & 1 & 3 \\ 0 & -2 & -6 \end{bmatrix}$$

13. (8 pts) Show that the following set of two functions, $\{1, x\}$ is linearly independent. Work directly from the definition of linear independence/dependence. (For example, do not just compute a Wronskian determinant without indicating why it is being computed.)

14. (8 pts) Let \mathcal{F} be the vector space of all functions with the real numbers for both domain and range. Consider the subspace \mathcal{S} of \mathcal{F} defined by $\mathcal{S} = \{a + bx + c(x+1) : a, b, c \in \Re\}$. Find a basis for \mathcal{S} . (You need not prove \mathcal{S} is a subspace.) Justify briefly. (Of the last of \mathcal{S})

$$B = \{1, x\}. \qquad \text{q + bx + $qx+11 = b$ + q + b + c } x$$

$$\therefore \text{ any $f \in S$ } \Rightarrow f = c_1 \cdot |f \in X$ when $c_1 = a + c_2 \cdot x$ when $c_2 = b + c_3$$$

$$S_0 = S_0 = \{1, x\} = S. \quad \text{$by \neq 13$, t the set is lin pulse.}$$

$$\therefore \text{b is a boxis $far S$.}$$

15. Extra credit (6 pts) Consider the equation $A\vec{x} = \vec{0}$, where A is an $m \times n$ matrix. Assume that \vec{y} and \vec{z} are both solutions to this equation. Show that $\vec{y} + \vec{z}$ is also a solution to the same equation.