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Abstract

We describe a mathematically based algorithm that can fitladia region with an infinite sequence of randomly
placed and progressively smaller shapes, which may beforamsd copies of one motif or several motifs. This

flexible algorithm can be used to produce a variety of aestibt pleasing fractal patterns, of which we show a
number of examples.

1. Introduction

Artisans have used repeated copies of a motif of one sizeottupe aesthetically pleasing patterns for mil-
lennia. In contrast, we describe an algorithm [3, 4] thatfdha planar region with a series of progressively
smaller randomly-placed shapes, which are transformegs@pb a single motif or several motifs. Figure
1 shows an example of a yin-yang motif being used to fill a eirdhis process produces fractal patterns

Figure 1:A random circle fractal with yin-yang motifs, with 200 msti€=1.46, N=2, 89% fill.

which are reminiscent of pebbles on a streambed. Mande]RBfqiopularized the study of fractals and
inspired other researchers to find such patterns in diveesesa Our method adds motifs to a region, the



reverse of Sierpinski’'s constructions of his gasket angeatain which triangles and squares, respectively,
are removed from a region.

In the next two sections we describe the algorithm and sontigeaiathematics behind it, and how the
patterns vary with respect to the parametein the following section we show a humber of examples that
illustrate the various capabilities of the algorithm. Hiyyave draw conclusions and summarize the results.

2. The algorithm

The original goal of the second author was to fill a regidm the Euclidean plane with randomly placed,
progressively smaller copies of a motif. By experimentatie found that this goal is achieved if the motifs
obeyed an inverse power laavea rule : if A is the area ofR, then fori = 0,1, 2,... the area of the-th

motif, 4;, can be taken to be: p
A; = - 1
RN @
1

wherec > 1 andN > 1 are parameters, ardc, V) is the Hurwitz zeta function( (s, q) = >, @
Thuslim,,~ > j—g A;i = A, that is, the process is space-filling if the algorithm cmmgis indefinitely,
which it does if the values aof and N are chosen appropriately, where the proper choice depentizeo
shapes of the motif(s) and the region to be filled. For exarfijpleth the region and the motif are circles, as
in Figure 1, if N > 1 then anyc will work if 1 < ¢ < ¢cpax, Wherecnax =~ 1.48. This non-halting nature of
the algorithm is based on computed data for a large numbédragfes in 1, 2, and 3 Euclidean dimensions
[4]. Examples of the algorithm written in C code can be foun8lier's web site [5].

Fori =0,1,2,...,n the algorithm iteratively places copies of the motif insite bounding regiorRR

so that they do not intersect (overlap) each other. It woski®kows:

i =0 The first copy of the motif with ared, is placed randomly inside the bounding regiBrsuch that
it does not overlap the boundary & This usually requires trying several random positionteef
achieving a successful placement in which the motif is cetepy insideR (later we relax the non-
overlap condition for periodic boundary conditions).

i > 0 Then, iteratively for eaclh= 1,2, ... randomly place a copy of the motif with arels inside R and
so that it does not intersect any previously placed copyfthbtif. Again, the placement of theh
motif usually requires many trials, i.e. repeatedly trymgny random positions, until a successful
placement is achieved. Then we proceed to place the next withiarea 4;, 1, or stop if we have
placed then-th motif or met another stopping condition such as havirlgdia desired percentage of
R.

The result is a random geometric fractal in which none of tiepes touch each other, and the unfilled
area orcarpet(in analogy with Sierpinski’'s carpet) is a continuous cartaed set (for non-hollow shapes).
In the limit, the fractal dimensio® of the placed motifs is given b = 2/¢. The algorithm can be viewed
as a novel kind of stochastic process.

Circles make good candidates for both the enclosing reffi@amd the motif since, by their symmetry,
they play a significant role in both mathematics and deogratit. In Figure 1, mathematics provides the
arrangement of the circular motifs while art colors themdryim and yang. Because of the random process
used to place the circles, their arrangement has no symmetrg only symmetry is that of the circles
themselves (and the circular boundary), but neverthelteseyte sees a certain regularity (for which we have
no simple word) imposed by the regular sequence of sizesbifjgest circles occupy a large fraction of the
total area, which is a generic feature of this kind of fractaimere 200 circles fill 89% of the bounding area,
yet the remaining unfilled 11% has room enough for an infinilmber of non-overlapping smaller circles.



3. Dependence of Patternson the c Parameter

Figures 2, 3, 4, and 5 below show how patterns of circle maiifsircular bounding regions change with
decreasing values of 1.48, 1.40, 1.32, and 1.24 respectively. By examining tke aule formula for the

Figure 2: A pattern of 231 circles, with parameterfigure 3: A pattern of 299 circles, with parameters
c=1.48, N=2.5, 89.74% fill, and 2973700 trials. ¢=1.40, N=2.5, 86.47% fill, and 178239 trials.

Figure 4: A pattern of 401 circles, with parameter&igure 5: A pattern of 556 circles, with parameters
c=1.32, N=2.5, 81.62% fill, and 37161 trials. c=1.24, N=2.5, 74.04% fill, and 11392 trials.

sizes of the motif copies, one could guess that a large vdleenould produce large initial copies of the
motif whose sizes would decrease rapidly. Conversely, dlsmalue ofc would produce smaller initial
copies with a slower decrease in size as more motifs weredadidleach case the placement of new circles
was stopped when the radius of the next circle would be lems 365% of the radius of the largest (first)
circle. One can also see that there is more “wiggle room” betwthe circles in which to place the next
circle with smaller values af. This is borne out by the fact that the total number of trialggeiments needed
to place the same number of circles decreases rapidly fdfesrmalues ofc.



4. Sample Patterns

The algorithm is quite flexible, in that the enclosing regoam be any reasonable shape, as can the motif(s).
For example, either the region or the motif can have holessetitan be more than one motif; copies of
a single motif can be given random orientations; word shapesbe used for either the enclosing region
or the motif; and for rectangular regions, the placement ofifisican be periodic rather than “inclusive”,
i.e. strictly within the region. We give examples of theseegaries of patterns below.

We start with an example of a pattern whbllow motifs with “holes” that can be filled with smaller
copies of the motif. Figure 6 shows a Dali-esque pattern aithreye motif. One of the early surprises
in the study of the algorithm was that it works without modition for hollow motifs. We only need the
intersection (overlap) test to properly account for botterinal and external succeeding placements. In
Figure 6 the outer boundary of the matif is a circle, whileithger boundary is defined by two circular arcs.
With hollow shapes the “carpet” (unused area) is cut up inemyrpieces, with each newly-placed motif
creating a new piece of the carpet. The black region is trggnali “outer” carpet, while the white regions
are the (many) carpet pieces created by the interiors of th#an The motifs have a hierarchy here, to
which we can assigranks We can view the motifs with a “blue peeper” in their hollonasp as having
rank 0. A shape whose highest-ranking contained shape ksrrdras rank n+1. The distribution of the
motifs over different ranks seems to follow a negative-&xqua power law.

One indication of the flexibility of the algorithm is that itorks with multiple motifs. Figure 7 is
composed 060°—120° rhombi of three colors corresponding to their three origoma which are separated
by 120°. The algorithm cycles through the three orientations. Aleessellation by equal-sized rhombi
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Figure 6:A pattern with hollow eye motifs, with 15€igure 7: A pattern of three rhombi, 250 of each
eyes, ¢=1.20, N=3, and 56% fill. orientation, with c=1.52, N=8, and 91% fill.

oriented this way gives rise to the 3D Necker Cube opticakitin, which is evident here also. With this
color scheme, the pattern is reminiscent of picturesqueitetednean villages with tile roofs.

Another way to vary the pattern is by usingndom orientations for a motif with an axis of symmetry
or feature to determine a direction At each trial placemamgandom direction is chosen frabfi to 360° in
addition to the random position for the motif. This is in a@st to the three fixed orientations used in the
preceding example. Figure 8 shows a pattern of peppers wsintpm orientations, and random coloring



independently of orientation, but but only within the garafithe colors of hot peppers: green to yellow to
orange to red. The pepper motif is bounded by three circuta. a

If the bounding region is a rectangle, we can identify thegdge with the bottom edge and the left edge
with the right edge, conceptually forming a torus. We cantbsealgorithm to create patterns on such a torus
by relaxing the condition that a motif copy be entirely iresithe rectangle, so if a motif overlaps the top
edge, we simply add the part above the top directly beloweabtitom of the rectangle (and similarly if the
motif overlaps the left edge, it is continued from the rigtige). Such a patterned rectangle could be used
to tile the plane, creating a seamless wallpaper pattegur&i8 is also an example of this phenomenon. We
say such patterns satighgriodic boundary conditions.

We have mentioned that asgquence of motifs can be used by the algorithm (such a sequence can be
infinite, but we restrict ourselves to finite sequences hétiglure 9 uses the digits 0, 1, ..., 9 as motifs. In
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Figure 8: 1200 Randomly oriented peppers Figure 9:A sequence of 600 digit motifs 0-9,
with ¢=1.26, N=3, 80% fill, and periodic with ¢=1.19, N=2, and 68% fill.
boundaries.

Figure 9, the digits are considered to be simply shapes, sbthem hollow and some not. The digit choice
is made cyclically after each successful placement. Theretare equal numbers of each digit. The areas
follow the area rule given in equation (1) above. Each digi lis own color. Such multi-shape sequences
lend themselves to a great variety of artistic effects wisiebm to have been little studied. With= 1.19

(a low value), the bounding square fills very slowly, but thetihematics of the construction ensures that the
process is “space filling in the limit”.

So far, the motifs we have used have been connected sets,dpbssible to usenotifs with several
components. In Figures 10 and 11 we have used the strings of charactefS FMand “ART” represented
as stylized Latin letters. These quite sparse and sprawiitifs have a low maximumvalue. The color is
a continuous and periodic function of the logarithm of timedr dimension of the word shapes, which could
be called “log-periodic color”. Two shapes with nearly tlzene size have nearly the same color.

In the previous two examples we filled a simple region (a ssjuarith motifs made of word shapes. In
Figure 12, we reverse the roles by using a word shape as aragibfilling its letters with a simple motif,
copies of a circle. Thugheregion has several components. The colors differ for each letter and are created
by a random walk in RGB color space.

All of the patterns shown in this paper were created by ugiegtatistical geometry algorithm described
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Figure 10: A pattern made from the word
MATH, with 400 copies, ¢=1.126, N=2, and
50% fill.
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Figure 11: A pattern made from the word
ART, with 400 copies, ¢=1.15, N=3, and
53% fill.

Figure 12:Regions formed by upper-case Latin letters, filled withleg@as motifs.



in Section 2 without change, and are space-filling in thetlifihe only new requirement needed for setting
up a new motif is a mathematical intersection test for theifgsdt Devising such intersection tests is a
common task in computer graphics. Figure 13 shows a furémapkng of patterns with different motifs.

Figure 13:Examples of decorative patterns created with the stasisjeometry algorithm.

5. Summary and Conclusions

Most geometric fractal constructions (such as Sierpiagkimous triangle [2]) take a very specific form —
they have no parameters. Whether constructed by Alice ordiytBey are the same except for the colors
chosen for the graphic images. This leaves few openingfiéoattist to be creative with such patterns.

The algorithm presented here is very general and subjedatg@anumber of possible variations, mostly
unexplored. It is this flexibility with regard to shape andesthat lends itself to art. While one can in
principle use any motif, the link between art and mathersdigs in the need for an intersection (overlap)
test. Such a test requires a mathematical description ahthté boundary. Thus boundaries comprised of
straight line segments and circular arcs are preferrel#irgoordinates are used to describe the boundary,
a Fourier series can be used to define it.

An artist can choose among all of these variations:

e The mathematical parameterand N
e The percentage of fill (or the number of copies of the motif)

e Any motif(s) for which an intersection test can be developed



The scheme for coloring the copies of the motif

The orientations for copies of the motif

Nonuniform probability distributions for random searches

Choosing between having the pattern contained in a rect@ngounding region or allowing the
pattern to be periodic

Once a motif shape has been chosen, the artist can fill it wigtdasired drawing. For example, circle
motifs can be filled with yin-yang symbols, smiley faces,qeegaymbols, etc. Designs for fabric, wallpaper,
wrapping paper etc. are often mentioned by casual vieweaapiations for these patterns, and the use of
periodic boundaries (resulting in patterns that can tikeptane) facilitates this.

If 200 circular tiles were created with the sizes shown inukégl, a tile setter could mark off the
corresponding circular boundary and permanently placdild® at non-overlapping positions within the
boundary and all of them would always fit if he proceeds frorgdat to smallest. Most tile setters would
not believe this until they tried it.

While the algorithm is space-filling in the limit, it has befaund that if the percentage fill in 2D is
more than 80—85% the eye tends to lose perception of thetq@gekground). “How full do | want to fill
this?” is an important art question. Color schemes have fmerd to make a huge difference in the visual
perception of these patterns. Work to date has mostly uggdduntrast color schemes, but limited work
with more subtle contrast shows some interesting pods#sili

We have focused on patterns in two Euclidean dimensionsusedhat is where interesting visual art
exists; one-dimensional patterns are not very interesing in 3D if the motifs fill space, so the viewer
can't see the interior. That being said, studies have shbaithe algorithm works equally well in 1D and
3D also. Some nice ray-traced images of 3D fractals of tiid kan be found at the web site of Paul Bourke
[1]. From the viewpoint of pure mathematics the statemeraidarhere about the algorithm are conjectures
supported by data, but lack proof. It would be interestingde these conjectures proved.

The methods presented here to create artistic images ar& afrgeometry and randomness which
seems to be quite uncommon in mathematical art.
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