Math 3280: DE+LA. Test 3 partial answers. Prof. Bruce Peckham

1. $y(x)=c_{1} e^{4 x}+c_{2} e^{-x}$
2. $y_{p}(x)=\frac{1}{2} e^{5 x}$
3. $(D-2)(D+4)$ or $(D+4)(D-2)$ or $D^{2}+2 D-8$.
4. $y_{p}(x)=A \cos (2 x)+B \sin (2 x)+C x e^{2 x}$
5. proof in book, Example 1, Sec. 10.1. Replace 1 with 2.
6. $y(t)=t e^{2 t}+2 e^{2 t}$
7. $Y(s)=\frac{3 s^{2}+6}{\left(s^{3}+2 s+1\right)}$
8. $f(t)=3 e^{-2 t} \cos (4 t)-\frac{5}{2} e^{-2 t} \sin (4 t)$
9. (a) Let $v=\dot{x}$. Then $\dot{v}=-2 x-\frac{2}{5} v+\frac{F_{0}}{25} \cos (\gamma t)$.
(b) Vector form: $\vec{x}^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -2 & -2 / 5\end{array}\right] \vec{x}+\left[\begin{array}{c}0 \\ \frac{F_{0}}{25} \cos (\gamma t)\end{array}\right]$, where $\vec{x}=\left[\begin{array}{l}x \\ v\end{array}\right]$.
(c) $c_{1} e^{-\frac{1}{5} t} \cos \left(\frac{7}{5} t\right)+c_{2} e^{-\frac{1}{5} t} \sin \left(\frac{7}{5} t\right)$
10. $\left[\begin{array}{c}2 e^{3 t} \cos (4 t)-5 e^{3 t} \sin (4 t) \\ e^{3 t} \cos (4 t)\end{array}\right]$

Hint: use $e^{(3+4 i) t}=e^{3 t}(\cos (4 t)+i \sin (4 t))$, multiply, and collect real and imaginary parts. For this test question, ignore the imaginary parts.
11. Eigenvector for or eigenvalue $1+2 i$: $\left[\begin{array}{c}1 \\ -i\end{array}\right]$ (or any (complex) multiple of it, like $\left[\begin{array}{l}i \\ 1\end{array}\right]$)
12. $\vec{x}(t)=c_{1} e^{2 t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{c}1 \\ -3\end{array}\right]$

Note that you need not compute the eigenvalues from scratch since I gave you two eigenvectors. You merely need to multiply the matrix $\left[\begin{array}{cc}2 & 1 \\ 0 & -1\end{array}\right]$ by each eigenvector to see which eigenvalue corresponds to which eigenvectore. Since the matrix is upper triangular, then the eigenvalues of 2 and -1 are the diagonal elements.
13. (Extra Credit) Since y_{1} and y_{2} are known solutions to $L[y]=0$, then $y_{1}^{\prime \prime}+5 y_{1}^{\prime}-3 y_{1}=0$ and $y_{2}^{\prime \prime}+5 y_{2}^{\prime}-3 y_{2}=0$. Therefore, $L\left[c_{1} y_{1}+c_{2} y_{2}\right]=\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+5\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}-3\left(c_{1} y_{1}+c_{2} y_{2}\right)=$ $c_{1}\left(y_{1}^{\prime \prime}+5 y_{1}^{\prime}-3 y_{1}\right)+c_{2}\left(y_{1}^{\prime \prime}+5 y_{1}^{\prime}-3 y_{1}\right)=c_{1} 0+c_{2} 0=0$. That is, $c_{1} y_{1}+c_{2} y_{2}$ is a solution to $L[y]=0$.

