NameAK.	Diff. Equations and Lin. Alg.
	Math 3280 Quiz 4, Spring 2020
	B. Peckham
Directions: Do all problems. Label axes and scale	
all general solutions and particular solutions (that is,	write $y(x) =$ rather than just $y =$
for solutions to $y'=f(x,y)$).	
1. Consider the initial value problem $\frac{dA}{dr} = -1/2A$	A(0) = 2.
(a) Find an analytic solution "by inspection."	
Give an exact and a decimal approximation $A(x) = \begin{pmatrix} -\frac{1}{2}x & A(x) > 2 \Rightarrow 2 \end{pmatrix}$	n (using a calculator). $C = C = A(r) = 2e^{-\frac{r}{2}r}$ $A(r) = 2e^{-\frac{r}{2}r}$
(b) Find a sketch of a solution by first drawing a	a phase line, then sketching a solution ≈ 130
which is "consistent with the phase line."	
sketch. What is the fate of this one solution	V. V.
\rightarrow \wedge \wedge \rightarrow	A(212,9)
·	or almost any answer
	between 6 and 2,
2. Consider initial value problem $\frac{dP}{ds} = -Ps^2/2$,	P(0) = 2. Find or estimate $P(1)$
using the following techniques INDEPENDENTI	Y. For the analytic solutions, give an
exact answer for $P(1)$ and a numerical approximation solutions are acceptable if labelled.	mation (using a calculator). Implicit
(a) Find an analytic solution by separation of	variables. What is $P(1)$?
(a) Find an analytic solution by separation of $\int \frac{1}{\rho} d\rho = \int -\frac{5}{2} ds \implies u P = -\frac{5}{2} ds$ $P(0) = 2 > 0 \implies P(5) = At : P(5) = K = \frac{5}{6}$:+ (> IPI= e = ke , k>
10151 = At = 10151 = At = 1015 = 14 = 16	PM = 2 => K=2 S& PBI = 2e st and
(h) Find an analytic solution using the first or	der linear technique What is $P(1)? V(1)^2 \angle e$
fewarte $\frac{df}{ds} + \frac{5}{2}P = 0 \Rightarrow e^{(5)} = e^{\frac{3}{4}}$ where $\frac{df}{ds} + \frac{5}{2}P = 0 \Rightarrow e^{\frac{3}{4}}$, i.e. $(e^{\frac{3}{4}})$	Sids 5%
Frewhere $\frac{d}{ds} + \frac{3}{2} = 0$ $\frac{1}{3} = \frac{1}{3}$	1) Some Secret
e de de + e 1/6 5/2 . P = 0 e 1/6; ie (e 1/6.	P) = 0 = e = C = since (Rs) = 2e
(c) Sketch a slope field and graph the solution	on corresponding to $P(0) = 2$ on the
slope field. Use this solution graph to esting	Thate 1 (1). Daber axes and scale.
P52 = 0 P112 (or anything	2/69
P52 = 0 [P112 or anything (lose to)	5 ±1 2 -1
or P=0 (d) Use Euler's (numerical) method with a st	sep size of $h = 0.5$ to estimate $P(1)$.
Use $P(0) = 2$. Plot the Euler estimates for	P(0), P(.5), and P(1) in the solution
space.	2
2 2 2	
$\begin{array}{c c} 0 & 0 & 2 \\ 1 & .5 & 2 + (.5) \left(-2.0^{2}\right) = 2 + 0 = 2 \\ 2 & 1 & 2 + .5 & (-2.(5)^{2}) = 2 + (-\frac{1}{8}) = 1 \end{array}$.51
2 2+,5 (-2.(5)) = 2+(-3)=1	7 = 15 = P(1) = 1.875

Name_AK.