Math 3280 Practice Test 3. B. Peckham. Please do not write on the provided Laplace Transform tables. Indicate clearly any places where you use either the Laplace transform tables or a calculator.

1. $(6 \mathrm{pts})$ Find the general solution to $y^{\prime \prime}-3 y^{\prime}-4 y=0$.
2. (6 pts) Find one particular solution to $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{5 x}$. (You need not find the general solution.)
3. (6 pts) What differential operator annihilates $3 e^{2 x}+e^{-4 x}$? Verify your answer.
4. (6 pts) Find the form of a particular solution to $y^{\prime \prime}-y^{\prime}-2 y=\cos (2 x)+e^{2 x}$. Do not include extraneous terms and do not evaluate the "undetermined coefficients."
5. (6 pts) Compute the Laplace transform of $f(t)=2$ directly from the definition of the Laplace transform (not the tables).
6. (8 pts) Solve using the method of Laplace transforms: $y^{\prime}(t)-2 y(t)=e^{2 t}, y(0)=2$.
7. (6 pts) Compute the Laplace transform of the solution of the initial value problem:

$$
y^{\prime \prime \prime}+0 y^{\prime \prime}+2 y^{\prime}+y=0 ; \quad y(0)=3, y^{\prime}(0)=0, y^{\prime \prime}(0)=0 .
$$

(Find only $Y(s)$, not $y(t)$.) Write your answer as a polynomial (in s) over a polynomial. You need not simplify your answer.
8. (6 pts) Find the inverse Laplace transform of $F(s)=\frac{3 s-4}{s^{2}+4 s+20}$.
9. Consider the initial value problem

$$
\begin{equation*}
25 \frac{d^{2} x}{d t^{2}}+10 \frac{d x}{d t}+50 x=F_{0} \cos (\gamma t), x(0)=-1, x^{\prime}(0)=0 \tag{1}
\end{equation*}
$$

(a) (4pts) Write a system of first order differential equations which is equivalent to equation (1). Define any new variables you introduce.
(b) (3pts) Write your system from part (a) in vector form: $\vec{x}^{\prime}=A \vec{x}+\vec{b}, \vec{x}(0)=\left[\begin{array}{l}a \\ b\end{array}\right]$.
(c) (3pts) The general solution to (1) turns out to be:

$$
\begin{equation*}
x(t)=c_{1} e^{\frac{-1}{5} t} \cos \left(\frac{7}{5} t\right)+c_{2} e^{\frac{-1}{5} t} \sin \left(\frac{7}{5} t\right)+\frac{F_{0}}{100-96 \gamma^{2}+25 \gamma^{4}}\left[\left(2-\gamma^{2}\right) \cos (\gamma t)+\frac{2}{5} \gamma \sin (\gamma t)\right] \tag{2}
\end{equation*}
$$

Circle the piece of the general solution which is the complementary solution (the general solution to: $\left.25 \frac{d^{2} x}{d t^{2}}+10 \frac{d x}{d t}+50 x=0\right)$.
10. $(3 \mathrm{pts})$ Compute the real part of $e^{(3+4 i) t}\left[\begin{array}{c}2+5 i \\ 1\end{array}\right]$.
11. (6pts) Let $A=\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]$. Find any one nonzero eigenvector for A. You may use the fact that one eigenvalue of A turns out to be $1+2 i$.
12. (6 pts) Find the general solution to $\vec{x}^{\prime}=\left[\begin{array}{cc}2 & 1 \\ 0 & -1\end{array}\right] \vec{x}$. You may use the fact that $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -3\end{array}\right]$ are both eigenvectors for $\left[\begin{array}{cc}2 & 1 \\ 0 & -1\end{array}\right]$.
13. Extra Credit (6 pts). Define the differential operator L by $L=D^{2}+5 D-3$, where D is the derivative operator $\frac{d}{d x}$. Assume that $y_{1}(x)$ and $y_{2}(x)$ are known functions that are solutions to $L[y]=0$. Show that any function of the form $c_{1} y_{1}(x)+c_{2} y_{2}(x)$ (where c_{1} and c_{2} are constants) is also a solution to $L[y]=0$.

