Math 3280, Differential Equations with Linear Algebra Prof. Bruce Peckham, Instructor, Fall 2018 Brief Course Summary

Differential Equations:

1. Analytic Solutions

Order	Dim	Туре	Solution Technique
1	1	Simplest nontrivial: $y' = ay$	Every technique in the course!!
		Separable (nonlinear) $y' = f(x)g(y)$	Separation of Variables
		linear: $y' + p(x)y = q(x)$	integrating factor
		Nonlinear, not sep.: $y' = f(x, y)$	No general technique; maybe substitutions
2	1	Linear, const coeff, homogeneous	Try e^{rx} ; 3 root cases
		y'' + ay' + cy = 0 or $L[y] = 0$	Laplace transforms; 3 root cases
			Convert to 1st order system; know 2 cases:
			distinct real, complex (not repeated)
			<u>-</u>
		Linear, const coeff, nonhomogeneous:	$y = c_1 y_1 + c_2 y_2 + y_p$
		y'' + ay' + by = g, that is, $L[y] = g$	y_p :
			-Lucky guess/undet. coeffs/Annihilators
			-Variation of parameters: $y_p = v_1 y_1 + v_2 y_2$
			-Laplace transforms - esp. for g discts.
k	1	Linear, const coeff, homog	Extend techniques for $k = 2$
		Linear, const coeff, nonhomog	Extend techniques for $k = 2$
1	n	Linear const coeff homog systems	Eigenvalues/eigenvectors: use $e^{\lambda t} \vec{v}$;
		$\vec{x}' = A\vec{x}$	2 cases for 2D (dbl roots not covered)
2	1	Linear nonconst coeff, nonhomogeneous:	No general technique (but $y_1 \rightarrow y_2 = vy_1$)
		y'' + a(x)y' + b(x)y = g(x)	and y_p from var of pars
k	1	Nonlinear: $y^{(k)} = f(y^{(k-1)},, y', y, x)$	No general technique
1	n	Nonlinear systems: $\vec{x}' = \vec{f}(\vec{x}, t)$	No general technique
k	n	Nonlinear higher-order systems	Convert to first order system

- 2. Qualitative Solutions
 - (a) 1D Automomous only (y' = f(y)): Equilibria, phase line, vector field; sketch solutions consistent with phase line
 - (b) 1D ANY (y' = f(y, x)): Slope field
 - (c) 2D Automomous only $(\vec{x}' = \vec{f}(\vec{x}))$: equilibria, phase plane, vector field; sketch $x_1(t)$ and/or $x_2(t)$ from curve in phase plane
- 3. Numerical Solutions
 - (a) ANY!!!!: Euler's method (not covered: Runge-Kutta, ...)
 - (b) ANY!! In Mathematica: NDSolve, Streamplot
- 4. Models/applications construct given verbal information (for example, "X is proportional to Y")
 - (a) Exponential growth (population), decay (radioactive decay)
 - (b) Heating/Cooling
 - (c) Falling object: $mv' = F_{gravity} + F_{friction}$
 - (d) Mixing x' =rate in rate out.
 - (e) Logistic population growth: $y' = ay by^2$
 - (f) Spring/mass system horizontal or vertical: comes from F = ma = my''.
 - (g) Population models (predator-prey systems)

(other side for Linear Algebra)

Linear Algebra

- 1. Solve $A\vec{x} = \vec{b}$ (Row reduction, echelon forms, $(0, 1, \infty: \text{free params.}))$
- 2. For $n \times n$: Det(A), A^{-1} (if Det(A) $\neq 0$), eigenvalues, eigenvectors $(A\vec{x} = \lambda \vec{x})$
- 3. Vector Space/subspace, basis, linearly independent, span, dimension
- Linear transformation "kernel" or "null space" Examples: D, integration, L (for lhs of linear differential equation), Laplace transform, multiply by matrix A, Annihilators
- 5. Theorems:
 - (a) The following are vector subspaces (of a known vector space):
 - i. Solutions to $A\vec{x} = \vec{0}$ (Dimension is number of free variables after row reduction.)
 - ii. Solutions to L[y] = 0 (dimension depends on order of L.)
 - iii. The set of eigenvectors for a specific eigenvalue of a matrix A (dimension is often one, never bigger than the eigenvalue multiplicity, never zero)
 - iv. The span of any set of vectors
 - (b) Differences of solutions to $A\vec{x} = \vec{b}$ are solutions to $A\vec{x} = \vec{0}$.
 - (c) Differences of solutions to L[y] = g are solutions to L[y] = 0.