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Abstract

In the past we presented an algorithm that can fill a region with an infinite sequence of randomly placed

and progressively smaller shapes, producing a fractal pattern. In this paper we extend that algorithm to

fill rectangles and triangles that tile the plane, which yields wallpaper patterns that are locally fractal in

nature. This produces artistic patterns which have a pleasing combination of global symmetry and local

randomness. We show several sample patterns.

Introduction

We have described an algorithm [2, 4, 6] that can fill a planar region with a series of progressively smaller

randomly-placed motifs and produce pleasing patterns. Here we extend that algorithm to fill rectangles and

triangles that can fill the plane, creating “wallpaper” patterns. Figure 1 shows a randomly created circle

pattern with symmetry group p6mm. In order to create our wallpaper patterns, we fill a fundamental region

Figure 1: A locally random circle fractal with global p6mm symmetry.

for one of the 17 2-dimensional crystallographic groups with randomly placed, progressively smaller copies

of a motif, such as a circle in Figure 1. The randomness generates a fractal pattern. Then copies of the filled

fundamental region can be used to tile the plane, yielding a locally fractal, but globally symmetric pattern.

In the next section we recall how the basic algorithm works and describe the modifications needed to

create wallpaper patterns. We will also recall a few facts about wallpaper groups. Then we will exhibit

sample patterns for the wallpaper groups p2mm, p4mm, and p6mm. Finally, we draw conclusions and

summarize the results.



The Algorithm and Wallpaper Groups

The idea of the algorithm is to place progressively smaller motifs mi within a region R so that a motif does

not overlap any previously placed motif. Random placements are tried until a non-overlapping one is found.

As noted in [2, 4, 6], for many choices of R and motifs mi of area Ai, the following algorithm proceeds

without halting:

For each i = 0, 1, 2, . . .

Repeat:

Randomly choose a point within R to place the i-th motif mi.

Until (mi doesn’t intersect any of m0,m1, ...,mi−1)

Add mi to the list of successful placements

Until some stopping condition is met, such as a maximum value of i or a minimum value of Ai.

It has been found experimentally by the second author that this non-halting phenomenon is achieved by a

wide range of choices of shapes of R and the motifs if the motifs obeyed an inverse power law area rule: if

A is the area of R, then for i = 0, 1, 2, . . . the area of mi, Ai, can be taken to be:

Ai =
A

ζ(c,N)(N + i)c
(1)

where c > 1 and N > 1 are parameters, and ζ(c,N) is the Hurwitz zeta function: ζ(s, q) =
∑

∞

k=0
1

(q+k)s .

Thus limn→∞

∑n
i=0 Ai = A, that is, the process is space-filling if the algorithm continues indefinitely. In

the limit, the fractal dimension D of the placed motifs can be computed to be D = 2/c. Examples of the

algorithm written in C code can be found at Shier’s web site [7].

It is conjectured by the authors that the algorithm does not halt for non-pathological shapes of R and

mi, and “reasonable” choices of c and N (depending on the shapes of R and the mis). In fact this has been

proved for 1 < c < 1.0965... and N ≥ 1 by Christopher Ennis when R is a circle and the motifs are also

circles [3].

Circles make good candidates for both the enclosing region R and the motif since, by their symmetry,

they play a significant role in both mathematics and decorative art. In Figure 1, mathematics provides the

arrangement of the circular motifs while art provides the colors.

It has been known for over a century that there 17 different kinds of patterns that repeat in two inde-

pendent directions in the Euclidean plane. Such patterns are called wallpaper patterns and their symmetry

groups are called plane crystallographic groups or wallpaper groups. In 1952 the International Union of

Crystallography (IUC) established a notation for these groups, and a shorthand notation soon followed. In

1978 Schattschneider wrote a paper clarifying the notation and giving an algorithm for identifying the sym-

metry group of a wallpaper pattern [5]. Later, Conway popularized the more general orbifold notation [1].

We create wallpaper patterns by filling a fundamental region R with motifs as above, and then extend the

pattern using transformations of the wallpaper group.

In our previous paper [2], we showed examples of patterns that had p1 (or o in orbifold notation) symme-

try, the simplest kind of wallpaper symmetry, with only translations in two independent directions. Figures

2 and 3 show such patterns. In Figure 3 peppers on the left edge “wrap around” and are continued on the

right edge; similarly peppers on the top edge “wrap around” to the bottom.

In this paper we concentrate on symmetry groups whose fundamental regions (which becomes our re-

gion R) are bounded by mirror lines. There are four such groups: p2mm, p3m1, p4mm, and p6mm, also

denoted by pmm, p3m1, p4m, and p6m in shorthand, or ∗2222, ∗333, ∗442, and ∗632 in orbifold notation,

respectively. In particular, we examine patterns whose symmetry groups are p2mm, p4mm, and p6mm.



Figure 2: A circle pattern with p1 symmetry. Figure 3: A pattern peppers with p1 symmetry.

An issue that arises for these groups, but not p1, is what to do when a trial placement of the motif

crosses a mirror boundary of the fundamental region. The simplest solution is simply to reject motifs that

cross mirror boundaries. But if a trial placement of a motif does cross a mirror boundary, we could just let

that happen, as shown in Figure 4. A more satisfactory solution if the motif has mirror symmetry itself, is

Figure 4: A random circle pattern with p2mm symmetry, and partial circles on mirror boundaries.

that we move the motif (perpendicularly) onto the boundary so that the mirror of the motif aligns with the

boundary mirror. This creates arguably more interesting patterns. Also, the area rule calculation needs to

be adjusted each time this happens since only half of the motif is placed within the fundamental region. We

show patterns both of this type and the simpler “reject” type in the next three sections.



Patterns with Symmetry Group p2mm

Figure 5 shows a pattern of hearts with p2mm symmetry in which the hearts avoid the mirror lines of the

rectangular fundamental region. Figure 6 show a pattern of circles with p2mm symmetry in which some of

the circles are centered on the mirror boundary lines of the fundamental region.

Figure 5: A random heart pattern with p2mm symmetry.

Figure 6: A pattern of circles with global p2mm symmetry, with some circles on mirror boundaries.



Patterns with Symmetry Group p4mm

Figures 7, 8, and 9 show patterns with p4mm symmetry in which the motifs avoid the mirror lines of the

45 − 45 − 90 triangular fundamental region. Figure 7 shows the fundamental region filled with randomly

placed black and white squares, creating a Rorschach test pattern. Figure 8 shows the region filled with

randomly placed black and white trianles on a blue background Figure 9 shows a pattern in which the

horizontal and vertical mirrors interchange two sets of four colors for the flowers. If we consider the sets of

colors as single “super colors”, this pattern has 2-super-color symmetry.

Figure 7: A “Rorschach” pattern with p4mm symmetry.

Figure 8: A pattern of black and white triangles with global p4mm symmetry.



Figure 9: A flower pattern with color symmetry and global p4mm symmetry.

Patterns with Symmetry Group p6mm

Figure 1 shows a pattern with p6mm symmetry in which some circles are centered on the mirror boundaries

of the 30 − 60 − 90 triangular fundamental region. Figures 10 and 12 both show patterns with p6mm
symmetry in which the motifs avoid the mirror lines of the fundamental region. Figure 10 shows a pattern

of triangle motifs whose edges are aligned with the edges of the fundamental region and Figure 12 shows a

pattern of arrow motifs that are similarly aligned. Figure 11 shows a pattern of yellow and orange flowers

on a green background, with some of the flowers on the mirror lines.

Figure 10: A pattern of triangles with global p6mm symmetry.



Figure 11: A flower pattern with p6mm symmetry with some flowers on mirror lines.

Figure 12: An arrow pattern with p6mm symmetry.



Summary and Future Work

We have presented a method for creating patterns that have global wallpaper pattern symmetries but are

locally fractal in nature. Our goal was to make pleasing patterns with global symmetry but local randomness.

However, we have only implemented our methods for a few of the 17 plane crystallographic groups. In

the future we would like to devise methods that would locally fractal patterns with all of the 17 groups. This

would involve handling fractal patterns with rotational and glide reflection symmetries. Another challenge

would be to create patterns with more interesting color symmetry.

It would also be interesting to create corresponding spherical or hyperbolic patterns that are locally

random, but have global symmetries.
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