Math 3280
Differential Equations with Linear Algebra,

Test 2

B. Peckham
March 19, 2018

Name /4 #

Directions: Do all problems. Make no mistakes. SHOW ALL WORK.
Closed book. Calculators may be used for algebraic computations, but not for
solving differential equations or doing row reduction.
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1. Consider the differential equation y” — 4y’ + 4y = 0.

(a) (4 pts) Verify that f(z) = ze?® is a solution to this differential equation.
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(b) (4 pts) Use the information from (a) to help find the general solution to the differential

equation. L
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2. (6 pts) Use the fact that e” is one solution to help find the general solution (all solutions) to
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3. (6 pts) The general solution to ¢’ — y = —z2 is c1€% + coe = + z2 + 2. Find the solution to
this differential equation which also satisfies the initial conditions: y(0) = 1,2/(0) = —1.
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4. (4 pts) Write the vector equation ¢; [2| +¢co [1| +¢e3| 1 | = |2| in the form Ax = b./ Do wt SJM-,)
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6. (8 pts) Solve the following linear system USING GAUSSIAN ELIMINATION (row reduction
to echelon or reduced echelon form). Leave your answers as exact fractions - not calculator

approximations.
2 1|z _ 1
1 5| |z2| |3

C

pl K = 2~ T 3-55. 21225, 2

— q :# 1 " ‘7[ / - ?
7. (a) (8 pts) Find all solutions to 012 0f =) _ 10 . Write your answer in vector
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b) (2 pts) What is the dimension of the set of solutions to part (a)?
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(a) (6 pts) Find A~! using the Gauss-Jordan (row reduction) technique.
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(b) @ pts) Check your answer by multiplying AA L.
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9. (6 pts) Evaluate the following determinant. Show your work.
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10. (6 pts) Give an example of two 2 x 2 matrices A and B for which AB £ BA.
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11. TRUE-FALSE. Justify your answer briefly. A formal proof is not required.

(a) (5pts) The set of all solutions to y” + 3y — y = €7 is a vector subspace of the set of all
functions defined on R.
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(b) (5 pts) The set of all solutions to

is a vector subspace of 23,
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12. (4 pts) {True or False) [5 is in the span of { [1] , [1‘ } Justify using the definition of
3 1

span.
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13. (8 pts) Show that the following set of two functions, {1,z} is linearly independent. Work
directly from the definition of linear independence/dependence. {For example, do not just
compute a Wronskian determinant without indicating why it is being computed.)
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14. (8 pts) Let F be the vector space of all functions with the real numbers for both domain and
range. Consider the subspace S of F defined by S = {a+bz +c(z+1) : a,b,c € R}. Find a
basis for S. (You need not prove S is a subspace.) Justify briefly. (O;’— by H(3)
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15. Extra credit (6 pts) Consider the equation AZ = 0, where A is an m x n matrix. Assume
that & and Z are both solutions to this equation. Show that 7 + Z is also a solution to the
same equation.
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