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History - Outline

e Early 1958: H.S.M. Coxeter sends M.C. Escher a reprint
containing a hyperbolic triangle tessellation.

e Later in 1958: Inspired by that tessellation, Escher cre-
atesCircle Limit 1.

e Late 1959: Solving the “problems” dfircle Limit I,
Escher createGircle Limit 111.

e 1979: In aLeonardo article, Coxeter uses hyperbolic
trigonometry to calculate the “backbone arc” angle.

e 1996: In aMathematical Intelligencer article, Coxeter
uses Euclidean geometry to calculate the “backbone
arc” angle.

e 2006: In aBridgespaper, D. Dunham introduces, @, r)
“Circle Limit IlI” patterns and gives an “arc angle” for-
mula for (p, 3, 3).

e 2007: In aBridges paper, Dunham shows an “arc an-
gle” calculation in the general case(q, r).

e Later 2007: L. Tee derives an “arc anglaimula in
the general case.



The hyperbolic triangle pattern in Coxeter’s paper




A Computer Rendition of Circle Limit |

“There is no continuity, no ‘traffic flow’, no unity of

Escher: Shortcomings ofCircle Limit |
colour in each row ...



A Computer Rendition of Circle Limit I 11




Poincare Circle Model of Hyperbolic Geometry

. Points: points within thebounding circle

. Lines: circular arcs perpendicular to the bounding cir-
cle (including diameters as a special case)



The Regular Tessellationsim,n}

There is aegular tessellation, {m,n} of the hyperbolic
plane by regulam-sided polygons meeting at a vertex
provided(m — 2)(n — 2) > 4.
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The tessellatio 8,3} superimposed on théircle Limit
[l pattern.



Equidistant Curves and Petrie Polygons

Given a hyperbolic line and a hyperbolic distance, there
are twoequidistant curves, one on each side of the line,
whose points are that distance from the given line.

A Petrie polygon is a polygonal path of edges in a reg-
ular tessellation traversed by alternately taking the left
most and right-most edge at each vertex.
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A Petrie polygon (blue) based on t8,3} tessellation,
and a hyperbolic line (green) with two associated equidis-
tant curves (red).



Coxeter’s Leonardo and I ntelligencer
Articles

In Leonardo 12, (1979), pages 19-25, Coxeter used hy-
perbolic trigonometry to find the following expression for
the anglew that the backbone arcs make with the bound-
Ing circle inCircle Limit I11.

cos(w) = (24 — 2714 /2 or w ~ 79.97°

Coxeter derived the same result, using elementary Eu-
clidean geometry, imThe Mathematical Intelligencer 18,
No. 4 (1996), pages 42-46.



Mathematical Intelligencer Cover

® The MatHiRHIL |

I3ntelligeiter

What Escher
Left Unstated
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“On The Cover:”

Coxeter’s enthusiasm for the gift M.C. Escher gave
him, a print of Circle Limit Ill, is understandable.
So is his continuing curiosity. See the articles on
pp. 35-46. He has not, however said of what gen-
eral theory this pattern is a special case. Not as yet.
Annonymous Editor
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A General Theory

We use the symbolisifp,q,r) to denote a pattern of fish in
which p meet at right fin tipsg meet at left fin tips, and
fish meet at their noses. Of cousandg must be at least
three, and must be odd so that the fish swim head-to-tall
(as they do irCircle Limit [11).

The Circle Limit 11l pattern would be labeled (4,3,3) in
this notation.
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A (5,3,3) Pattern
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Dunham’s Bridges 2006 Paper

In the Bridges 2006 Conference Proceedings, Dunham
followed Coxeter’d_eonardo article, using hyperbolic trigonom
etry to derive the more general formula that applied to
(p,3,3) patterns:

Cosw = %\/1 — 3/4cos?(3;)

ForCircleLimit 11, p = 4 andcos w = , 3*/3_4 , which
agrees with Coxeter’s calculations.

3v5-5  gn(

40

For the §,3,3) patterncos w =
w = 78.07°.
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Dunham’s Bridges 2007 Paper

In the Bridges 2007 Conference Proceedings, Dunham

presented a 5-step process for calculatinfpr a general
(p, q,r) pattern. This calculation utilized the Weierstrass

model of hyperbolic geometry and the geometry of a tes-
sellation by “kites”, any one of which forms a fundamen-

tal region for the pattern.
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Welerstrass Model of Hyperbolic Geometry

. Points: points on the upper sheet of a hyperboloid of
two sheetsz? 4 3> — 22 = —1, 2 > 1.

. Lines: the intersection of a Euclidean plane through
the origin with this upper sheet (and so is one branch
of a hyperbola).

A line can be represented by psle, a 3-vector| ¢,

on the dual hyperboloi? + (2 — (2 = +1, so that the
line is the set of points satisfying/, + y¢, — z¢. = 0.
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The Relation Between the Models

The models are related via stereographic projec-
tion from the Welerstrass model onto the (unit)

Poincae disk in thexy-plane toward the point
0

0|,
__1_

Given by the formula:
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The Kite Tessellation

Thefundamental regionfor a (p, ¢, r) pattern can be taken

to be akite — a quadrilateral with two opposite angles

equal. The angles arerf, «/r, 2r/q, andx/r.
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A Nose-Centered Kite Tessellation
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The Geometry of the Kite Tessellation

The kite OPRQ), its bisecting line/, the backbone line
(equidistant curve) through and R, and radius) B.
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Outline of the Calculation

1. Calculate the Welerstrass coordinates of the paihts
andq@.

2. Find the coordinates dffrom those ofP and().

3. Use the coordinates défto compute the matrix of the
reflection across.

4. Reflect the origirD acros<’ to obtain the Weierstrass
coordinates of?, and thus the Poincarcoordinates of

R.

5. Since the backbone equidistant curve is symmetric about
the y-axis, the originO and R determine that circle,
from which it is easy to calculate, the angle of inter-
section of the backbone curve with the bounding cir-
cle.
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Detalls of the Central Kite
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1. The Welerstrass Coordinates ofP and ()

From a standard trigonometric formula for hyperbolic tri-
angles, the hyperbolic cosines of the hyperbolic lengths of
the sidesD P andOQ of the triangleO P() are given by:

cos(m/q) cos(m/r) + cosm/p
sin(7 /q) sin(7 /1)

cosh(d,) =

and
cosh(d,) — cos(w/p) cos(w/r) + cos/q
sin(7 /p) sin(7 /1)
From these equations, we obtain the Weierstrass coor-
dinates ofP andQ:

cos(m/2r)sinh(d,) cos(m/2r)sinh(d))
P = | sin(w/2r)sinh(d,) | @ = | —sin(7/2r)sinh(d,)
cosh(d,) cosh(d,)
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2. The Coordinates of¢

The coordinates of the pole éfare given by

[ — ?B P xQ
gz [P x5, Q)
Where the hyperbolic cross-produetx;, () is given by:
Psz o PzQy
thQ: PZQ:U_PxQz
_Pny + Pny

and where the hyperbolic norm of a pole vedtois given
by:

V= V2+ V2 - V2
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3. The Reflection Matrix - A Simple Case

The pole corresponding to the hyperbolic line perpendic-

sinh d
ular to thex-axis and through the poir{t 0 IS given
cosh d
cosh d |
by| 0 [
sinh d

The matrixRef representing reflection of Weierstrass points
across that line is given by:

—cosh 2d 0 sinh 2d
0 1 0
—sinh 2d 0 cosh 2d

whered is the the hyperbolic distance from the line (or
point) to the origin.

Ref =

26



3. The Reflection Matrix - The General Case

In general, reflection across a line whose nearest point to
the origin is rotated by anglé from the x-axis Is given

by: Rot(0)Ref Rot(—60) where, as usual,

cosf —sinf 0
sind  cosf 0

0 01

Rot(0) =

From ¢ we identifysinh d as¢., andcosh d as /(2 + (2),
which we denotg. Thencos 6 = *+ andsin § = %

Further,sinh 2d = 2sinhdcoshd = 2pf, andcosh 2d =
cosh® d 4 sinh® d = p? + 2.

ThusRef,, the matrix for reflection acrogsis given by:

R G A
Ref = |2 Lo 0 1 2O2 _%%o
0 01|l 26 O0(+E)]] 00 1]
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4. The Coordinates ofR

We useRef, to reflect the origin ta? since the kite) P R()
IS symmetric acrosé&

0] [ 20,0,
R=Ref,|0| =] 20,0,
1 _p2-+-€§_

Then we project Weierstrass poiRto the Poincag model:

20,0,
1242
20,0,
14-p?+0%
0

oS
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5. The Anglew

u —U
Thethree pointsv |,| v |, andthe origin determine the
0 0

(equidistant curve) circle centerechat= (u* + v?)/2v on
they-axis.

The y-coordinate of the intersection points of this circle,
z? + (y — w)? = w?, with the unit circle to be
Yint = 1/2w = v/(u* + v?).

In the figure showing the geometry of the kite tessellation,
the pointB denotes the right-hand intersection point.

The central angley, made by the radiu® B with the z-

axis is the complement of (which can be seen since the
equidistant circle is symmetric across the perpendicular
bisector ofOB).

Thusy;,,; = sin(«) = cos(w), SO that
cos(w) = Yins = v/ (u* + v?),

the desired result.
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Luns Tee’s Formula for w

In mid-2007, Luns Tee used hyperbolic trigonometry to
derive a generdiormula for w, generalizing the calcula-
tions of Coxeter in thd_eonardo article and Dunham in
the 2006Bridges paper.

As in those previous calculations, Tee based his computa-
tions on a fin-centered version of the ¢, r) tessellation,
with the centralp-fold fin point labeledP, the opposite
g-fold point labeled?), and the nose point labeled.
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A Diagram for Tee’s Formula

The right fin tip of a fish is at the origir; its left fin tip is
at(); its nose is af?’, and its tail is atR. The “backbone”
equidistant curveb, goes throughkR and R’. The hyper-
bolic line ¢ through L, M and N has the same endpoints
asb. The segment& N and P() are perpendicular to that
hyperbolic line.
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The Goal

By a well-known formula, the angle is given by:
cos(w) = tanh(RN)

SinceRN M is a right triangle, by one of the formulas for
hyperbolic right trianglesanh(RN) is related taanh( RM )
by:

tanh(RN) = cos(/NRM ) tanh(RM )
But /LRM = 7 — 7 since the equidistant curve bisects
/PRQ = ".
Thus

cos(/NRM) = cos(g — 21) = sin(g)
r r

and
tanh(RN) = sm%) tanh(RM) (1)

so that our task is reduced to calculatiagh(RM ).
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A Formula for tanh(RM)

To calculatetanh(RM ), we note that as hyperbolic distance® =

RM + M P, so eliminatingl P from this equation will relatd? M to
RP, for which there are formulas.

By the subtraction formula farosh
cosh(M P) = cosh(RP — RM) = cosh(RP) cosh(RM) — sinh(RP) sinh(RM)
Dividing through bycosh(RM) gives:

cosh(M P)/ cosh(RM) = cosh(RP) — sinh(RP) tanh(RM)

Also by a formula for hyperbolic right triangles appliedfd/ L and
RMN:

cosh(M P) = cot(LPML) cot(7) and

cosh(RM) = cot(/RMN) cot(5 — 37)

As opposite angles,PM L) = /RM N, so dividing the first equation
by the second gives another expression:teh(M P)/ cosh(RM):

cosh(M P)/ cosh(RM) = cot(z) cot(g)
q r
Equating the two expressions farsh(M P)/ cosh(RM) gives:
cosh(RP) — sinh(RP) tanh(RM ) = cot( )cot(i)

il
q 2r
Which can be solved famnh(RM ) in terms of RQ:

tanh(RM) = (cosh(RP) — cot(g) cot(%)) /sinh(RP) (2)
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The Final Formula

Another formula for general hyperbolic triangles, applied
to QPR gives:
s i s T m
cosh(RP) = (cos(—) cos(—) + cos(—))/ sin(—) sin(—
(RP) = ( (p) () (q))/ (p) ()
We can calculateinh(RQ) from this by the formulainh® =
cosh? —

Plugging those values ofish( RP) andsinh( R P) into equa-
tion (2), and inserting that result into equation (1) gives
the final result:

sm(%) (COS(%) — cos(Z ))

\/cos 24 cos(7)? + cos(T)? + 2 COS(E) cos(7) cos(7) — 1)

cos(w) =
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Comments

1. Substitutingg = » = 3 into the formula and some
manipulation gives the same formula as in Dunham’s

2006 Brigdes paper.

2. Calculatingeot(w) gives the following alternative for-

mula:

tan(g;)(cos(%) — cos(7))

\/(COS(%) +cos(7))* + 2cos(T) — 2

cot(w) =
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A (3,4,3) Pattern
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A (3,5,3) Pattern.
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A Nose-Centered (5,3,3) Pattern.
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Future Work

e Write software to automatically convert the motif of a
(p,q,r) pattern to a (p’,q’,r’) motif.

e Investigate patterns in which one @br r (or both) is
Infinity. Also, extend the current program to draw such
patterns.

e Find an algorithm for computing the minimum num-
ber of colors needed for a (p,q,r) pattern a<incle
Limit I11: all fish along a backbone line are the same
color, and adjacent fish are different colors (the “map-
coloring principle”).
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