Name_ A.K.	 Math 5260:
ID #	Midterm 1,
Signature	Prof Bruce

Math 5260: Dynamical Systems Midterm 1, Fri. Oct. 18, 2013 Prof. Bruce Peckham

Directions: Do all problems. Total is 50 points.

1. Consider the dynamical system defined by $x_{n+1} = f(x_n)$ where f(x) = 2x(1-x). The graph of f is below.

(a) (4pts) Determine all fixed points and their stabilities (attracting, repelling, or linearly neutral). Justify your answers with calculations.

CIOIS.

$$2 \times (1 - x) = x$$

$$2 \times -2 x^{2} = 0$$

$$x (1 - 2x) = 0$$

$$x = 0, \frac{1}{2} \text{ are the 2 f.p.'s}$$

$$f'(x) = 2 - 4x$$

$$f'(x) = 0$$

$$x = \frac{1}{2} \text{ is (super) after ling}$$

$$h) (2pts) Determine the set of initial conditions for which the corre$$

(b) (2pts) Determine the set of initial conditions for which the corresponding orbit stays bounded. Justify briefly either on the sketch above or with an analytic argument.

$$\chi_{\epsilon} \in [0,1] \Leftrightarrow \chi_{\epsilon} \uparrow_{i} \uparrow_{i} \downarrow_{i} \downarrow_{i}$$

$$\chi_{\epsilon} \in [0,1] \Leftrightarrow \chi_{\epsilon} \uparrow_{i} \uparrow_{i} \downarrow_{i} \downarrow_{i}$$

(c) (2pts) Describe the fate of all bounded orbits.

$$X_{0} \in (0,1) \Rightarrow X_{u} \rightarrow \frac{1}{2}$$

$$X_{0} = 0 \Rightarrow X_{u} = 0$$

$$X_{0} = 1 \Rightarrow X_{u} = 0 \text{ for all } n \ge 1$$

2. (4pts) Sketch the graph of a continuous function which has an attracting fixed point and a repelling period-2 orbit.

- 3. (3pts) Let $D(x) = 2x \pmod{1}$. Define $S: [0,1) \to \Sigma$ (Σ is the space of sequences of 0's and 1's) by $S(x) = (s_0 s_1 s_2...)$ where

$$s_j = \begin{cases} 0 & \text{if } D^j(x) \in [0, .5) \\ 1 & \text{if } D^j(x) \in [.5, 1) \end{cases}$$

What is $S(\frac{2}{3})$? Explain briefly.

4. (3 pts) If a continuous map of the unit interval has a (prime) period 30 orbit, must it have an orbit of (prime) period 28? Explain briefly?

5. (3pts) How many prime period-11 orbits are there for the map x^2-2 ? Explain briefly how you determined your answer.

for 11 pt =
$$2^{11} = 2048$$

forme period-11 pt = $2048 - 2$ (2 fixed pts)

$\frac{2048 - 2}{11}$ period-11 orb. ts

ie, $\frac{2046}{11} = 186$

Hint: Find pre images "
of mox and win (more generally,
article 1ts)

- 6. (4pts) Given the above graph of f, sketch the graph of f^2 (that is, $f \circ f$) on the same diagram.
- 7. (3pts) List the three properties necessary for a function $f: X \to X$ to be chaotic. (No formal definitions necessary; just list the names of the three properties.)

1. Periodic pt of f are dense in X

- 2. f is transitive on X
- 3. f has sensitivity to mitial conditions (SIC.)

8. (3pts) The graphs of Q_{-2} and Q_{-2}^3 are given below for $Q_{-2}(x)=x^2-2$. Label on the diagonal any three points A,B,C which are on the same prime period-3 orbit and for which $A\to B\to C\to A$ under iteration of the map Q_{-2} .

(One of 6 possible auswers)

- 9. (3pts) Let f(x) be defined by the graph above. Let $I_0 = [-2, -a], I_1 = [a, 2]$, where a is the x value of the right-hand intersection of the graph with the line y = -2. Define $I_{ij} = \{x \in [-2, 2] | x \in I_i, f(x) \in I_j\}$. Carefully sketch and label the set I_{01} .
- 10. (4pts) Let $t = (000\overline{0})$ and $s = (111\overline{1})$ be points in the sequence space Σ . Find a new point $z \in \Sigma$ and an integer N which satisfy d(z,s) < 0.1 and $d(\sigma^N(z),t) < 0.1$.

1. Select appropriate
$$M$$
: $\frac{1}{2^4} = \frac{1}{16} < 1$

if we witch $\frac{1}{2} = \frac{1}{2} < 1$

2. Let $\frac{1}{2} = (11111000)$

Let $N = 5$. Then $d(2.51 < 1) = 0$

and $\int_{0.00}^{N} e_1 = (00) \Rightarrow d(0^{N}2), t = 0$

11. (3pts) List all prime period-3 orbits for $\sigma: \Sigma \to \Sigma$. (As in the text, Σ is the space of sequences of 0's and 1's, and σ is the shift map which drops the first term in the sequence. Indicate which the order in which points map to each other on these orbits.)

$$\begin{array}{c}
(\overline{00}) \mapsto \overline{001} \longmapsto \overline{010} \\
\overline{100} \longmapsto \overline{101} \longmapsto \overline{010}
\end{array}$$

- 12. Consider the family of maps given by: $f_c(x) = x^2 + cx$.
 - (a) (3pts) Find all fixed points for all maps in this family.
 - (b) (3pts) Determine all intervals in the parameter c for which f_c has an attracting fixed point.
 - (c) (3pts) Sketch a bifurcation diagram (in the phase × parameter space) including all fixed points with solid lines representing those that are attracting and dashed lines representing those that are repelling.

a) Fixed ptx:
$$\chi^{2} + Cx = \chi$$
 $(\Rightarrow \chi^{2} + (c-1)x = 0)$
 $\Rightarrow \chi = 0 \text{ or } \chi = 1 - C$

b) Stability $f'_{c}(x_{1} = 2x + c)$
 $f'_{c}(6i = c)$ So 0 is alto. If $-1 \leq 16i \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2 - C$ So $1-C$ is attr. If

 $-1 \leq 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f'_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$
 $f''_{c}(1-c) = 2(1-c) + C = 2-C \leq 1$

13. Extra Credit: (3pts). Consider the space Σ consisting of sequences 0's and 1's with the "usual" metric defined by $d(s,t) = \sum_{i=0}^{\infty} \frac{|s_i - t_i|}{2^i}$.

O's and 1's with the "usual" metric defined by
$$d(s,t) = \sum_{i=0}^{\infty} \frac{|s_i - t_i|}{2^i}$$
.

Prove that if $s_i = t_i$ for $i = 0, 1, ..., n$, then $d(s,t) \leq \frac{1}{2^n}$.

$$d(s,t) = \begin{cases} \frac{|s_i - t_i|}{2^i} & = \begin{cases} \frac{|s_i - t_i|}{2^n} & = \begin{cases} \frac{|s_i - t_i|}{2^n} & = \begin{cases} \frac{|s_i - t_i|}{2^n} & = \\ \frac{|s_i - t_i|}{2^n} & = \end{cases} \end{cases}$$

$$\leq \begin{cases} \frac{|s_i - t_i|}{2^n} & = \begin{cases} \frac{|s_i - t_i|}{2^n} & = \\ \frac{|s_i - t_i|}{2^n} & = \end{cases} \end{cases}$$

$$= \begin{cases} \frac{|s_i - t_i|}{2^n} & = \begin{cases} \frac{|s_i - t_i|}{2^n} & = \\ \frac{|s_i - t_i|}{2^n} & = \end{cases} \end{cases}$$

$$= \begin{cases} \frac{|s_i - t_i|}{2^n} & = \begin{cases} \frac{|s_i - t_i|}{2^n} & = \\ \frac{|s_i - t_i|}{2^n} & = \end{cases} \end{cases}$$

$$= \begin{cases} \frac{|s_i - t_i|}{2^n} & = \begin{cases} \frac{|s_i - t_i|}{2^n} & = \\ \frac{|s_i - t_i|}{2^n} & = \end{cases} \end{cases}$$