Diff. Equations and Lin. Alg. Math 3280, B. Peckham Quiz 7, Spring 2020

1. (3pts) Find the general solution to y'' - 2y' - 15y = 0. Hint: try functions of the form e^{rx} .

2. (2pts) Find the general solution to $y'' - 2y' - 15y = 3e^{2x}$. Hint: one solution is $-\frac{e^{xx}}{5}$. You

(2pts) Find the general solution to
$$y'' - 2y' - 15y = 3e^{2x}$$
. Hint: may use your solution from problem 1.

$$y(x) = y_{-1}(x) + y_{-1}(x) = c_{-1}e^{5x} + c_{-2}e^{-3x} - e^{3x}$$

$$y_{-1}(x) + y_{-1}(x) = c_{-1}e^{5x} + c_{-2}e^{-3x} - e^{3x}$$

$$y_{-1}(x) + y_{-1}(x) = c_{-1}e^{5x} + c_{-2}e^{-3x} - e^{3x}$$

$$y_{-1}(x) + y_{-1}(x) = c_{-1}e^{5x} + c_{-2}e^{-3x} - e^{3x}$$

$$y_{-1}(x) + y_{-1}(x) = c_{-1}e^{5x} + c_{-2}e^{-3x} - e^{3x}$$

$$y_{-1}(x) + y_{-1}(x) = c_{-1}e^{5x} + c_{-2}e^{-3x} - e^{3x}$$

$$y_{-1}(x) + y_{-1}(x) = c_{-1}e^{5x} + c_{-2}e^{-3x} - e^{3x}$$

$$y_{-1}(x) + y_{-1}(x) = c_{-1}e^{5x} + c_{-2}e^{-3x} - e^{3x}$$

$$y_{-1}(x) + y_{-1}(x) = c_{-1}e^{5x} + c_{-2}e^{-3x} - e^{3x}$$

$$y_{-1}(x) + y_{-1}(x) = c_{-1}e^{5x} + c_{-2}e^{-3x} - e^{3x}$$

$$y_{-1}(x) + y_{-1}(x) = c_{-1}e^{5x} + c_{-2}e^{-3x} - e^{3x}$$

- 3. (2pts) Suppose that it is known that the general solution to some second order differential equation is $y(x) = c_1 e^x + c_2 e^{5x}$. Assume you are now given initial conditions: y(0) = 1, y'(0) = 1
 - 2. Determine a matrix A and a vector \vec{b} so that the solution to $A\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \vec{b}$ gives the constants c_1 and c_2 . Do not solve for c_1 or c_2 .

So
$$y(0) = c_1 + c_2 = 1$$
 and $y(0) = c_1 + 5c_2 = 2$
i.e., $\begin{bmatrix} 1 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ So $A = \begin{bmatrix} 1 & 1 \\ 1 & 5 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

4. (3pts) Find a basis for the set of solutions to y'' - 8y' + 16y = 0

Try y=e^{xx} = y=re^{xx}, y"=re^{xx}. Plug in and factor out e^{xx}: e^{xx}(r-8r+16)=0

So
$$v^2 - 8r + 16 = (r-4)^2 = 0 \Rightarrow r = 4$$
. Double voot \Rightarrow e^{4x}, xe^{4x} are two (indep.) slns.

So a basis is $\{e^{4x}, xe^{4x}\}$

5. (EC 2pts) Show the following set of functions (defined on \Re) is linearly independent: $\{e^{2x}, e^{3x}\}$. Work directly from the definition of linear independence, not just a determinant. Hint: Set a linear combination of these two functions equal to 0. Differentiate both sides to get a second equation. Evaluate both equations at x = 0. Solve for the constants.

[2 3 0] (2)-2(1) [1 1 0] 200 eg = C2=0. Then 15 eg = 1 C1+1.0=0 = C1=0

Since C1 and C2 must beth be 200, {e',e'} is his.