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History - Outline

• Early 1958: H.S.M. Coxeter sends M.C. Escher a reprint
containing a hyperbolic triangle tessellation.

• Later in 1958: Inspired by that tessellation, Escher cre-
atesCircle Limit I.

• Late 1959: Solving the “problems” ofCircle Limit I,
Escher createsCircle Limit III.

• 1979: In aLeonardo article, Coxeter uses hyperbolic
trigonometry to calculate the “backbone arc” angle.

• 1996: In aMathematical Intelligencer article, Coxeter
uses Euclidean geometry to calculate the “backbone
arc” angle.

• 2006: In aBridges paper, D. Dunham introduces (p, q, r)
“Circle Limit III” patterns and gives an “arc angle” for-
mula for (p, 3, 3).

• 2007: In aBridges paper, Dunham shows an “arc an-
gle” calculation in the general case (p, q, r).

• Later 2007: L. Tee derives an “arc angle”formula in
the general case.
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The hyperbolic triangle pattern in Coxeter’s paper
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A Computer Rendition of Circle Limit I

Escher: Shortcomings ofCircle Limit I

“There is no continuity, no ‘traffic flow’, no unity of
colour in each row ...”
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A Computer Rendition of Circle Limit III
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Poincaré Circle Model of Hyperbolic Geometry

• Points: points within thebounding circle

• Lines: circular arcs perpendicular to the bounding cir-
cle (including diameters as a special case)
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The Regular Tessellations{m,n}

There is aregular tessellation, {m,n} of the hyperbolic
plane by regularm-sided polygons meetingn at a vertex
provided(m − 2)(n − 2) > 4.

The tessellation{8,3} superimposed on theCircle Limit
III pattern.
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Equidistant Curves and Petrie Polygons

Given a hyperbolic line and a hyperbolic distance, there
are twoequidistant curves, one on each side of the line,
whose points are that distance from the given line.

A Petrie polygon is a polygonal path of edges in a reg-
ular tessellation traversed by alternately taking the left-
most and right-most edge at each vertex.

A Petrie polygon (blue) based on the{8,3} tessellation,
and a hyperbolic line (green) with two associated equidis-
tant curves (red).
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Coxeter’s Leonardo and Intelligencer
Articles

In Leonardo 12, (1979), pages 19–25, Coxeter used hy-
perbolic trigonometry to find the following expression for
the angleω that the backbone arcs make with the bound-
ing circle inCircle Limit III.

cos(ω) = (21/4 − 2−1/4)/2 or ω ≈ 79.97◦

Coxeter derived the same result, using elementary Eu-
clidean geometry, inThe Mathematical Intelligencer 18,
No. 4 (1996), pages 42–46.
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Mathematical Intelligencer Cover

10



Mathematical Intelligencer Contents Page

11



“On The Cover:”

Coxeter’s enthusiasm for the gift M.C. Escher gave
him, a print of Circle Limit III, is understandable.
So is his continuing curiosity. See the articles on
pp. 35–46. He has not, however said of what gen-
eral theory this pattern is a special case. Not as yet.
Annonymous Editor
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A General Theory

We use the symbolism(p,q,r) to denote a pattern of fish in
which p meet at right fin tips,q meet at left fin tips, andr
fish meet at their noses. Of coursep andq must be at least
three, andr must be odd so that the fish swim head-to-tail
(as they do inCircle Limit III).

The Circle Limit III pattern would be labeled (4,3,3) in
this notation.
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A (5,3,3) Pattern
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Dunham’s Bridges 2006 Paper

In the Bridges 2006 Conference Proceedings, Dunham
followed Coxeter’sLeonardo article, using hyperbolic trigonom-
etry to derive the more general formula that applied to
(p,3,3) patterns:

cos ω = 1
2

√

1 − 3/4 cos2( π
2p

)

ForCircle Limit III, p = 4 andcos ω =
√

√

√

√

3
√

2−4
8

, which
agrees with Coxeter’s calculations.

For the (5,3,3) pattern,cos ω =
√

√

√

√

3
√

5−5
40

and
ω ≈ 78.07◦ .
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Dunham’s Bridges 2007 Paper

In the Bridges 2007 Conference Proceedings, Dunham
presented a 5-step process for calculatingω for a general
(p, q, r) pattern. This calculation utilized the Weierstrass
model of hyperbolic geometry and the geometry of a tes-
sellation by “kites”, any one of which forms a fundamen-
tal region for the pattern.
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Weierstrass Model of Hyperbolic Geometry

• Points: points on the upper sheet of a hyperboloid of
two sheets:x2 + y2 − z2 = −1, z ≥ 1.

• Lines: the intersection of a Euclidean plane through
the origin with this upper sheet (and so is one branch
of a hyperbola).

A line can be represented by itspole, a 3-vector
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on the dual hyperboloidℓ2
x + ℓ2

y − ℓ2
z = +1, so that the

line is the set of points satisfyingxℓx + yℓy − zℓz = 0.
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The Relation Between the Models

The models are related via stereographic projec-
tion from the Weierstrass model onto the (unit)
Poincaŕe disk in thexy-plane toward the point
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The Kite Tessellation

Thefundamental regionfor a (p, q, r) pattern can be taken
to be akite — a quadrilateral with two opposite angles
equal. The angles are 2π/p, π/r, 2π/q, andπ/r.
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A Nose-Centered Kite Tessellation
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The Geometry of the Kite Tessellation

α
O

P

ℓ

Q

R

α ω
B

The kiteOPRQ, its bisecting line,ℓ, the backbone line
(equidistant curve) throughO andR, and radiusOB.
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Outline of the Calculation

1. Calculate the Weierstrass coordinates of the pointsP
andQ.

2. Find the coordinates ofℓ from those ofP andQ.

3. Use the coordinates ofℓ to compute the matrix of the
reflection acrossℓ.

4. Reflect the originO acrossℓ to obtain the Weierstrass
coordinates ofR, and thus the Poincaré coordinates of
R.

5. Since the backbone equidistant curve is symmetric about
the y-axis, the originO andR determine that circle,
from which it is easy to calculateω, the angle of inter-
section of the backbone curve with the bounding cir-
cle.
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Details of the Central Kite

π/2r
π/2r

O

P
π
p

ℓ

Q

π
q

R

23



1. The Weierstrass Coordinates ofP and Q

From a standard trigonometric formula for hyperbolic tri-
angles, the hyperbolic cosines of the hyperbolic lengths of
the sidesOP andOQ of the triangleOPQ are given by:

cosh(dp) =
cos(π/q) cos(π/r) + cos π/p

sin(π/q) sin(π/r)

and

cosh(dq) =
cos(π/p) cos(π/r) + cos π/q

sin(π/p) sin(π/r)

From these equations, we obtain the Weierstrass coor-
dinates ofP andQ:
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2. The Coordinates ofℓ

The coordinates of the pole ofℓ are given by
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and where the hyperbolic norm of a pole vectorV is given
by:

|V | =
√

V 2
x + V 2

y − V 2
z
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3. The Reflection Matrix - A Simple Case

The pole corresponding to the hyperbolic line perpendic-

ular to thex-axis and through the point
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The matrixRef representing reflection of Weierstrass points
across that line is given by:
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
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whered is the the hyperbolic distance from the line (or
point) to the origin.
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3. The Reflection Matrix - The General Case

In general, reflection across a line whose nearest point to
the origin is rotated by angleθ from thex-axis is given
by: Rot(θ)Ref Rot(−θ) where, as usual,
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From ℓ we identify sinh d asℓz, andcosh d as
√

(ℓ2
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y),

which we denoteρ. Thencos θ = ℓx
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ρ .
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4. The Coordinates ofR

We useRefℓ to reflect the origin toR since the kiteOPRQ
is symmetric acrossℓ:

R = Ref ℓ
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Then we project Weierstrass pointR to the Poincaŕe model:
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5. The Angleω

The three points
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, and the origin determine the

(equidistant curve) circle centered atw = (u2 + v2)/2v on
they-axis.

They-coordinate of the intersection points of this circle,
x2 + (y − w)2 = w2, with the unit circle to be
yint = 1/2w = v/(u2 + v2).

In the figure showing the geometry of the kite tessellation,
the pointB denotes the right-hand intersection point.

The central angle,α, made by the radiusOB with thex-
axis is the complement ofω (which can be seen since the
equidistant circle is symmetric across the perpendicular
bisector ofOB).

Thusyint = sin(α) = cos(ω), so that

cos(ω) = yint = v/(u2 + v2),

the desired result.
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Luns Tee’s Formula for ω

In mid-2007, Luns Tee used hyperbolic trigonometry to
derive a generalformula for ω, generalizing the calcula-
tions of Coxeter in theLeonardo article and Dunham in
the 2006Bridges paper.

As in those previous calculations, Tee based his computa-
tions on a fin-centered version of the (p, q, r) tessellation,
with the centralp-fold fin point labeledP , the opposite
q-fold point labeledQ, and the nose point labeledR′.
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A Diagram for Tee’s Formula

P Q

R

R′

N
M

L

ℓ b

ω

The right fin tip of a fish is at the origin,P ; its left fin tip is
atQ; its nose is atR′, and its tail is atR. The “backbone”
equidistant curve,b, goes throughR andR′. The hyper-
bolic line ℓ throughL,M andN has the same endpoints
asb. The segmentsRN andPQ are perpendicular to that
hyperbolic line.
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The Goal

By a well-known formula, the angleω is given by:

cos(ω) = tanh(RN)

SinceRNM is a right triangle, by one of the formulas for
hyperbolic right triangles,tanh(RN) is related totanh(RM)
by:

tanh(RN) = cos( 6 NRM) tanh(RM)

But 6 LRM = π
2 − π

2r since the equidistant curve bisects
6 PRQ = π

r .

Thus

cos( 6 NRM) = cos(
π

2
−

π

2r
) = sin(

π

2r
)

and
tanh(RN) = sin(

π

2r
) tanh(RM) (1)

so that our task is reduced to calculatingtanh(RM).
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A Formula for tanh(RM)

To calculatetanh(RM), we note that as hyperbolic distancesRP =

RM +MP , so eliminatingMP from this equation will relateRM to
RP , for which there are formulas.

By the subtraction formula forcosh

cosh(MP ) = cosh(RP − RM) = cosh(RP ) cosh(RM) − sinh(RP ) sinh(RM)

Dividing through bycosh(RM) gives:

cosh(MP )/ cosh(RM) = cosh(RP ) − sinh(RP ) tanh(RM)

Also by a formula for hyperbolic right triangles applied toPML and
RMN :

cosh(MP ) = cot( 6 PML) cot(π
q
) and

cosh(RM) = cot( 6 RMN) cot(π
2 −

π
2r)

As opposite angles,6 PML) = 6 RMN , so dividing the first equation
by the second gives another expression forcosh(MP )/ cosh(RM):

cosh(MP )/ cosh(RM) = cot(
π

q
) cot(

π

2r
)

Equating the two expressions forcosh(MP )/ cosh(RM) gives:

cosh(RP ) − sinh(RP ) tanh(RM) = cot(
π

q
) cot(

π

2r
)

Which can be solved fortanh(RM) in terms ofRQ:

tanh(RM) = (cosh(RP ) − cot(
π

q
) cot(

π

2r
))/ sinh(RP ) (2)
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The Final Formula

Another formula for general hyperbolic triangles, applied
to QPR gives:

cosh(RP ) = (cos(
π

p
) cos(

π

r
) + cos(

π

q
))/ sin(

π

p
) sin(

π

r
)

We can calculatesinh(RQ) from this by the formulasinh2 =
cosh2 −1.

Plugging those values ofcosh(RP ) andsinh(RP ) into equa-
tion (2), and inserting that result into equation (1) gives
the final result:

cos(ω) =
sin( π

2r
) (cos(π

p
) − cos(π

q
))

√

cos(π
p
)2 + cos(π

q
)2 + cos(π

r
)2 + 2 cos(π

p
) cos(π

q
) cos(π

r
) − 1)

34



Comments

1. Substitutingq = r = 3 into the formula and some
manipulation gives the same formula as in Dunham’s
2006 Brigdes paper.

2. Calculatingcot(ω) gives the following alternative for-
mula:

cot(ω) =
tan( π

2r)(cos(π
q ) − cos(π

p))
√

(cos(π
p
) + cos(π

q
))2 + 2 cos(π

r
) − 2
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A (3,4,3) Pattern
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A (3,5,3) Pattern.
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A Nose-Centered (5,3,3) Pattern.
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Future Work

• Write software to automatically convert the motif of a
(p,q,r) pattern to a (p’,q’,r’) motif.

• Investigate patterns in which one ofq or r (or both) is
infinity. Also, extend the current program to draw such
patterns.

• Find an algorithm for computing the minimum num-
ber of colors needed for a (p,q,r) pattern as inCircle
Limit III: all fish along a backbone line are the same
color, and adjacent fish are different colors (the “map-
coloring principle”).
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