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Directions: Do all problems. Total is 50 points.

1. Consider the dynamical system defined by z,,1 = f(z,) where f(z) =
22(1 — z). The graph of f is below.

(a) (4pts) Determine all fixed points and their stabilities (attracting,
repelling, or linearly neutral). Justify your answers with calcula-

tions. ‘ )
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(b) (2pts) Determine the set of initial conditions for which the corre-
sponding orbit stays bounded. Justify briefly either on the sketch
above or with an analytic argument.
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(c) (2pts) Describe the fate of all bounded orbits.
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2. (4pts) Sketch the graph of a continuous function which has an attract-

ing fixed point and a repelling period-2 orbit.
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3. (3pts) Let D(z) = 2z (mod 1). Define S : [0,1) — X (X is the space

of sequences of 0’s and 1’s) by S(z) = (s0s182...) where

o { 0 if Di(z) €0, .5)
I 1 if Di(z) €.5,1)

What is S(%)? Explain briefly.
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4. (3 pts) If a continuous map of the unit interval has a (prime) period
30 orbit, must it have an orbit of (prime) period 28? Explain briefly?
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5. (3pts) How many prime period-11 orbits are there for the map z% —2?

Explain briefly how you determined your answer.
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6. (4pts) Given the above graph of f, sketch the graph of f2 (that is,
J o [) on the same diagram.

7. (3pts) List the three properties necessary for a function f : X — X
to be chaotic. (No formal definitions necessary; just list the names of

the three properties.)
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8. (3pts) The graphs of Q_» and Q3 , are given below for Q_»(z) = z2—2.
Label on the diagonal any three points A, B, C' which are on the same
prime period-3 orbit and for which A — B — C — A under iteration

of the map @ _o.
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9. (3pts) Let f(z) be defined by the graph above. Let Iy = [-2,—a], 1 =
[a, 2], where a is the z value of the right-hand intersection of the graph
with the line y = —2. Define I;; = {z € [-2,2)|z € L, f(z) € I;}.
Carefully sketch and label the set Ip.

10. (4pts) Let ¢t = (0000) and s = (1111) be points in the sequence space
%. Find a new point z € X and an integer N which satisfy d(z,s) < 0.1
and d(oV(2),t) < 0.1.
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11. (3pts) List all prime period-3 orbits for o : & — X. (As in the text, 3
is the space of sequences of 0’s and 1’s, and ¢ is the shift map which
drops the first term in the sequence. Indicate which the order in which
points map to each other on these orbits.)
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12. Consider the family of maps given by: f.(z) = z% + cz.

(a) (3pts) Find all fixed points for all maps in this family.

(b) (3pts) Determine all intervals in the parameter ¢ for which f; has
an attracting fixed point.

(c) (3pts) Sketch a bifurcation diagram (in the phase x parameter
space) including all fixed points with solid lines representing those
that are attracting and dashed lines representing those that are
repelling.
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13. Extra Credit: (3pts). Consider the sf)}ice 3} consisting of sequences
8;—1t;

0’s and 1’s with the “usual” metric defined by d(s,t) = 3272, “5
Prove that if 5; = ¢; for4i=0,1,...,n, then d(s,¢) < 2%
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