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Preamble

This overview has been prepared specifically for presentation at the 50th Annual
Meeting of the Minnesota Geotechnical Society. Tunnel support design has been a
subject of research at the University of Minnesota since the 1960’s. It is also nearly
half a century since Terzaghi (1946) proposed his method for tunnel support design in
rock that was widely adopted in the United States. This paper provides an opportunity
to illustrate the goal of rock mechanics research at ‘Minnesota’, that involves arriving
at practical procedures through understanding of the basic physical principles that
control the mechanical behavior of rock. Given the variability and unpredictability
of geological materials, the ‘numbers’ resulting from calculations are considered to
be of value primarily to the extent that they help elucidate these basic principles.

Introduction

The ancient art of tunnelling has evolved throughout history with occasional periods
of impressive development, as in the Roman era and during the Industrial Revolution.
At no time, however, have the demands on tunnelling developed as rapidly as during
the last half century. Population growth, rapid urbanization, development of national
and international rapid transportation networks, and a growing realization that many
facilities built traditionally above ground can be located to advantage underground all
combine to stimulate demand for tunnelling and underground excavation. Projects
become more and more ambitious and important new problems appear, challenging
the capabilities of the geotechnical engineer.

1 Senior Consultant, Itasca Consulting Group, Inc. Minneapolis, Minnesota.
Professor Emeritus, University of Minnesota.

2 Consulting Engineer, Itasca Consulting Group, Inc.
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The advent of the high-speed computer and rapid developments in computing
techniques over the past two to three decades together provide a potentially powerful
tool to help the geotechnical engineer respond to this challenge. To use this tool ef-
fectively, however, it is essential to recognize the special characteristics of geological
materials and the constraints imposed on design compared, for example, to problems
involving fabricated materials. In the latter case, the mechanical response of the full-
scale structure can be determined reliably from tests on small laboratory specimens.
By contrast, a rock mass may contain joints, fractures, folds and other geologically-
induced features such that the mechanical response of the full-scale structure may
bear little or no relationship to the response of small scale specimens taken from the
same mass. Further, the rock properties may vary considerably throughout a rock
mass in a manner that, in many cases, cannot be determined from advance geological
exploration.

In the case of tunnelling, concern is focused on the region affected by exca-
vation of the tunnel face. Rock mass properties may change unexpectedly with each
increment of tunnel advance. Narrow gouge-filled faults and comparable conditions,
undetected in geological exploration, can produce dramatic changes in excavation
stability. Less dramatic effects arise routinely as conditions change from those as-
sumed in support design calculations. Labasse (1949), in discussing supports for
tunnels in mines, summarized the situation as follows:

‘First, the types of support to be used [in the mine] must be limited
to one or two in order not to disrupt the material supply operations un-
derground. This standardization makes precise calculation of a support
for each section [of tunnel advance] useless. Further, the need to install
the support immediately after excavation does not allow time to make
calculations and fabricate the support. In order to arrive at a precise
determination it would be necessary, in fact, to study each section sepa-
rately because it would differ from neighboring sections with respect to
the rock layers encountered, their dip and their disposition. It would be
necessary to take a test specimen from each layer, determine its prop-
erties and the influence of these properties on neighboring layers. This
would require a series of experiments and mathematical analyses whose
solution, assuming that a solution is possible, would take up precious
time during which the excavation would certainly have collapsed.’

Thus, a good support design is one that (i) will stabilize the excavation for
the conditions to be expected, and (ii) is capable of being adapted to deal with
changes from these conditions as they are revealed at the face during excavation.
[Note also that time is mentioned as a factor.] The terms design as you goand the
observational approachare sometimes used to describe this method of design. For
this approach to be successful, it is essential that the tunnel engineer know how to
respond appropriately and quickly when the actual conditions are revealed —i.e. how
to modify the design on-site, and how to establish that the changes have achieved
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the desired effect. Thus, it is at least as important for the engineer to understand the
general physics and nature of the mechanical changes produced in the rock in the
vicinity of an excavation, as it is to know how to make the design calculations.

How, then, can numerical modelling techniques be used to best advantage
to assist in tunnel support design? There appear to be several possibilities. In this
paper, the authors examine two:

1. to assess the validity of current design approaches, most of which predate the
‘computer age’; and

2. to extend the general insights on tunnel response, gained from classical analysis,
to ‘more practical’ tunnelling situations.

The paper concludes with suggestions for further studies where numerical modelling
could advance the ‘state of the art’ of tunnel support design.

Historical developments in mechanics relevant to tunnel support design

It is useful at the outset to review briefly the history of development of computational
tools and solutions in mechanics, since tunnel support design has been guided in
considerable measure by these developments.

The discovery of calculus in the second half of the 17th century by Newton
and Leibnitz provided the direct stimulus for the development of continuum mechan-
ics and the theory of elasticity. At the time, considerable attention was focused on
attempting to arrive at the macroscopic behavior of materials by, in effect, the integra-
tion of interactions at the molecular scale. There was doubt and considerable debate
as to the applicability of the continuum hypothesis, since it required the materials to
have no discrete structure at the molecular level1.

1 One must mention the great difficulty in its development. Mathematical analysis in those days
was built on the concept of continuous geometrical space in which it was possible to consider
individual segments and to introduce the processes of differentiation and integration on this basis.
The universally recognized Newtonian molecular theory of structure of bodies, on the other hand,
represented them as discrete media composed of individual particles that are connected with each
other by the forces of mutual attraction and repulsion. It proved to be very difficult to justify
the applicability to such media of the apparatus of mathematical analysis, which was essentially
connected with the concept of continuous functions capable of receiving indefinitely small (i.e.
infinitesimal) increments, and with the possibility of passing to the limit in their summation
(i.e., in their integration). On account of this, the first works on the mathematical theory of
elasticity gave rise to much discussion; their validity was questioned. However, the fact that
even an extremely small volume, presumably isolated from a body, contains a great number of
molecules prompted investigators to appeal to the law of large numbers and to apply the method
which was subsequently called statistical; this made it possible to bridge the gap between the
continuous space of mathematical analysis and the solid body as a discrete medium. It became pos-
sible to apply the powerful apparatus of mathematics to the development of the new branch of physics.

‘. . . doubts concerning the physical justification of the method of elasticity dealing,
as it were, with a continuous solid medium, gradually disappeared. From this point
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By the second half of the 18th century, however, continuum mechanics was
established, together with the theory of elasticity and a number of important analytical
elastic solutions had been obtained.

Solutions of particular relevance to tunnel support design are the Lamé (1852)
solution for the stress distribution around a cylindrical or spherical cavity in an elastic
medium subjected to uniform internal and external pressure and the Kirsch (1898)
solution for stresses around a circular hole in an elastic plate subjected to biaxial
loading. Inglis (1913) effectively extended the Kirsch result to consideration of an
elliptical hole in an elastic plate. Figure 1 summarizes these results.

A very important feature of all of these analytical or closed form solutions
is that the results are expressed in dimensionless form. Thus, the stresses are seen
to vary as the square of the dimensionless ratio of the ‘tunnel’ radius [a] divided
by the radial distance [r] —or as the cube of this ratio in the case of a spherical
cavity— while the deformations are proportional to the ratio of the applied stress [σ ]
to the elastic modulus [E] of the medium. In the case of non-circular openings it is
useful to recognize that the stress concentrations will tend to extend further behind
the opening as the local radius of curvature increases2. These general results remain
of significant value in current design, as will be noted below.

Many excavations in rock have profiles that deviate considerably from the
simple geometries that are amenable to closed form analysis3 ;4. The development
of Photoelasticity [Coker and Filon (1931); Frocht (1941)] provided an experimen-
tal technique to obtain very good estimates of the influence of complex excavation
shapes on the stress distributions (Figure 2). Although two-dimensional photoelas-
ticity was more common, three-dimensional analysis was also possible. As seen

of view, it is sometimes said that the theory of elasticity is based on the hypothesis
of the continuous structure of solids. It must be borne in mind, of course, that this
hypothesis is but a working hypothesis; it is dictated by the adopted mathematical
method of investigation and does not intrude into the branches of physics that are
directly concerned with the problems of body structure.’ (Filonenko-Borodich, ca
1960).

‘In the field of geomechanics, granular media and block-jointed rock masses are
obvious examples where the concept of the ideal physical continuum —one in which
no gaps are formed— cannot be expected to apply.’ (Trollope, 1968, p. 275)

2 This can be seen well in the photoelastic diagram of the stresses around the underground powerhouses
in Figure 2b. The (shear) stress contours are very concentrated in the low radius regions (corners) and
more extended in the high radius sections (walls).
3 With the development of the Tunnel Boring Machine (TBM) the circular tunnel is now less of an
idealization than in the past. The first TBM that successfully completed a tunnel was the Mitri Mole,
used to excavate tunnels in the Pierre shale at the Oahe Dam site in 1955. A leading proponent of
the TBM project at Oahe was the late Kenneth S. Lane, U.S. Army Corps of Engineers. The designer
of the mole machine was J.S. Robbins, then a resident of St. Paul, Minnesota, who subsequently
developed many TBMs for projects around the world, including the Channel Tunnel.
4 Application of complex analysis allows some geometries other than circular to be studied (see for
example, Savin 1961)
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from Figure 2, the technique provided excellent graphical visualization of the stress
distribution in the solid body. Obert and Duvall (1967) made extensive use of this
technique to determine (and tabulate) stress concentrations around a variety of ex-
cavation shapes and the influence of adjacent excavations on the stress distributions.
With the rapid increase in the power of computers and numerical techniques, such
as the finite element method, interest in the photoelastic technique, which required
careful experimental and interpretation procedures, declined. It is rarely used today.

Today numerical analysis is applied ubiquitously in engineering. In exca-
vation problems analysis of realistic excavation shapes, including three-dimensional
effects (e.g., the influence of the tunnel face on stability) and inelastic deformation
of the rock mass can be performed readily. Frequently, however, these analyses are
performed on a problem-by-problem basis, using the specific dimensions of the ex-
cavation and specific rock mass properties, with results listed in direct dimensional
values. Although applicable to the particular situation considered, the general insights
gained from the analytical approaches tend to be obscured. The authors believe that
there is considerable merit in using numerical analysis to extend the analytical re-
sults in general form to explore practically interesting situations for which analytical
results are not available. Some examples of this approach are presented below.

Several of the support design procedures developed in ‘pre-numerical’ times
are still in use today. This paper comments briefly on five such methods5:

• Elastic Analysis;
• Terzaghi’s Rock Load;
• Lang’s Reinforced Rock Unit;
• Einstein-Schwarz’s Flexibility/Stiffness Ratio;
• Convergence Confinement Method or

New Austrian Tunneling Method (NATM)

Elastic Analysis

Clearly, if an excavation requires support, then the rock behavior does not remain
elastic. While this is true, elastic analysis can provide considerable insight into
support design. The expressions for elastic stress distribution in Figure 1, for example,
show that the stress concentrations in the medium decrease as the ratio (a/r)2 [where
a is the tunnel radius, r is the radial distance] in the case of a cylindrical tunnel, and as
(a/r)3 in the case of a spherical cavity. This implies that the stress ‘disturbance’ahead
of the elasticfront of a tunnel (assuming that it can be considered to approximate a
hemisphere) will be limited to the order of 1.0 ∼ 1.5 tunnel radii ahead of the face6

—i.e. 12% ∼ 4% change in stress. Similarly, the effect of a cylindrical tunnel on

5 Several empirical systems have also been developed, based on review and assembly of design data
from a large number of completed tunnels, as design guides (e.g., Barton et al. 1974; Bieniawski
1976). These are not reviewed here.
6 Note that the center of the hemisphere incorporating the tunnel face would be at a distance of one
radius into the tunnel behind the face.
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Figure 1. Some classical solutions for holes in elastic medium.
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Figure 2. a) Stress patterns obtained from uniaxial tension of a plate cointaining a
circular hole (after Frocht, 1941). b) Photoelastic model of excavations for a power
house (after Lang, 1962).
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changing the pre-existing state of stress in the vicinity of the tunnel will be minimal
( 11% ∼ 6%) beyond 3 ∼ 4 tunnel radii from the axis of the tunnel. Thus the loads
imposed on two parallel tunnels of the same diameter placed with their centers say
several tunnel radii apart can be considered to be independent of each other.

Figure 3 is a section showing the two main rail tunnels under the English
Channel, with the smaller service tunnel parallel to and midway between them. It
is possible to say at a glance that stresses around each of the main tunnels, spaced
[30/4.2 �] 7 tunnel radii apart will not be significantly different [(1/7)2 � 2%] than
the stresses around a single tunnel in the same rock. The service tunnel, distance
about [15/4.2 �] 3.6 large tunnel radii from the center of the large tunnels, will be
subjected to an increase in loading of roughly (1/3.6)2 � 8% due to each larger
tunnel —i.e. approximately 16% total increase in applied stress (the error in using
superposition here is negligible).

Figure 3. Typical cross-section of the railway tunnel system below the English
Channel.

Elastic analysis (including photoelasticity) has been used to attempt to op-
timize the profile of excavations in competent rock. In the Kolar gold mines, near
Bangalore, India, for example, an elliptical opening in which the major:minor axis
ratio was the same as the major:minor stress ratio was considered to be the most
stable shape [Isaacson (1958)], since the tangential stress was constant around the
tunnel wall (Figure 1c). While this is true, examination of the stress distribution
behind the periphery (Figure 5) reveals that the region of high stress is not constant
[Carranza-Torres (1998)]. Thus, if the rock mass strength is lower than anticipated
so that inelastic deformation develops, then the region of failure will not be uniform.
As seen in Figure 5, analysis of the region of inelastic deformation indicates that
rotation of the ellipse by 90◦ to the original orientation would result in a reduction
of the inelastic region.

Analysis of the elastic stress distribution behind the tunnel periphery can
provide a reasonable indication of where inelastic deformation is likely to develop in
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Figure 4. Damage to steel-setted drives due to rockburst in Champion Reef Mine
(about 87 level), Kolar Gold Field, India (photographs reproduced from Caw, 1956).
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Figure 5. a) Boundary of inelastic region for the ‘harmonic hole’ [case b/a = σ1/σ3

considered in Figure 1c]. b) Failure pattern for the same elliptical opening rotated
90◦.
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the event that failure does occur. Elastic analysis is frequently used in this manner
to provide a simple and informative ‘first estimate’ of the high stress regions where
potential inelastic deformation may occur around excavations.

In the case of the excavations at Kolar, stress waves produced by rock bursting
elsewhere in the mine resulted in overstressing and collapse of the excavations. As
seen in Figure 4, the extent of collapse is consistent with the shape of the high stress
region behind the periphery. [Note that the same shape of tunnel is being used to
rehabilitate the tunnels; this is permissible, since the region behind the tunnel is now
protected from future overloading by a destressed region.]

Elliptical tunnels designed on the same principle, termed the ‘harmonic hole’
concept, were also proposed when the BWIP (Basalt Waste Isolation Project) site,
now abandoned, in highly stressed basalt in Washington State was being considered
by the U.S. Department of Energy as a potential repository for high-level waste. The
effect of heat generated by the waste is an additional source of overstressing of the
rock around repository excavations. Figure 6 shows the extent of the inelastic region
due to heating of an harmonic hole that initially was in elastic state due to far-field
stresses. It is seen that the inelastic region develops in a pattern similar to that in
Figure 5a.

Figure 6. Inelastic region due to heating of an harmonichole. Note that before heat
is applied the problem is fully elastic; thereafter, the inelastic region develops as in
Figure 5a.
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Figure 7. Inelastic zone around a circular tunnel for the case of non-uniform far-field
stresses (after Detournay, 1983).

Elasto-Plastic Analysis

Analytical extensions of Lamé’s elastic solution to include plastic deformation around
the cavity have been worked out by numerous authors for a variety of assumed
models (e.g., Tresca, Mohr- Coulomb, dilatational and non-dilational models) of the
plastic behavior of the material. Probably one of the most elegant and comprehensive
analyses is that by presented by Salençon (1969). Most (pre-numerical) discussions
of inelastic deformation around tunnels start from these solutions, all of which, of
course, are restricted to the special case of uniform far-field stresses (i.e., the Lamé’s
case of Figure 1a).
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Detournay (1983) has considered what is, in effect, the elasto-plastic exten-
sion of the Kirsch solution (i.e., the case where the far-field stresses are non uniform
as in Figure 1b) and has obtained a semi-analytical solution for the stress and dis-
placements around a circular cavity. This is an important development, since many
practical situations in rock mechanics involve non-uniform far-field stresses.

Figure 7a shows the elliptical pattern of inelastic deformation obtained. It
is found that the mean radius Ro of the elliptical region is equal to the average of
the major and minor semi-axes of the ellipse; that the major extension of the plastic
zone is normal to the direction of the maximum far-field stress; and that the point of
maximum displacement (Figure 7b) is located initially at the point (2) on the wall
along the axis parallel to the maximum stress but changes to the point normal to the
maximum stress direction as the radius Ro increases —i.e., to the point (1) indicated
in Figure 7a. Although the solution is limited to certain values of stress difference
(P − Q), characterized by the ‘obliquity’ m, numerical studies confirm the same
general behavior for greater stress differences.

Terzaghi’s Rock Load Design

The Terzaghi (1946) rock load design method has been a standard procedure for
civil engineering tunnels in the U.S. since it was introduced over 50 years ago. To
establish the method, Terzaghi considered the case of a rectangular tunnel (supported
by wooden posts) excavated through ‘. . . a bed of sand. . . ’ as shown in Figure 8a. In
Terzaghi (1943), he states:

‘. . . the cohesion of the sand is assumed to be not in excess of the
feeble bond produced by a trace of moisture. . . ’

‘Owing to the imperfect fit of the timbers at the joints and the com-
pressibility of the supports of the footings of the vertical posts, the yield
of the timbering is usually sufficient to reduce the pressure of the sand on
the timbering almost to the value corresponding to the state of incipient
shear failure in the sand. This state is similar to the state of stress in
a mass of sand above a yielding strip. The sand adjoining the sides of
the tunnel also subsides on account of the yield of its lateral support.
The inclined boundaries of the zone of subsidence rise at an angle of
45◦ + φ/2. Therefore, at the level of the roof of the tunnel, the width of
the yielding strip is approximately equal to

2B1 = 2[Bo +H tan (45◦ − φ/2)] (1)

He then assumes that the yielding region extends vertically upwards from
points b1–b1 at the level of the roof (see Figure 8a) and from this situation, he
computes the vertical pressure on the horizontal section b1–b1 to be

σv = γB1

K tan φ

(
1 − e−K tan φ D/B1

)
(2)
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Figure 8. Some classical analytical solutions for the analysis of stability of shallow
tunnels.
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where K is an empirical coefficient he founds to be close to one7.

Caquot (1956) and d’Escatha and Mandel (1974) have analyzed essentially
the same problem studied by Terzaghi, using more rigorous upper bound analyses.
In this approach statically admissible stress fields are constructed to establish a value
of the support pressure that must be applied to the periphery of the (circular) tunnel to
ensure that it will remain in static equilibrium —i.e., the actual pressure at which the
tunnel would collapse will be lower than the upper bound value calculated from this
theory. The two situations are illustrated in Figures 8c and 8d. [Note that d’Escatha
and Mandel (1974) present the upper bound pressure values (for various friction and
cohesion values) in graphical form only; Caquot (1956), on the other hand, provides
closed-form expressions to compute these values.]

A comparison of the predicted tunnel support pressure required for tunnels
of different depth (and similar soil conditions) for each of the methods discussed in
Figure 8 is shown in Figure 9a. It is seen that the values predicted by the Terzaghi
method are considerably higher than the other two.

As noted above, the upper bound estimates should result in a pressure above
the value at which the tunnel would start to fail. To check this, the finite difference
numerical code FLAC was used to simulate the effect of progressively reducing the
support pressure on the wall of the circular tunnel until failure was induced. The
procedure is summarized in Figure 9b. The figure shows the model corresponding to
a circular tunnel located at a depth equal to three times the radius of the tunnel. The
internal pressure is decreased in steps from the upper bound value given by d’Escatha
and Mandel, until equilibrium of the model is not possible anymore.

For example, Figure 10 shows several stages during failure development as
the support pressure is reduced. It is to be noted that failure did not start until the
pressure was reduced to [0.55/0.7 �] 80% the upper bound value calculated by
Caquot and d’ Escatha and Mandel solutions.

It is perhaps worth noting that the classical manual ‘Rock Tunneling with
Steel Supports’ (Terzaghi 1946) provided a table of estimated dimensions of ‘broken
ground’ above the tunnel for various rock conditions —the shape of the broken zone
is the one shown in Figure 8b and it is similar to the one obtained with numerical
models in Figure 10. The values were apparently based on observations of the degree
of crushing of wood blocking above steel supports in a number of tunnels. The table
has since been modified to reduce the load values by Deere et al. (1969).

Lang’s Reinforced Rock Arch Design (1961)

Lang questioned the logic of installing a concrete arch lining in underground exca-
vations for underground hydroelectric power plants, when the strength of the rock
being excavated was comparable to that of the concrete. The reason was, of course,
the probable existence of joints and fractures in the rock mass that may reduce the

7 Equation (2) is derived on essentially the same basis as that used by Lang in determining the effect
of bolts in creating his Rock Reinforcement Units (RRU’s) —see equation (A-5) in Appendix A.
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Figure 9. a) Comparison of the required support pressure obtained with the different
models in Figure 8. b) Numerical model used to determine the ‘actual’ value of
internal pressure required for equilibrium.
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Figure 10. Sequence of decreasing internal pressure that leads to the ‘collapse’ of
the tunnel in Figure 9b (results obtained with FLAC).
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strength considerably. These fractures do not exist in the concrete. Lang proposed
to overcome this problem by creating, in the roof of the excavation, an arch region
within which any fractures would be ‘locked together’ sufficiently so that the arch
would be stable. Locking would be obtained through a system of rock bolts in the
roof. Although rock bolts were in use for temporary support of mine roadways, Lang
pioneered their use in large civil excavations.

Lang’s design seeks to create a system of reinforced rock units (RRU’s) in
the roof (see Figure A-1 in the Appendix A), creating an arch that is assumed to be
free-standing and capable of supporting a region of ‘distressed rock’ above the arch
(the weight of the arch is included as part of the total load to be supported by the
arch). Lang used the Terzaghi Rock Load approach (Figure 8a) to determine the
magnitude of the load to be transmitted to the bolt.

Figure 11. ‘Voussoir’ arch formed by reinforced rock units (after Lang, 1961).

The principle of the RRU is illustrated in Appendix A where the calculation
for an unreinforcedrock unit (i.e., no rock bolt is installed as shown in Figure A-
1b) is presented in detail. In this case, the calculation determines the minimum
support needed at the lower face of the unit to prevent collapse/fallout of the unit.
This passive support could be provided, for example, by a simple prop. Lang then
calculates the effectiveness of a simply anchored bolt (Figure A-1c) in providing the
required passive support. The paper Lang and Bischoff (1984) contains a detailed
discussion of this method, including analysis of grouted and pretensioned bolts. It is
shown, for example, that the optimum reinforcement is achieved with a bolt length
[L] that is not more than three times the bolt spacing.
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Bolting across the roof of an excavation in accordance with these rules, he
creates a reinforced arch. Each of the RRU’s is considered to act in a manner analo-
gous to the masonry voussoirs in classical masonry arch construction (as represented
schematically in Figure 11). Invoking design rules established by Coulomb (1776)
—see Heyman (1972)— Pippard et al. (1939a, 1939b, 1941) and Kooharian (1952),
Lang defines a zone of uniform lateral compression (developed by the bolting) in
the central region of the arch. Under an (assumed) uniformly distributed load of
distressed rock above the arch, the thrust line is parabolic. Figure 11 shows the RRU
voussoir arch and the limiting parabolic thrust lines [DEFG; ABC]. Provided the
thrust line is fully contained within the reinforced voussoir ring, the actual (parabolic)
arch is everywhere in compression and will be stable (details of the computational
procedure are described in Lang and Bischoff 1984).

Although the authors have not yet completed a numerical analysis of Lang’s
method, it appears that it has a number of conservative features in common with
Terzaghi’s method. The rock mass is not a free standing arch, and hinge failure
(the reason for restriction of the thrust line location) is not likely in the rock mass.
Study of the Lang method and comparison with the convergence-confinement load
prediction for the same reinforcement system is continuing.

Einstein-Schwartz Flexibility/Stiffness Design (1979)

The design procedure proposed by Einstein and Schwartz (1979) is very similar to the
Ranken and Ghaboussi (1975) method described in the ASCE Guidelines for Tunnel
Lining Design (see American Society of Civil Engineering 1984).

The problem examined is that of support design for a circular tunnel in rock
subjected to unequal principal in-situ stresses in the plane perpendicular to the axis
of the tunnel (Figure 12a) —i.e., the problem is similar to that considered by Kirsch
(1898), but in this case deformation of the hole is constrained by an elastic annular
ring representing a liner.

Einstein and Schwartz assume, in essence, that the circular support is installed
in intimate contact with the rock beforethe in-situ stresses are relaxed (i.e., before
the tunnel is excavated, and that the full in situ stresses are applied to the support).
Several situations are examined, e.g., conditions of i) a smooth (frictionless) or full-
slip interface; ii) a rough, or no-slip, rock-support interface. The real situation will
lie between the two, so that examination of the two extremes should serve to bound
the loads on the support8.

8 The assumption that the support is subject to the effect of the full in situ stresses would appear, at
first sight, to be conservative since, in reality, some initial deformation of the rock will occur before
the support can be installed.

The above situation is, however, oversimplified since rock, when exposed to the tunnel environ-
ment (e.g., stress concentrations, air, moisture, etc.), tends to degrade progressively with time. The
empirical Stand-Up Timerule (Lauffer 1958), for example, provides estimates of the length of time
that an excavation can stand unsupported before collapse —depending on rock type, jointing, size
of excavation, groundwater conditions, etc. The degradation processes will occur, at least to some
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Figure 12. Rock-support elastic interaction problem considered by Einstein and
Schwartz (1979).
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In the Einstein and Schwartz solution, the variation in thrust and bending
moment on the support is expressed in terms of two dimensionless parameters, the
Compressibility ratio[C∗] and the Flexibility ratio [F ∗] —see Figures 12b and 12c.
For a given support, these ratios are determined essentially by the stiffness (or de-
formability) ratio of the rock mass and the support [Er/Es] —which has been used
in our study as the basis for comparison of results.

In our study we have examined the implications of inelastic deformation
produced by the applied stresses on the predictions of the Einstein and Schwartz
support design. The problem is formulated in terms of dimensionless variables similar
to those used by Einstein and Schwartz in order to retain the valuable attribute of
ease of assessment of the effect of variability (uncertainty) in rock properties. Since
we now consider inelastic deformation of the rock-mass, we need also to define a
criterion of failure for the rock-mass. This was not required in the original analysis
by Einstein and Schwartz, since the rock-mass was assumed not to fail.

The problem considered in our analysis is shown in Figure 13a. The figure
represents a section of circular tunnel of radiusR lined with a closed annular support
of thickness ts —the support is considered to be elastic with a Young’s modulus
Es and a Poisson’s ratio νs . The rock-mass is assumed to satisfy the Hoek-Brown
failure criterion (the ‘failure zone’ indicated in Figure 13a corresponds to rock that
has undergone plastic deformation according to this criterion). In particular we have
used a scaled form of the Hoek-Brown failure criterion originally proposed by Londe
(1988). [A detailed discussion of the Hoek-Brown failure criterion and this particular
form of scaling is included in Appendix B.]

The tunnel is assumed to be deep enough that variation of vertical loading
across the height of the excavation can be ignored. The far-field stresses are defined
by the principal stresses σh in the horizontal direction and σv in the vertical direction.
The stress state is characterized by a meanstress σo and a horizontal-to-vertical stress
ratio k,

σo = σh + σv

2
k = σh

σv
(4)

extent, even in the presence of support, so loading of the support will occur with time.
An approach sometimes used in support design to account for this degradation process is to define

a long-term modulus of the rock, Etr , by the empirical expression

Etr = Eir

1 + F(t)
(3)

whereF(t) is some arbitrary function that results in a specified reduction of the instantaneous modulus
over the long term. Thus, Etr may be taken as some fraction (say 0.1 ∼ 0.3) of Eir depending on
the rock and the judgment of the designer. This approach has been discussed by Muir Wood (1975).
Thus, a ‘pseudo-elastic’ loading after installation of the support can be postulated as appropriate
for use in the Einstein and Schwartz method. In reality, however, this progressive rock degradation
implies irreversible or inelastic degradation. Given that the Einstein and Schwartz method considers
the situation in which the applied (in-situ) rock stresses are unequal (i.e., non-hydrostatic), it seems
probable that the degradation would also vary with angular orientation around the support. The loads
imposed on the support due to the degradation would thus be similarly non-uniform.
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Figure 13. a) Section of lined tunnel in inelastic material, subject to non-uniform
far-field stresses. b) Comparison of thrust distribution on the lining as obtained
with Einstein and Schwartz (1979) elastic solution and with elasto-plastic numerical
models.
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Figure 14. Comparison of a) bending moment and b) radial displacement of the
the lining as obtained with Einstein and Schwartz (1979) elastic solution and with
elasto-plastic numerical models.
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Note that, from equation (4), the far-field stresses are uniform (or hydrostatic) if
k = 1 and, non-uniform (or non-hydrostatic) if k �= 1.

The goal of the analysis is to determine the distribution of thrust Ts , bending
moment Ms and radial displacement us on a section of support of unit length as
a function of the angle θ (see the sketch on the right in Figure 13a) for the cases
in which i) the rock-mass remains elastic and ii) the rock-mass fails (i.e., deforms
elasto-plastically).

Considering the symmetry of the problem with respect to horizontal and
vertical planes containing the axis of the tunnel, the loads and displacements are
recorded at three sections of the support, indicated as ‘R’, ‘D’ and ‘W’ in Figure 13a
(corresponding to ‘Roof’, ‘Diagonal’ and ‘Wall’ respectively).

The support is assumed to be connected rigidly to the surface of the rock-mass
(i.e., it is assumed that no slip occurs at the rock-support interface). The analysis also
considers an ‘instant’ transfer of loads from the rock-mass to the support. Since this
implies that the beneficial effect of the position of the face is not taken into account,
the calculated loads on the support are sometimes assumed to be overestimated by this
(Einstein and Schwartz) method —see, for example Panet (1995). [The discussion
in footnote 8, page 39, on long-term degradation suggests that this overestimate may
be less than indicated.]

Figures 13b and 14 show results obtained with FLAC comparing the Einstein
and Schwartz elastic predictions with those for the case where inelastic deformation
occurred with significant (30°) dilation.

It is seen that, i) for cases in which the Rock Mass Rating RMR (Bieniawski
1976) or GSI (Hoek and Brown 1997) characterizes a rock-mass as ‘Poor’ to ‘Very
Good’ (e.g., values of rock-support deformability ratio Er/Es ranging from 10−2

to 10 —see Appendix B) the design of tunnel supports based on the assumption
of elastic behavior as described by Einstein and Schwartz can lead to significant
underestimation of the loads and deformations induced on the support (Figures 13b
and 14). ii) For rock-masses characterized as ‘Very Poor’(e.g., values of rock-support
deformability ratio Er/Es below 10−2) the Einstein and Schwartz design approach
can lead to overestimation of the loads and deformations on the support —i.e., the
approach is conservative.

A full discussion of the consequences of inelastic deformation on the Einstein-
Schwartz method is given in Carranza-Torres and Fairhurst (2000a).

Convergence-Confinement Design and the New Austrian Tunneling Method

The so-called New Austrian Tunneling Method (NATM) evolved during the 1950’s
and early 1960’s, stimulated by the work of the Austrian civil engineers Rabcewicz,
Muller, Pacher, Golser and colleagues involved in driving of transportation tunnels
through the Austrian Alps. The NATM differs from the methods discussed above in
that the support load required to stabilize the excavation is considered to vary with
inward convergence of the tunnel, and is not prescribed in advance; rather the support
is varied on site as required to ensure that the excavation is stable. Calculation of the
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required support is a statically indeterminate problem, and is assessed by examination
of the rock-support interaction as described by convergence-confinementcurves.

The theoretical basis of convergence-confinement analysis has been described
and used in tunnel support design well before the NATM was introduced —e.g.,
Fenner (1938), Labasse (1949), Talobre (1957), Kastner (1962). The contribution
of the NATM was to develop practical tunneling support procedures, based on the
convergence-confinement principle, which allowed the support to be optimized on
site.

Figure 15. Forces acting on an elementary wedge in the vicinity of an excavation.

The convergence-confinement philosophy can be illustrated by considering
the simple case of a circular excavation in a homogeneous rock subject to uniform
in situ stress —as in the case of Lamé’s solution in Figure 1a. A uniform radial
pressure (the support) is applied at the wall of the tunnel. Consider a wedge-shaped
element of the rock bounded by two lines radiating from the center of the tunnel and
two circumferential lines, in the vicinity of the excavation, as shown in Figure 15.
Prior to excavation, each face of the wedge will be subject to the same uniform force
acting normal to the face. Excavation of the tunnel will reduce the force acting radially
outward on the inner face. The force on the outer face will be reduced also, but less
so than on the inner face. The unbalanced radial force will cause the element to move
radially towards the excavation. This will ‘tighten the wedge’ —i.e., the tangential
force acting on the sides of the wedge will increase. A (small) component of the
tangential force is directed radially outward, tending to reduce the net inward radial
force. The wedge will tighten (i.e., displace towards the center of the tunnel), and the
tangential stress will increase correspondingly until the wedge comes to equilibrium
with the radial (support) pressure on the wall of the excavation. If the support pressure
is reduced, the wedge will displace further towards the tunnel until the forces are again
in equilibrium. As long as the tangential stress continues to increase as the wedge
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displaces radially inwards, then the tunnel will find an equilibrium position as the
support pressure is decreased. Note that this may be true whether the rock deforms
elastically or inelastically. A lower rate of tangential stress increase with deformation
simply implies that the radial displacement (convergence) will be greater before an
equilibrium condition is reached. In some cases the tangential stress may reach an
upper limit beyond which the wedge may ‘fail’. This may cause various results such
as pore collapse in the case of a porous rock —e.g., reaching the shear strength of
the material, slip along a joint traversing the wedge, etc. In such cases, the support
pressure must be increased if stability of the excavation is to be maintained.

[Readers familiar with continuum mechanics will be aware that the above (lengthy)
description can be summarized in a single line by the equation of radial equilibrium,
used, for example, to derive the Lamé solution for an elastic medium (see Figure
1a).]

Figure 16a shows the typical form of the convergence–confinement diagram,
which is usually derived for the case of a circular tunnel in homogeneous isotropic
rock under uniform insitu stress [po]. Curve PB, often referred to as the Ground Re-
action Curve, or GRC, indicates the radial deformation [ur ] that would develop when
the tunnel came to equilibrium with a radial support pressure [pi]. The initial segment
PA indicates elastic deformation; ABcorresponds to stable inelastic deformation; BC
indicates the onset of unstable deformation (referred to by Austrian designers as the
region of ‘loosening pressure’). Kovari (2000) has argued recently that there is no
fundamental justification for this loosening regime. It is easily shown, however, that
an ascending portion of the curve at larger convergence is entirely possible, espe-
cially in the roof of a tunnel if the rock cohesion declines with deformation, and
gravitational loads begin to dominate in determining the required support pressure
[Daemen (1975)].

The shape and magnitude of the Support Characteristic (SC) —see the three
curves indicated as SC in Figure 16a— varies considerably depending on the type of
support and the amount of convergence that has occurred prior to support installation.
In the simplest case, of a uniform elastic ring installed around the tunnel periphery,
the SC is a straight line as determined from the expression for the radial deformation
[ur ] of a thin shell loaded externally (i.e., at the rock-support interface) by the radial
pressure [pi].

Figure 16b shows a series of support characteristics for circular steel supports
with various spacings of wood blocking between the rock and the steel ring. The
characteristic for a thin layer of shotcrete is included for comparison (Daemen 1975).
The relatively low stiffness of the steel/wood block combinations arises due to the
dominance of the low stiffness of the wood blocking in determining the overall
Support Characteristic. Hoek and Brown (1980) discuss the procedure to estimate
the stiffness. Although the intrinsic stiffness of the shotcrete is much lower than that
of the steel, the fact that it is applied directly to the rock, (i.e., with no intervening
blocking) results in a stiffer overall support.

Figure 17 shows a series of Ground Reaction Curves [Daemen (1975); Fairhurst
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Figure 16. a) Interaction between ground reaction curve (GRC) and support charac-
teristic (SC) around underground excavations. b) Support characteristics for various
support systems.
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Figure 17. Typical support pressure [pi] versus radial displacement [ur ] curves
derived from elasto-plastic models.
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Figure 18. Ground reaction curves as the basis for observation and assessment of the
stability of a tunnel.

(1991)] calculated for circular excavations in several hypothetical rock types under
uniform loading conditions. Two conditions are shown: (i) where the rock cohesion
is constant, independent of deformation; and (ii) where the cohesion decreases lin-
early with deformation beyond the peak strength of the rock to a residual cohesion.
It is seen that the support pressure required for equilibrium can increase considerably
where cohesion decreases; or, equivalently, the amount of convergence may increase
considerably if the support pressure is small. Loss of cohesion with inelastic defor-
mation can be gradual in softer rocks (clays and some sedimentary species) or abrupt
in more brittle rocks. It is also clear that, if the cohesion of the rock decreases to zero
(this will occur first at the tunnel periphery), then the tunnel will inevitably collapse9.

9 Consider a small annulus �r around the tunnel periphery where the cohesion has declined to zero
(see, for example, Figure 15). In a cohesionless material, the tangential stress will be proportional
to the radial stress. If the radial stress is zero —i.e., the tunnel is unsupported— then the tangential
stress will also be zero. This annulus carries no load. It corresponds, in effect, to an enlargement of
the tunnel. Since the tunnel is in an infinite medium, the stress distribution around the tunnel, now of
radius, r +�r , will be the same as for the tunnel radius r . A new annulus will fail-and the process is
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Consider the GRC and SC represented in Figure 18a. The support starts to
absorve load (i.e., it is installed in place) when the element of tunnel at the periphery
has undergone a radial deformation, (ur)C . The rate at which the convergence will
increase will be proportional to the difference in pressure (force) between the GRC
and the SC. This rate will decline as the equilibrium convergence is approached. In
the case of an inadequate support (the case of the ‘unstable’ GRC in Figure 18a), the
rate will tend to increase beyond the minimum of the GRC. Regular monitoring of
convergence rates will thus allow the engineer to assess the adequacy of the support
on site, even though the actual magnitudes of the GRC and SC may not be known!

If a condition of impending instability is detected (Figure 18b), then addi-
tional support, such as an additional layer of shotcrete, can be applied to ‘stiffen’
(i.e., increase the slope of) the SC, in order to achieve stability. Thus, successful
application of the convergence-confinement method implies a support system that is
capable of adapting quickly to rock conditions as they are revealed at the tunnel face,
awareness of the importance of maintaining the integrity of the tunnel periphery, and
regular monitoring of the convergence rate to ensure that stability is assured —either
permanently or, in poor conditions, long enough to allow the installation of more
robust permanent support. Although loads on the supports are estimated to guide in
the selection of the support system, on site control of deformation (convergence) is
the focal point of the method.

Another application of the convergence-confinement method to the assess-
ment of tunnel stability conditions is presented by Hoek in his recent Terzaghi lecture
[Hoek (2001)]. Figure 19 —reproduced from the article— shows a classification of
the degree of difficulty associated with tunnelling through difficult ground conditions
constructed, effectively, in terms of ground reaction curves. An interesting aspect
of this classification is that ‘squeezing problems’ for tunnels are predicted in terms
of dimensionless groups of variables (the ratio of far-field stress and strength of the
rock and a dimensionless measure of the closure of the tunnel —i.e., the ratio of wall
convergence and tunnel radius, referred to as the strain).

The construction of the ground reaction curves in Figures 16 through 18
requires the consideration of a ‘failure’ model for the material. In particular, the
ground reaction curves of Figure 17 assume a linear Mohr-Coulomb failure criterion
like the one represented in Figure 20a.

Non-linear models describing the failure of the rock are commonly used
in tunnel engineering practice. Among them, the Hoek-Brown failure criterion is

repeated without limit —i.e., the tunnel collapses totally. If, however, the annulus around the original
tunnel retains some cohesion, albeit small, then a tangential stress will develop and the tunnel will
be stable (although in some cases the convergence may be more than is acceptable). This illustrates
the importance of maintaining some integrity of the tunnel wall. This is especially true when rock
bolts are the primary support. Special attention must be paid to prevention of fallout and ‘unraveling’
(e.g., by use of wire mesh between the bolts) especially in broken rock, prior to placing of additional
support such as shotcrete.
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Figure 19. Tunnelling problems associated with different levels of strain (after Hoek,
2001).
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Figure 20. a) Linear Mohr-Coulomb and b) Non-linear (parabolic) Hoek-Brown
failure criteria.
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the most widely known. Figure 20b represents the parabolic relationship between
principal stresses defined by this criterion. The fundamental parameters describing
the strength of rock are the unconfined compression strength σci of the intact rock,
and the parameters mb, s and a. [Appendix B presents a detailed discussion on the
Hoek-Brown failure criterion.]

Construction of the ground reaction curves for rock masses that satify the
Hoek-Brown failure criterion can be conveniently simplified by application of a
dimensionless transformation proposed by Londe (1988) (see Appendix B).

A dimensionless solution for the construction of the ground reaction curves
using Londe’s transformation has been presented in Carranza-Torres and Fairhurst
(1999). The solution will be briefly discussed here together with a practical example.

Consider the section of a cylindrical tunnel of radius R subject to uniform
far-field stress σo and internal pressure pi shown in Figure 21a. The rock mass is
assumed to satisfy the Hoek-Brown failure criterion represented in Figure 20b.

The uniform internal pressure pi and far-field stress σo are scaled according
to Londe’s transformation (equation B-8), to give the scaled internal pressure Pi and
the scaled far-field stress So respectively,

Pi = pi

mbσci
+ s

m2
b

(5)

So = σo

mbσci
+ s

m2
b

(6)

The pressure pcri marks the transition from elastic to plastic behavior of the
rock mass —i.e., for an internal pressure pi > pcri the rock remains elastic, and for
pi < pcri a plastic region of radius Rpl develops around the tunnel. [Note that the
pressure pcri defines the point A in the GRC of Figure 16a.]

The transformed critical (internal) pressure P cri for which the elastic limit is
achieved is given by the following expression,

P cri = 1

16

[
1 − √

1 + 16So
]2

(7)

The actual (i.e., non-scaled) critical pressure is found from the inverse of equation
(5), i.e.,

pcri =
[
P cri − s

m2
b

]
mbσci (8)

Provided pi > pcri , the relationship between wall displacement uwall
r and the

internal pressure pi in the elasticpart of the GRC (i.e., segment AP in Figure 16a) is
given by the equation,

uwall
r = σo − pi

2Grm
R (9)

where Grm is the shear modulus of the rock-mass defined by equation (B-10).
For values of internal pressure pi < pcri , the extent of the plastic region Rpl
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Figure 21. a) Tunnel excavated in a Hoek-Brown material. b) Scaled critical pressure
P cri as a function of the scaled far-field stress So —the critical pressure P cri corre-
sponds to the pressure for which the plastic region of radius Rpl starts to develop
around the tunnel.
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that develops around the tunnel is

Rpl = R exp
[
2

(√
P cri − √

Pi

)]
(10)

To define the plastic part of the Ground Reaction Curve (i.e., the curve AB in
Figure 16a) a flow rule for the material is needed. The flow rule defines the relation-
ship between the strains that produce distortion and those that produce volumetric
changes, as plastic deformation occurs in the material —see for example Atkinson
(1993). In underground excavation practice, the flow rule is usually assumed to be
linear, with the magnitude of volumetric change characterized by a ‘dilation’ angle
ψ , such that, if ψ = 0◦, the material undergoes no change in volume during plastic
deformation; if ψ > 0◦, the volume increases during plastic deformation.

In the solution described here, the flow rule will be characterized by a dila-
tion coefficient Kψ , that is computed from the dilation angle, ψ , according to the
expression Kψ = [1 + sinψ] / [1 − sinψ]. [Note, for example, that for ψ = 0◦ the
dilation coefficient is Kψ = 1 and for ψ = 30◦, the coefficient is Kψ = 3.]

With the flow rule characterized by the dilation coefficient Kψ , the plastic
part of the GRC —i.e., the segment AB in Figure 16a, is given by

uwall
r

R

2Grm

σo − pcri
= Kψ − 1

Kψ + 1
+ 2

Kψ + 1

(
Rpl

R

)Kψ+1

(11)

+ 1 − 2ν

4(So − P cri )

[
ln

(
Rpl

R

)]2

−
[

1 − 2ν

Kψ + 1

√
P cri

So − P cri
+ 1 − ν

2

Kψ − 1(
Kψ + 1

)2

1

So − P cri

]

×
[
(Kψ + 1) ln

(
Rpl

R

)
−

(
Rpl

R

)Kψ+1

+ 1

]

where ν is the Poisson’s ratio for the rock mass.
[A full discussion, with derivations, of equations (5) through (11) is contained in
Carranza-Torres and Fairhurst (1999). The equations have been presented here with-
out details in order to focus on their use in obtaining ground reaction curves for the
Hoek-Brown failure criterion.]

The dimensionless solution presented above can be conveniently summarized
in dimensionless charts. For example, Figure 21b defines the transformed critical
internal pressure P cri as a function of the transformed far-field stress So. Figures 22a
and 22b define the extent of the failure region and the scaled convergence at the wall
in terms of So. The use of these dimensionless relationships will be illustrated with
the following practical example.

Consider the tunnel of radiusR = 3.82 m exacavated at a depth of ∼ 1200 m
in a rock mass of mean unit weight γ = 25 KN/m3 (Figure 23a). The far-field stress
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Figure 22. Dimensionless charts for the determination of a) radius Rpl of the plastic
zone and b) radial convergence uwall

r of wall.
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Figure 23. Example showing of the application of the dimensionless solution for
tunnels in Hoek-Brown materials.
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at that depth is σo = 30 MPa. We wish to determine the extent of the failure zoneRpl
and the convergence for a value of internal pressure pi = 5 MPa. The rock mass has
been classified in terms of the Hoek-Brown parameters σci = 30 MPa, mb = 1.7,
s = 3.9 × 10−3, a = 0.5, ψ = 0◦, Grm = 1 GPa and ν = 0.25 (see Figure 23a).

For the given data, the scaled far-field stress and internal pressure are

So = σo

mbσci
+ s

m2
b

= 0.6

Pi = pi

mbσci
+ s

m2
b

= 0.1

The scaled critical internal pressure P cri at which the elastic limit of the rock
mass is reached, can be read from Figure 21b (see equation 7),

P cri = 1

16

[
1 − √

1 + 16So
]2 = 0.32

From this expression, the critical internal pressure pcri is found to be pcri =
16 MPa. Since the internal pressure for this problem is pi = 5 MPa [< 16 MPa], a
plastic region will develop around the tunnel.

The scaled extension Rpl/R of failure region can be read from Figure 22a
(see equation 10),

Rpl

R
= 1.64

Since the tunnel has a radius R = 3.82 m, the radius of the failure zone is
Rpl = 6.26 m.

The scaled radial displacement at the wall of the tunnel can be obtained from
Figure 22b (see equation 11), and it results to be,

uwall
r

R

2Grm

σo − pcri
= 3.1

Replacing the (known) values of the variables on the left side of the expression
above, the wall convergence is finally found to be uwall

r = 0.08 m.

In the example just discussed, we have considered the particular case of internal
pressure pi = 5 MPa. To construct a full ground reaction curve —e.g., the curve PB
in Figure 16a— the same procedure is applied for decreasing values of pi , ranging
from σo to zero. Examples of construction of ground reactions curves for tunnels in
Hoek-Brown materials are presented in Carranza-Torres and Fairhurst (2000b).

“Closing the Circle” (1)

The discussion above has emphasized the importance of continuity of the tangential
stress around an excavation to ensure stability (see footnote 9 on page 49).

Frequently, in poor quality rock, the excavation may be carried out in sev-
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eral stages —e.g., heading and bench or several smaller profiles are excavated and
supported separately before being connected to form the final section.

A central rule of NATM, espoused by Rabcewicz and his colleagues was ‘close
the circle’as soon as possible. Often this referred to early placement of the invert
section of a lining to provide lateral stability to the vertical legs of the support. In all
cases, however the message was, in effect, ‘ensure continuity of tangential stresses
in the rock and/or in the supports around the excavation’. Loss of this continuity
risks the onset of instability. This simple practical guide is entirely consistent with
the principles of the Convergence-Confinement method.

Discrete or discontinuum mechanics

The period of 1950 ∼ 1960 saw considerable activity worldwide in large-scale civil
engineering projects, particularly in dams and hydropower development, and in deep
open-pit mining. Stability of large slopes in jointed rock was a prime concern, and
classical soil mechanics analyses were not appropriate. The possibilities of using
nuclear explosives in major civilian earth-moving projects (e.g., excavation of a new
Panama canal) was also under consideration. The mechanics of deformation of
assemblages of large discrete blocks was an important concern for these and similar
problems.

The growing power of computers suggested that ‘tracking’ the large number
of interactions between individual blocks and the resulting motion and deformation
of the block assemblies might be possible. Discreteor discontinuumcodes were
developed and discontinuum mechanics is now a vital field of study. Two —and
three— dimensional numerical codes such as UDEC (Universal Distinct Element
Code) and its three-dimensional counterpart 3DEC [Cundall (1988); Hart, Cundall,
and Lemos (1988)] are commercially available and widely used for study of the
deformation of blocky and jointed rock. They complement a large number of powerful
continuum codes.

Interactions between assemblies of discrete solids are also of considerable
significance on the small scale. Computational schemes similar to those for large
blocks assemblages can be used, and microparticulate codes such as the Particle
Flow Code (PFC), and its three-dimensional counterpart PFC3D [Cundall and Strack
(1979); Cundall (1987)], are now providing valuable new insights to problems in rock
mechanics where continuum mechanics has been of limited utility.

The ‘microparticle’codes assume that forces and deformations are transmitted
through the solid via particle to particle interface contacts. Frictional slip and tensions
can occur, and cementitious bonding around the contacts can be included. The
appropriate properties of the contacts are deduced by calibrating the response of a
simulated particulate specimen against laboratory compression tests results.

The power of PFC analysis is well illustrated by the results of simulation of
the rock breakout in drifts of the Underground Research Laboratory (URL) ofAtomic
Energy of Canada Limited at Pinawa, Manitoba, Canada [Cundall (1998); Potyondy
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Figure 24. Discrete particle modeling of the Mine-by Tunnel (URL) showing: (top
left) view of the mine-by tunnel after excavation; (top right) microcracks that have
formed in a very fine resolution PFC2D simulation after 2 months of stress corrosion
—i.e., time dependent degradation of rock strength; (bottom left) seismicity recorded
during excavation of round 7; (bottom right) seismicity ‘recorded’ in a coarse reso-
lution PFC2D simulation. (Courtesy of Atomic Energy Canada Ltd.)
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Figure 25. Discrete particle modelling of the impact forces generated by a block of
rock that detaches from the roof and falls into a radioactive waste package.
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and Cundall (1998)].
The drift is excavated in the Lac du Bonnet granite and used to assess the

suitability of granite as a high level nuclear waste repository. Due to the high stress
environment, the drift, originally circular, fractured extensively in the roof and floor
as seen in the top photographs in Figure 24. Such fracturing is of concern since a
fractured region adjacent to the tunnels could provide a high permeability pathway for
water to come into contact with the waste. Continuum analyses were unsuccessful in
predicting the zone of fracturing accurately, and PFC analyses was introduced. Figure
24 summarizes the results. PFC code is a dynamic code —as are FLAC/FLAC3D and
UDEC/3DEC— so that it is possible to compute the microseismic energy released due
to breakage of interparticle bonds during the loading process. The lower diagrams in
Figure 24 show a comparison between the predicted and observed microseismicity,
for the predicted and observed damage zone. The agreement is very encouraging.

Figure 25 shows the result of using PFC to examine the impact forces gener-
ated on a nuclear waste canister in an open drift (the design proposed for a repository
at Yucca Mountain, Nevada), due to a block of rock falling from the roof [Hart and
Fairhurst (2000)]. In the initial PFC model, the rock block was deformable, but could
not break. The resulting impulse on the canister is shown in the diagram of Figure
25. The peak force is approximately 14 kN. This is high enough to cause concern
that the canister could sustain serious damage. In the second model, the same block
consists of an assemblage of particles with bond properties selected to provide the
rock modulus and strength properties appropriate to the tuff at Yucca Mountain. In
this case the rock breaks upon impact. A significant fraction of the initial momentum
of the falling block is ‘trapped’ in the fragments of broken rock and hence the peak
force on the canister is reduced by a factor of almost 4. In this case, the canister is
able to withstand the impact without serious damage.

“Closing the Circle” (2)

Apparently, a major obstacle to the extension and application of Newtonian molecular
theory of structure of bodies in the 17th century was the impossibility of summing the
force interactions between the host of individual pairs of molecules in order to arrive
at the overall mechanical behavior of the body. While this cannot be achieved even
today, the micro-interactions of significance in rocks occur at a substantially larger
scale. Already, valuable insights have been obtained from the numerical code PFC,
and further developments are underway. Other groups in various countries are also
pursuing similar modelling and experimental studies of particulate mechanics. As
can be expected, the computational requirements to carry out studies of large numbers
of interacting particles are not trivial, especially if one wishes to solve problems in
three dimensions. Efforts are now underway to address this issue.

Continuum mechanics has contributed enormously to the development of
rock mechanics, as it has in other branches of science and engineering. The ability to
obtain rigorous analytical solutions is an invaluable asset, one that allows confidence
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to be placed in the validity of approximate numerical solutions —especially when
the latter are shown to be in agreement with the analytical results. Some important
applications of rock mechanics involve situations where the continuum hypothesis
breaks down, and where disintegration or discontinuum behavior must be dealt with.
In some cases it is the dominant concern. The development of discontinuum codes,
both for large scale and microparticulate problems, provide us with an additional tool
to supplement the continuum approach.

It would seem that the computer and these numerical developments have
‘closed the circle’ for us in another way —one that the eminent scholars of the 17th

and 18th centuries would appreciate greatly. We now have complementary tools
that can eliminate gaps, allowing us to explore ranges of material behavior beyond
those possible hitherto, and to examine a given problem from ‘different directions’
to increase confidence in the validity of the results obtained by one technique alone.
It is a time of opportunity for rock mechanics.

Challenges

Civil Engineering, with its close relation to public works and service to the public,
has traditionally relied more heavily on universities for many of its research and
development efforts than other branches of engineering. Universities have also been
a focal point for research in mining engineering. Several decades ago there were
numerous excellent industrial research laboratories in civil, mining and petroleum
engineering both in the U.S and abroad. Most of these have since disappeared or
contracted considerably in size. These are the three professions where rock mechanics
issues are a primary concern.

Thus, if the discipline is to advance, universities must take the lead in rock
mechanics research. A great deal of effort in university research over the past two
decades or so has been dedicated to development of numerical modelling proce-
dures. These procedures are now sufficiently mature that we are in a position to
begin addressing important gaps in the application of rock mechanics to engineering
problems.

As noted earlier in this paper, the Hoek-Brown criterion for predicting rock
mass strength is probably the most widely accepted internationally. It is thus salutary
to read the following comments on this criterion, extracted from a Letter to the
Editor10, submitted by one of the authors of this criterion, Dr. Evert Hoek:

‘In writing “Underground Excavations in Rock” almost 15 years ago,
Professor E.T. Brown and I developed the Hoek-Brown failure criterion
to fill a vacuum which we saw in the process of designing underground
excavations. Our approach was entirely empirical and we worked from
very limited data of rather poor quality. Our empirical criterion and our

10 The letter was published in the News Journal of the International Society for Rock Mechanics,
Volume 2, Number 2, 1994.
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estimates of the input parameters were offered as a temporary solution
to an urgent problem.

In retrospect it is clear that we were naive in believing that our “emer-
gency” criterion would soon be replaced by a set of well-researched pre-
dictive tools which were adequately substantiated by field studies and
back analyses of real rock engineering case histories. In fact the reverse
has happened and I am alarmed to see the Hoek-Brown criterion being
applied to problems which we did not even dream about when we made
those desperate estimates 15 years ago.

The fact that the criterion works, more by good fortune than because
of its inherent scientific merits, is no excuse for the current lack of effort
or even apparent desire to find a better way. It is my hope that this short
note may catch the eye of someone who has the skill and the motivation
to pick up the challenge and to lead in the development of better tools
for providing us with the input data which we need for rock engineering
designs of the future.

Since testing of in-situ rock masses on a realistic scale is not practical,
we have only two avenues open to us to remedy this data deficiency. The
first is to develop a better understanding of how the component pieces
of the rock mass interact to produce the overall behavior which we need
to understand in order to use it as input for our analyses. The second
is to use back analysis of the observed performance or rock engineering
structures to deduce what rock mass properties exist in these structures.’

We now have the analytical and numerical tools to address this problem and
others like it. It is not necessary for university researchers to await the arrival of
field data. There are several well established empirical ‘classification systems’ and
tabulations, built up over several decades, to allow the design and/or performance
of an underground structure to be assessed on the basis of the performance of many
‘similar’ structures.

We now have the analytical/numerical tools to begin to establish the frame-
work upon which to arrange these data bases into more rational systems. [Fakhimi
(1992) took a step in this direction with respect to Lauffer’s (1958) Stand-Up Time
Classification.]

These new systems will have the added merit of allowing a more reliable
extrapolation beyond the ‘experience limits’ of the current systems. This is espe-
cially needed now when so many projects are moving beyond the limits of current
experience.

Universities need to respond to Dr. Hoek’s message, and to other field scale
problems that we are now in a position to address.

64



Conclusions

1. Analytical and numerical studies indicate that the Terzaghi Rock Load approach
to support design is very conservative.

2. Although no numerical studies have been completed to date, it would appear
that Lang’s design approach is likely to be conservative (see also conclusion 5
below).

3. Numerical analysis indicates that the Einstein–Schwartz design procedure is
conservative in higher quality ‘good’ to ‘very good’ rock masses, but can be
non-conservative in ‘poor quality’ rock. It seems to be a useful approach to
support design if these limitations are recognized and taken into account.

4. The convergence-confinement method of analysis of the interaction between a
tunnel support and the rock mass is the most rational procedure and has been
adopted in many countries as the standard.

The method is entirely consistent with the so called New Austrian Tunnelling
Method. In this method an initial support-system is selected, one that can be
readily modified as tunnel closure measurements indicate to be required.

5. Although the function of rock bolts in tunnel support has been examined by
numerous investigators, further study is still required to establish the reinforce-
ment mechanisms of grouted bolts in weak rock.

6. Extension of convergence-confinement procedure to the non-uniform loading
case provides valuable insights into behavior of supports under realistic (i.e.,
non-uniform) loading.

7. University geomechanics research groups have a particular opportunity to ad-
vance tunnel support design procedures by using analytical and numerical
analysis to establish rational foundations for estimating the deformability and
strength of rock masses. This will require special attention to the deformation
of joints and joint systems. A larger body of empirical data to test these ‘foun-
dations’ has been gathered under the general title of ‘classification systems’.
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Talobre, J. (1957). La Mécanique des Roches. Paris: Dunod.

70



Terzaghi, K. (1943). Theoretical Soil Mechanics. John Wiley & Sons, Inc. New
York.

Terzaghi, K. (1946). Rock defects and loads on tunnel supports. In R.V. Proctor and
T. L. White (Eds.), Rock tunneling with steel supports, pp. 17–99. Commercial
Shearing and Stamping Company. Youngstown, OH.

Trollope, D. H. (1968). The mechanics of discontinua or clastic mechanics in rock
problems. In K. G. Stagg and O. C. Zienkiewic (Eds.), Rock Mechanics in
Engineering Practice, pp. 275–320. John Wiley & Sons.

U.S.Army Corps fo Engineers (1978). Tunnels and shafts in rock. Technical report,
Washington. Dept. of Defense. Dept. of the Army, Corps of Engineers. Gov.
Doc. No. D103.6/3:1110-2-2901.

Voegele, M. (1978). Design of Tunnel Support: An Interactive Based Analysis
of the Support Requirements of Excavations in Jointed Rock Masses. Ph. D.
thesis, University of Minnesota.

Voegele, M. and C. Fairhurst (1978). Analysis of tunnel support loads using the
distinct block model. In Storage in Excavated Rock Caverns, pp. 247–252.
Pergamon Press.

Appendix A: Lang’s Reinforced Rock Units (RRU’s)

a) Definition of variables

The reinforced rock units (RRU) constitute the reinforced zone of the roof of an
underground excavation [Lang (1961)]. The factors that contribute to the stability
of these units so that they are stable relative to one another and act together as a
structural member are (Figure A-1):

T : Bolt tension

t : Average bolting stress (t = T/A)

α: Factor depending on time of installation of bolts after excavation
(probable variation 0.5 to 1.0)

γ : Unit weight of the rock

c: Apparent cohesion of the rock mass (i.e., intrinsic strength at zero
normal stress)

φ: Angle of internal friction of the rock mass

µ: Tangent of the friction angle (i.e., µ = tan φ)

k: Ratio of average horizontal to average vertical stresses

A: Area of reinforced rock unit (i.e.,A = s2 for a bolt pattern with s× s
spacing)
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Figure A-1. Rock Reinforced Units (after Lang, 1961).

P : Shear perimeter of reinforced rock unit (i.e.,P = 4s for a bolt pattern
with s × s spacing)

R: Shear radius (i.e.,R = A/P and thereforeR = s/4 for a bolt pattern
with s × s spacing)

h: In situ horizontal stress

L: Length of rock bolts

D: Height of distressed rock above the surface of the opening

b) Equilibrium analysis of the Rock Unit

We will consider first the stability of the unreinforced rock unit CDGH, shown in
Figure A-1b, relative to its neighbors.
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The stress distribution at limiting equilibrium is given by

σv =
(γ s

4
− c

) 1

kµ

(
1 − e−4kµy/s) + qe−4kµy/s (A-1)

where:

σv average vertical stress in the unit at a distance y from EF

σh horizontal stress conjugate to σv (i.e., σh = kσv, where k is assumed
to be constant)

q average stress superimposed on the top surface, EF, of the unit by
overlying strata, EFGH, or other loading

τ shear strength at the sides of the unit (τ = σh tan φ+ c = kσvµ+ c)

Equation (A-1) is obtained as follows.
The unreinforced rock unit CDGH of dimensions s × s × D (Figure A-1b) is

assumed to be in a state of limiting equilibrium —i.e., the unit is about to fall under its
own weight and shear is fully mobilized along the four vertical sides of the unit.

Consider the equilibrium of forces of the square element, area s2 and height dy,
located at a distance y from the interface EF (Figure A-1b).

A normal stress σv acts on the upper face and a normal stress σv + dσv acts on the
lower face of the element.

Thus, from force equilibrium we have

s2dσv = γ s2dy − 4scdy − 4kµσvsdy

or

dσv =
[
γ − 4c

s
− 4kµ

s
σv

]
dy

or
dσv
dy

= A− Bσv

where

A =
(
γ − 4c

s

)
and B = 4kµ

s

Integrating the differential equation above we obtain

σv = A

B
+De−By

where D is a constant of integration to be determined from the boundary conditions.
Given that σv = q when y = 0 (Figure A-1b), we find

D = q − A

B

and therefore

σv = A

B

(
1 − e−By

)
+ qe−By
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Substituting for A and B, we finally obtain the equation (A-1), i.e.,

σv =
(γ s

4
− c

) 1

kµ

(
1 − e−4kµy/s

)
+ qe−4kµy/s

For a given value of y, say y = L, the vertical stress, σo, at CD (Figure A-1b),
if it was not a free surface, would be

σo =
(γ s

4
− c

) 1

kµ

(
1 − e−4kµL/s) + qe−4kµL/s (A-2)

c) Equilibrium analysis of the Reinforced Rock Unit

The basic element of a rock reinforcement system is the reinforced rock unit (RRU),
which consists of an individual bolt and the rock immediately surrounding and adja-
cent to it (Figure A-1c).

Now if the rock EFGH above the unit CDEF is behaving in a similar manner
to that within CDEF —i.e., shear is fully developed along its periphery, then q can
be expressed as follows

q =
(γ s

4
− c

) 1

kµ

(
1 − e−4kµz/s) (A-3)

and substituting this value in equation (A-2) and letting D = z+ L gives

σo =
(γ s

4
− c

) 1

kµ

(
1 − e−4kµD/s) (A-4)

or substituting R = s/4

σo = (γR − c)
1

kµ

(
1 − e−kµD/R

)
(A-5)

In effect, (γR−c) is the passive direct support that a prop under the rock unit
would have to provide to prevent fallout of the unit relative to the surrounding rock.
However, if (γR− c) is zero or negative, then σo becomes zero and theoretically, no
support is required.

The Reinforced Rock Unittheory is based on the assumption that, providing
fallout of the rock material has been prevented, the rock unit CDGH has deformed
to the extent that failure in accordance with Coulomb’s criterion is imminent along
the sides of the unit.

Note that equation (A-5) is identical to equation (2) in page 33 whenR = B1

and c = 0 (see Figure 8a).

d) Force carried by the bolts in the Reinforced Rock Unit
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If a stabilizing pressure, t , equal to σo is provided by a rock bolt installed at the center
of the rock unit (see Figure A-1c) then the total tensile load, T , in the rock bolt will
be

T = ts2 (A-6)

Assuming that the bolt load T is distributed as an average stress over the
section of the rock unit and that the effective length of the rock bolt is equal to L, the
rock bolt supplies a passive support pressure, t , at CD and an equal stress is added at
EF.

Under these conditions, it can be shown that, for equilibrium of the unit
CDEF, the passive pressure applied by the bolt at CD, t , must equal σo. Therefore
taking D = (z+ L) and R = s/4, we have

t
(
1 − e−kµL/R

) = α
1

kµ
(γR − c)

(
1 − e−kµD/R

)
(A-7)

or

t = tA = α
γAR

kµ

(
1 − c

γR

) [
1 − e−kµD/R

1 − e−kµL/R

]
(A-8)

In the above equations, it is assumed that the downward deformation of the
rock unit has proceeded to the stage where the full shear strength of the rock has
been developed on the sides of the unit. In other words, the bolt is applying a passive
pressure at point A, Figure A-1c, which is just adequate to provide support of that
portion of the total weight of distressed rock,D, which is not carried by shear on the
sides of the unit. For these conditions, α = 1.

If the bolts are installed and tensioned either before or immediately after ex-
cavation exposes the surface CD in Figure A-1c —i.e., before significant deformation
has taken place— then the bolts will apply a pressure at CD that ‘actively’ retards
deformation of the unit and ‘actively’ contributes to its stability. Under these condi-
tions, the bolts are described as providing ‘active’ reinforcement and it can be shown
that α = 0.5.

In practice, the time of installation of the bolts will be intermediate between
these two extremes and, conservatively, α = 1.0 has been used throughout these
studies. It may be noted that the use of fully grouted but untensioned rock reinforce-
ment, where the tension in the bolts is developed by the rock deformation, would
also be intermediate between the ‘active’ and ‘passive’ conditions defined above.

Appendix B: The strength and deformability of rock masses according to
the Hoek-Brown failure criterion

The Hoek-Brown criterion has found wide practical application as a method
of defining the stress conditions under which a rock-mass will deform inelastically
and, if not supported adequately, collapse.

The parameters defining the Hoek-Brown criterion can be estimated from a
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combination of laboratory tests on intact rock cores and an empirical ‘adjustment’ to
account for the reduced strength of the rock-mass due to the presence of weaknesses
and jointing.

It must be noted that this criterion assumes continuum-isotropic behavior
for the rock-mass and should not be applied to cases in which there is a preferred
orientation of jointing, such that the mass would not behave as an isotropic continuum.

Testing of rock specimens under triaxial conditions of loading allows the
combination of stresses that lead to failure (or collapse) of the specimen to be deter-
mined. According to Hoek and Brown, the failure condition of intact rocksamples
is given by the following parabolic law [(Hoek and Brown 1980)],

σ1 = σ3 + σci

√
mi
σ3

σci
+ 1 (B-1)

where

σ3 is the confining stress applied to the sample

σ1 is the axial stress that produces failure of the sample

σci is the unconfined compression strength of the intact rock

mi is a dimensionless parameter, the value of which depends on the type
of rock being tested.

In order to characterize the intact rock in terms of equation (B-1), it is nec-
essary to determine the parameters σci and mi . This is done by statistical analysis
of strength (σ1) observed for various values of confining stress (σ3) in triaxial tests
[(Hoek 1983)].

To illustrate the application of equation (B-1) let us consider the triaxial test
results shown in Figure B-1 obtained by Franklin and Hoek (1970) for samples of
different rock types: i) granite, ii) quartz dolerite and iii) marble (details of the tests
can be found in the original paper). The horizontal and vertical axes in the diagram
correspond, respectively, to the confining stress σ3 and the axial stress at failure σ1

divided by the unconfined compression strength σci for each rock type. The dots
represent the pairs (σ3, σ1) obtained from the triaxial tests. The solid lines are the
corresponding failure envelopes defined by equation (B-1) with the parameters σci
and mi computed from regression analysis [see Hoek (1983) for details]. It can be
seen that, although there is some dispersion in the results, the general trend is for the
scattered points to align to the parabolas defined by equation (B-1)11.

Triaxial testing of rock samples is an expensive procedure and, in most cases,
results of the extensive tests needed to determine the parameters σci and mi in the
relationship (B-1) are not available. In this case, when information on the unconfined
compressive strength is available (e.g., from UCS tests or, indirectly, from point load

11 The observed dispersion appears to be proportional to the number of specimens tested, with the
highest dispersion for the 48 samples of granite and the lowest for the 14 samples of marble —see
Franklin and Hoek (1970).
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Figure B-1. Failure envelopes obtained from triaxial tests of samples of different rock
types (after Franklin and Hoek, 1970). The horizontal and vertical axes represent
the confining stress σ3 and the maximum axial stress σ1 respectively divided by the
unconfined compressive strength σci of the sample.
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tests), the parametermi may be estimated from empirical charts or tables (Hoek et al.
1995).

Table B-1 and Figure B-2, adapted from Lama andVutukuri (1978), Goodman
(1980) and Hoek and Brown (1997) respectively, show typical values of σci and mi
for different rock types that could be taken as a reference for use in equation (B-1).

Table B-1. Reference values for the unconfined compressive strength σci , Poisson’s
ratio ν, Young’s Modulus E, Shear Modulus G and unit weight γ for intact rock
[adapted from Lama and Vutukuri (1978) and Goodman (1980)].

Rock type σci [MPa] ν E [MPa] G [MPa] γ [MN/m3]

1) Andesite 130.6 0.16 44.3 × 103 19.1 × 103 25.2 × 10−3

2) Basalt 148.0 0.32 33.9 × 103 12.8 × 103 27.8 × 10−3

3) Conglomerate 30.3 0.12 1.3 × 103 0.6 × 103 24.2 × 10−3

4) Diabase 321.3 0.28 95.8 × 103 37.4 × 103 28.8 × 10−3

5) Dolomite 46.9 0.29 29.0 × 103 11.2 × 103 24.5 × 10−3

6) Gneiss 165.0 0.27 76.3 × 103 30.0 × 103 26.8 × 10−3

7) Granite 141.1 0.22 73.8 × 103 30.3 × 103 26.4 × 10−3

8) Limestone 51.0 0.29 28.5 × 103 11.1 × 103 23.3 × 10−3

9) Quartzite 320.1 0.11 88.4 × 103 39.8 × 103 25.7 × 10−3

10) Sandstone 73.8 0.38 18.3 × 103 6.6 × 103 21.4 × 10−3

11) Siltstone 122.7 0.22 26.2 × 103 10.7 × 103 25.4 × 10−3

12) Tuff 11.3 0.19 3.7 × 103 1.5 × 103 23.5 × 10−3

Origin of the samples: 1)Palisades Dam, Idaho, USA; 2)Nevada Test Site, USA; 3)Mc Dowell
Dam, Arizona, USA; 4)NewYork, USA; 5)Minneapolis, Minnesota, USA; 6)Graminha Dam,
Brazil; 7) Nevada Test Site, USA; 8) Bedford, Indiana, USA; 9) Baraboo, Wisconsin, USA;
10)Amherst, Ohio, USA; 11) Hackensack, N.Y., USA; 12) Nevada Test Site, USA.

As noted earlier, joints and defects in a rock-mass reduce the strength of the
mass below the strength of an intact specimen of the same rock type. By using the so-
called Geological Strength Index(or GSI) as a scaling parameter, the failure criterion
defined by equation (B-1) can be adjusted to provide an estimate of the decreased
strength of the rock-mass in the field.

According to Hoek and Brown (1997) the GSI is an empirically derived
number that varies over a range between 10 and 100 (the GSI is dimensionless),
and can be estimated by examination of the quality of the rock-mass in situ —
by direct inspection of an outcrop, for example. By definition, GSI values close
to 10 correspond to very poor quality rock-masses, while GSI values close to 100
correspond to excellent quality rock-masses.

Figure B-3 [adapted from Hoek and Brown (1997) and Marinos and Hoek
(2000)] shows how the GSI can be estimated from the structure and surface conditions
of the rock-mass (for example, a rock-mass with Blocky/Disturbedstructure and Poor
surface condition will have a GSI close to 30).
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Figure B-2. Reference values for the coefficientmi for different rock types (adapted
from Hoek and Brown 1997). The value of mi is shown in parentheses below the
name of the rock.

The value GSI= 25, indicated by a discontinuous line in Figure B-3, is
significant in that it defines the limit between rock-masses of very poor quality (GSI<
25) and those of good to reasonable quality (GSI> 25). For rock-masses of good
to reasonable quality (i.e., GSI> 25) the Geological Strength Index is equivalent to
the Rock Mass Rating (RMR)introduced by Bieniawski (1976) when the rating for
Groundwateris assessed as ‘dry’ and the rating for Joint Orientationas ‘favorable’.

When the scaling factor GSI is introduced, the Hoek-Brown failure criterion
for the rock-massis given by the following relationship [Hoek and Brown (1997)]

σ1 = σ3 + σci

(
mb

σ3

σci
+ s

)a
(B-2)

The parameter mb in equation (B-2) depends on both the intact rock parameter mi ,
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Figure B-3. Empirical chart for the estimation of the Geological Strength Index (GSI)
based on the characteristics of the rock-mass [adapted from Hoek and Brown (1997)
and Marinos and Hoek (2000)].
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of equation (B-1), and the value of GSI, as defined by the equation

mb = mi exp

(
GSI − 100

28

)
(B-3)

The parameters s and a also depend empirically on the value of GSI as follows,

for GSI≥ 25,

s = exp

(
GSI − 100

9

)
(B-4)

a = 0.5

and for GSI< 25,

s = 0 (B-5)

a = 0.65 − GSI

200

Table B-2 lists the values of mb, s and a obtained from equations (B-3), (B-4) and
(B-5) for different values of GSI. It can be seen that when GSI= 100 (the hypothetical
case in which the rock-mass has the same strength as the intact rock sample), the
parameters are mb = mi , s = 1 and a = 0.5. With these values, the yield condition
for the rock-mass, equation (B-2), and for the intact rock, equation (B-1), are the
same.

GSI mb/mi s a

100 1.00 1.00 0.5
75 40.95 × 10−2 621.77 × 10−4 0.50
50 16.77 × 10−2 38.66 × 10−4 0.50

25+ 6.87 × 10−2 2.40 × 10−4 0.50
25− 6.87 × 10−2 0.00 0.53
10 4.02 × 10−2 0.00 0.60

Table B-2. Values of coefficientsmb, s and a as a function of the Geological Strength
Index (GSI), computed from equations (B-3), (B-4) and (B-5) respectively. [Note
that the second column represents ratiomb/mi ; values ofmi for different rock types
are given in Figure B-2.]

Londe (1988) showed that the Hoek-Brown failure criterion defined by equa-
tion (B-2) can be transformed into a ‘general’ failure envelope that is independent of
the parameters σci , mb and s.

The transformation suggested by Londe applies to the particular case a = 0.5
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and involves dividing the stress magnitudes by mbσci and adding the term s/m2
b.

Considering the parameters introduced in equation (B-2), the scaled stresses S1 and
S3 can be defined as,

S1 = σ1

mbσci
+ s

m2
b

(B-6)

S3 = σ3

mbσci
+ s

m2
b

(B-7)

With the stresses σ3 and σ1 replaced by the scaled stresses S3 and S1 from equations
(B-6) and (B-7), the failure criterion for the rock-mass, equation (B-2), can be written
in the form (Londe 1988)

S1 = S3 + √
S3 (B-8)

Note that in this ‘re-scaled’ form of the failure criterion the parameters σci ,
mb and s are ‘hidden’ within the scaled stresses S1 and S3; the relationship applies
then to any type of rock that is assumed to obey the Hoek-Brown criterion12.

To illustrate the use of Londe’s transformation, we will re-examine the triaxial
test results for the samples of granite, quartz dolerite and marble presented in Figure
B-1. Note that the results for intact rock samples can be equally approximated by
equation (B-2), taking GSI= 100, and s = 1, mb = mi and a = 0.5. Figure B-4
represents the scattered pairs (σ3, σ1) of Figure B-1 together with the Hoek-Brown
failure criterion —equation (B-2) or (B-1)— plotted in terms of scaled principal
stresses (i.e., with the axes representing the transformed stresses S1 and S3 defined
by equations B-6 and B-7). It is seen that the stresses at failure for all three types
of rocks align now to the ‘general’ form of the Hoek-Brown criterion defined by
equation (B-8).

The use of equation (B-8) rather than equation (B-2) can lead to important sim-
plifications in mechanical analyses involving the Hoek-Brown criterion. Carranza-
Torres and Fairhurst (1999) have applied the transformation (B-8) in solving the
problem of excavating cylindrical and spherical openings in rock-masses that sat-
isfy the Hoek-Brown failure criterion. This solution is the basis for construction of
Ground Reaction Curves in the Convergence-Confinement method discussed in the
main text.

Just as the strength of the rock-mass is usually lower than the strength of
the intact rock, the (elastic) deformation modulus of the rock-mass is also usually
lower than that of the intact rock. Serafim and Pereira (1983) have proposed an
empirical relationship to compute the deformation modulus of the rock-mass from
the unconfined compressive strength of the intact rock sample and the value of the
Rock Mass Rating (RMR) by Bieniawski (1976). Based on the original equation
by Serafim and Pereira, Hoek and Brown (1997) propose the following relationship

12 It should be emphasized though that the equation (B-8) is strictly valid only when the parameter a
in equation (B-2) is equal to 0.5. According to equations (B-4) and (B-5), a = 0.5 for the broad range
of situations in which GSI≥ 25.
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Figure B-4. Results from triaxial tests shown in Figure B-1 with the principal stress
axes σ1 and σ3 normalized according to transformations (B-6) and (B-7). Note that
in this reference system results for all three rock types fall on the ‘general’ failure
envelope given by equation (B-8) [Londe (1988)].
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between the rock-mass modulus Erm and the Geological Strength Index GSI,

Erm = 1000 C (σci) 10
GSI−10

40 (B-9)

where

C (σci) = 1 if σci ≥ 100MPa

=
√
σci

100
if σci < 100MPa

In equation (B-9), both the unconfined compressive strength σci and the rock-
mass modulus Erm are expressed in MPa.

In elasto-plastic analyses of deformations —such as the one presented in the
main text— the rock-mass shear modulus Grm is used rather than the deformation
modulus Erm given by equation (B-9). The shear modulus of the rock-mass can be
estimated from the deformation modulus using the classic relationship from isotropic
elasticity,

Grm = Erm

2(1 + ν)
(B-10)

In equation (B-10), ν is Poisson’s ratio for the rock-mass, and is usually
considered to vary between 0.1 and 0.3.

To illustrate the application of equations (B-9) and (B-10), let us consider
the properties of the granite sample listed in Table B-1. The unconfined compressive
strength of the intact rock is approximatelyσci = 141 MPa; if the Geological Strength
Index of the rock-mass is GSI= 50, then the deformation modulus of the rock-mass
is, from equation (B-9), Erm = 1187 MPa. If Poisson’s ratio for the intact rock and
rock-mass are both assumed to be equal to 0.22 then, from equation (B-10), the shear
modulus of the rock-mass is Grm = 486 MPa. The elastic constants Erm and Grm

for the rock-mass are seen to be significantly lower than the corresponding constants
E and G for the intact rock sample listed in Table B-1.
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