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Abstract

For more than a millennium, Islamic artists and craftsmen have used geometric patterns to decorate
buildings, cloth, pottery, and other artifacts. Many of these patterns were “wallpaper” patterns — they
were planar patterns that repeated in two different directions. Recently related patterns have also been
drawn on the Platonic solids, which can conceptually be projected outward onto their circumscribing
spheres, thus utilizing a second of the three “classical geometries”. We extend this process by exhibiting
repeating Islamic patterns in hyperbolic geometry, the third classical geometry.

Introduction

Islamic artists have long had a fascination for geometric patterns such as the one below in Figure 1 from
the Alhambra palace. The purpose of this paper is to show thatit is possible to create Islamic patterns in the
hyperbolic plane, such as the one shown in Figure 2 which is related to the pattern of Figure 1.

Figure 1: An Islamic pattern from the Alhambra. Figure 2: An Islamic hyperbolic pattern based on the
Euclidean pattern of Figure 1.
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The techniques for creating the original Islamic patterns were passed down from master to apprentice
artisans, and have subsequently been lost. However, for more than 100 years, when it first became possible to
print color reproductions, people have tried to analyze those patterns starting with Bourgoin [3]. The analysis
of wallpaper patterns, patterns of the Euclidean plane that repeat in two different directions, became more
precise when their 17 possible symmetry groups were classified. Abas and Salman have carried out the
classification of hundreds of Islamic patterns with respectto these symmetry groups [2].

M. C. Escher was always fascinated with wallpaper patterns and created his first prints of them in the
early 1920’s. But his interest was sparked into a consuming passion by his visit in 1936 to the Alhambra, a
Moorish palace in Granada, Spain, which was richly decorated with a large number of Islamic patterns. From
that point on Escher filled notebooks with drawings of wallpaper patterns, many inspired by those Islamic
patterns. For example, Schattschneider (page 18 of [9]) shows a sketch of his interlocking “weightlifters”
superimposed on the pattern of Figure 1; that weightlifter pattern later became Escher’s Notebook Drawing
Number 3.

The goal of this paper is to take a first step toward combining Islamic patterns and hyperbolic geometry.
Recently artists have created patterns on cubes, tetrahedra, dodecahedra, and icosahedra (see Plates 8, 12, 15,
and 16 of [2]). Of course patterns on regular polyhedra can bethought of as spherical patterns by projecting
them outward onto the polyhedrons’ circumscribing spheres. Thus Islamic patterns will have been created
in each of the threeclassical geometries: Euclidean, spherical, and hyperbolic geometry.

We will begin with a brief discussion of Islamic patterns, followed by a review of hyperbolic geometry,
regular tessellations, and symmetry groups. Then we show a series of hyperbolic Islamic patterns that are
related to existing Euclidean Islamic patterns. Finally, we indicate some directions for future work.

Islamic Patterns

Islamic artisans have been decorating texts, buildings, and other artifacts with geometric patterns for
more than a thousand years. Artists working in a religious setting could hint at the infinitude of God by draw-
ing potentially infinite repeating patterns (pages 1 and 2 of[2]). There are various kinds of 2-dimensional
Islamic repeating patterns, including spirals, star patterns, key patterns, and “Y” patterns. Other kinds of
Islamic patterns include arabesques (flower and intertwining vine patterns), and Kufic patterns, which are
words written in stylized Arabic script. Of course many patterns fall into more than one category.

European interest in Islamic art was initiated by Owen Jones’ color reproductions of various kinds of
Islamic art in his bookThe Grammar of Ornament[6], first published about 150 years ago. Since then, a
number of people have classified many of the wallpaper patterns [2, 5], and others have made guesses as
to how the patterns were originally created [5, 8]. RecentlyAbas and Salman presented methods for the
computer generation of such patterns [1], and Kaplan has designed a program to draw Islamic star patterns
[7]. We will continue these endeavors by suggesting a more general framework for classifying the patterns,
and then using that classification as a basis for creating newIslamic patterns in the hyperbolic plane.

Many repeating Islamic patterns seem to have been built uponthe framework of a regular tessellation
of the Euclidean plane. Such regular tessellations generalize to the hyperbolic plane. In the next sections,
we will discuss those tessellations and their symmetry groups, which generalize some of the 17 symmetry
groups of wallpaper patterns.

Hyperbolic Geometry and Regular Tessellations

Hyperbolic geometry is the least familiar of the classical geometries. This is probably because the entire
hyperbolic plane cannot be embedded in 3-dimensional Euclidean space in a distance preserving way —
unlike the sphere and the Euclidean plane. However, there are usefulmodelsof hyperbolic geometry in the
Euclidean plane, which must perforce distort distance.
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We will use thePoincaŕe circle modelfor the same reasons that made it attractive to Escher: (1) itis
conformal (i.e. the hyperbolic measure of an angle is equal to its Euclidean measure) — consequently a
transformed object has roughly the same shape as the original, and (2) it lies entirely within abounding
circle in the Euclidean plane — allowing an entire hyperbolic pattern to be displayed. In this model, the
hyperbolic points are the interior points of the bounding circle and the hyperbolic lines are interior circular
arcs perpendicular to the bounding circle, including diameters. Figure 3 shows the hyperbolic lines of
reflection symmetry of Figure 2 For example, Figure 3 shows the hyperbolic lines of reflection symmetry
superimposed on the pattern of Figure 2.

Two-dimensional hyperbolic geometry satisfies all the axioms of 2-dimensional Euclidean geometry
except the Euclidean parallel axiom, which is replaced by its negation. Figure 4 shows an example of this
hyperbolic parallel property among the reflection lines in Figure 3: there is a line,̀, (the vertical diameter),
a point,P , not on it, and more than one line throughP that does not intersect`.

Figure 3: The tessellationf5; 4g superimposed on
the pattern of Figure 2.

` P

Figure 4: An example of the hyperbolic parallel
property: a linè , a pointP not on`, and two lines
throughP not meeting̀ .

Equal hyperbolic distances in the Poincaré model are represented by ever smaller Euclidean distances
toward the edge of the bounding circle (which is an infinite hyperbolic distance from its center). All the
curvilinear pentagons (actually regular hyperbolic pentagons) in Figure 3 are the same hyperbolic size, even
thought they are represented by different Euclidean sizes.

The curved pentagons that meet four at a vertex in Figure 3 form the regular tessellationf5; 4g More
generally, in any of the classical geometries the Schläfli symbolfp; qg denotes. theregular tessellationby
regularp-sided polygons, orp-gons, meetingq at a vertex. We must have(p � 2)(q � 2) > 4 to obtain
a hyperbolic tessellation; if(p � 2)(q � 2) = 4 or (p � 2)(q � 2) < 4, one obtains tessellations of the
Euclidean plane and the sphere, respectively. One of the vertices of thef5; 4g is centered in the bounding
circle in Figure 3 — but note that the center of the bounding circle is not a special point in the Poincaré
model, it just appears so to our Euclidean eyes.

Assuming for simplicity thatp � 3 andq � 3, there are five solutions to the “spherical” inequality(p � 2)(q � 2) < 4: f3; 3g, f3; 4g, f3; 5g, f4; 3g, andf5; 3g. These tessellations may be obtained by
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“blowing up” the Platonic solids: the regular tetrahedron,the octahedron, the icosahedron, the cube, and
the dodecahedron, respectively, onto their circumscribing spheres. In the Euclidean case, there are three
solutions to the equality(p � 2)(q � 2) = 4: f3; 6g, f4; 4g, andf6; 3g, the tessellations of the plane by
equilateral triangles, squares, and regular hexagons. Bourgoin usedf6; 3g and essentiallyf4; 4g in some of
his classifications of Islamic patterns [3]. Wilson shows how some hexagonal Islamic patterns can also be
thought of as patterns based onf3; 6g (see Plate 38 of [10]). Of course there are infinitely many solutions
to the hyperbolic inequality(p� 2)(q � 2) > 4, and hence infinitely many regular hyperbolic tessellations.

This completes our treatment of hyperbolic geometry and regular tessellations. Next, we complete our
theoretical considerations with a discussion of repeatingpatterns and their symmetry groups.

Repeating Patterns and Symmetry Groups

A repeating patternin any of the classical geometries is a pattern made up of congruent copies of a basic
subpattern ormotif. One copy of the motif in Figures 1 and 2 is the right half of thetop black polygonal
figure in the center of the pattern; the left half may be obtained from it by reflection in the vertical symmetry
axis. In the discussion below, we assume that a repeating pattern fills up its respective plane. Also, it is
useful that hyperbolic patterns repeat in order to show their true hyperbolic nature.

The regular tessellation,fp; qg, is an important kind of repeating pattern since it forms a framework for
many Euclidean Islamic patterns and for the hyperbolic Islamic patterns presented in this paper. The radii
and perpendicular bisectors of the edges of ap-gon divide it into2p right triangles whose other angles are�=p and�=q. Any one of these right triangles can serve as a motif for the tessellation.

A symmetry operationor simply asymmetryof a repeating pattern is an isometry (distance-preserving
transformation) that transforms the pattern onto itself. For example reflection in the axis of symmetry of
any of the polygons of Figures 1 or 2 is actually a symmetry of the whole pattern (if color is ignored in
Figure 1). A reflection across a hyperbolic line in the Poincaré circle model is an inversion in the circular
arc representing that line (or an ordinary Euclidean reflection across a diameter). Reflections across the
radii and perpendicular bisectors of the edges of eachp-gon are symmetries offp; qg. Reflections are basic
kinds of isometries in that the other isometries can be decomposed into a finite succession of reflections.
For example, in each of the classical geometries, the composition of reflections across two intersecting lines
produces a rotation about the intersection point by twice the angle of intersection. There is a 4-fold rotation
symmetry, i.e. a rotational symmetry by�=4 about the trailing tips of the “arms” of the polygons of Figure
1. Similarly, there is a 5-fold rotation symmetry about the trailing tips of the polygon arms in Figure 2. The
points of 5-fold rotational symmetry are at the centers of the overlying pentagons in Figure 3.

There are�=4 and�=5 rotation symmetries about the trailing tips of the “arms” ofthe polygons of
Figures 1 and 2, respectively. The points of�=5 rotational symmetry are at the centers of the overlying
pentagons in Figure 3.

The symmetry groupof a pattern is the set of all symmetries of the pattern. The symmetry group of
the tessellationfp; qg is denoted [p; q] (using Coxeter’s notation [4]) and can be generated by reflections
across the sides of the right triangle with angles of�=p and�=q; that is, all symmetries offp; qg may be
obtained by successively applying a finite number of those three reflections. Note that such a right triangle
can also serve as a motif for its “dual” tessellationfq; pg, and so the symmetry groups [p; q] and [q; p] are
isomorphic, i.e. “the same” mathematically. This is denoted: [p; q] �= [q; p]. In the Euclidean case, [4; 4] is
the wallpaper groupp4m, and [3; 6] or [6; 3] is the groupp6m. In the Islamic patterns that Abas and Salman
classified, the groupsp6m andp4m appeared most frequently (see Figure 5.1 of [2]). Abas and Salman
show a Kufic pattern on a dodecahedron with symmetry group [3; 5] (Plate 8 of [2]); they also show a star
pattern on a cube with symmetry group [3; 4] (see Plate 16 of [2]). Of course, these can be considered to be
spherical patterns.

It has been known for about 100 years that there are exactly 17possible symmetry groups of patterns
of the Euclidean plane that repeat in at least two different directions — these are often referred to as the
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wallpaper groups. Many sources have descriptions of these groups, includingAbas and Salman [2]. This
completes our discussion of repeating patterns and introduces symmetry groups. In the following sections,
we will examine several patterns and their symmetry groups.

Patterns with Symmetry Group [p; q]

The arabesque pattern in Figure 5 below has symmetry groupp6m (or [6; 3]). I made it up by repeating
one of the hexagonal arabesques that appeared on the frontispiece of a Koran produced in Iran in 1313, and
reproduced as Plate 81 of [10]. Only a slight distortion is required to deform a hexagon arabesque of Figure
5 to obtain a hyperbolic hexagon arabesque that will fit in a hexagon of thef6; 4g tessellation. The resulting
pattern, which has symmetry group [6; 4] is shown in Figure 6. Patterns with symmetry group [p; q] can be
recognized by their large number of reflection lines.

Figure 5: An Islamic pattern with symmetry groupp6m ( = [6; 3]).
Figure 6: An Islamic hyperbolic pattern with sym-
metry group [6; 4] that is based on the Euclidean pat-
tern of Figure 5.

Patterns with Symmetry Group [p; q]+
The subgroup of [p; q] that consists of orientation-preserving transformations is denoted [p; q]+ by Cox-

eter [4], and can be generated by rotations of2�=p and2�=q about thep-gon centers and vertices of the
tessellationfp; qg. Since there are no reflections in [p; q]+ (because reflections reverse orientation), spiral
patterns often have symmetry groups of the form [p; q]+. Again, because of the duality betweenp andq,
the symmetry groups [p; q]+ and [q; p]+ are isomorphic. The symmetry groupsp4 ( �= [4; 4]+ ) andp6 (�= [6; 3]+ �= [3; 6]+ ) are the only two Euclidean groups of this type. Figure 7 shows a spiral pattern from
the Alhambra (in [6]) with symmetry groupp6. Figure 8 shows a hyperbolic version of this pattern having
symmetry group [7; 3]+. Patterns with symmetry groupp4 or p6 appear less frequently that patterns with
symmetry groupp4m or p6m among the patterns classified by Salman and Abas (see Figure 5.1 of [2]), but
more frequently than some patterns with less symmetry. Abasand Salman show a pattern on an icosahedron
that appears to have symmetry group [3; 5]+ (Plate 12 of [2]);
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Figure 7: A pattern from the Alhambra with sym-
metry groupp6 ( = [6; 3]+).

Figure 8: A hyperbolic pattern based on the pattern
of Figure 7, with symmetry group [7; 3]+.

Patterns with Symmetry Group [p+; q]

There is another subgroup of [p; q] that contains rotational symmetries about the centers of thep-gons
and reflections across the sides of thep-gons in the tessellationfp; qg. In this case,q must be even for the
reflections to be consistent;q=2 reflection (mirror) lines intersect at each vertex offp; qg. This subgroup is
denoted [p+; q] by Coxeter, where the superscript + is used to signify an orientation-preserving symmetry
[4]. The pattern of Figure 2 has symmetry group [5+; 4] if color is ignored. In [p+; q], p andq play different
roles, so [p+; q] is a different group than [q+; p] (unlessp = q). The Euclidean instances of [p+; q] are:p4g ( = [4+; 4]), andp31m ( = [3+; 6]). Figure 1 shows a pattern from the Alhambra with symmetry groupp4g if color is ignored. Note that [6+; 3] is not a valid group since3 is not even. Islamic patterns with
symmetry groupsp4g andp31m appear with slightly less frequency than those with symmetry groupsp6
andp4 among those classified by Salman and Abas (Figure 5.1 of [2]).

The pattern shown in Figure 9 is from the Alhambra and was one of the ones copied by Escher during
his 1936 visit to that palace. It is an example of a “Y” pattern — so named because their motifs have the
symmetry of a somewhat spread outY whose arms make angles of2�=3 with each other. These are popular
patterns in Islamic decoration. TheY patterns have symmetry groupp31m with each of the arms of theY
lying on reflection lines.

The pattern we show in Figure 10 is what we call a hyperbolic “X” pattern, which is like aY pattern ex-
cept that the motifs have four arms instead of three. The pattern of Figure 10 is theX patterns corresponding
to theY of Figure 9. The hyperbolicX patterns have symmetry group [p+; 8], wherep � 3 (in contrast to
theY patterns which have symmetry group [p+; 6]).

We note that we designed a hyperbolicY pattern (with symmetry group [4+; 6]) corresponding to Figure
9, but Figure 10 turned out to be aesthetically more pleasing. Also, we note the Figure 10 has the same
symmetry group as Escher’sCircle Limit II pattern of crosses. As an aside, about 15 years ago Coxeter
reversed the process by providing the EuclideanY pattern (with symmetry groupp31m) corresponding to
theX pattern ofCircle Limit II.
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Figure 9: A “Y” pattern from the Alhambra with
symmetry groupp31m ( = [3+; 6]).

Figure 10: A hyperbolic “X” pattern based on the
Euclidean “Y” pattern of Figure 9, having symmetry
group [3+; 8].

Patterns with Symmetry Groups [p; q; r] and (p; q; r)

The symmetry group [p; q; r] can be generated by reflections across the sides of a triangle with angles�=p, �=q, and�=r. We have already seen a special case of this: whenr = 2, [p; q; r] �= [p; q]. Also, when
more than one ofp, q, andr are equal to2, we obtain symmetry groups of spherical patterns. So for therest
of this section, we will assume thatp, q, andr are all greater than or equal to three. Ifp, q, andr are all
equal to three, [3; 3; 3] �= p3m1. At least two ofp, q, andr must be equal in order to obtain a pattern based
on a regular tessellation: [p; p; q] is based on the tessellationf2q; pg, where each2q-gon is subdivided into2q triangles of angles�=p, �=p, and�=q.

The orientation-preserving subgroup of [p; q; r] is denoted (p; q; r), and can be generated by any two
of the rotations by2�=p, 2�=q, and2�=r about the vertices of the triangle mentioned above. Becauseall
of these symmetries are orientation-preserving, patternswith symmetry group (p; q; r) are chiral, that is all
of the motifs rotate in the same direction. Ifp, q, andr are all equal to three, (3; 3; 3) �= p3. Figure 11
shows another pattern that Escher copied from the Alhambra,with symmetry groupp3. Figure 12 shows a
hyperbolic pattern based on that of Figure 11 and having symmetry group (3; 3; 4), which happens to be the
symmetry group of Escher’s most famous hyperbolic patternCircle Limit III .

Conclusions and Future Work

We have developed a theoretical framework that allows us to create hyperbolic Islamic patterns that are
related to Euclidean patterns. We have shown how to do this for each of the 17 “wallpaper” groups with 3-,
4-, or 6-fold rotational symmetries. One direction of future work would be to create hyperbolic patterns that
were related to the remaining wallpaper groups. For some of those wallpaper groups, it is not clear what the
appropriate hyperbolic generalization is. Other directions of future work could include creating hyperbolic
versions of other kinds of Islamic patterns, such as Kufic or star patterns. For example, it should be possible
to generate hyperbolic star patterns by combining the methods above and those of Kaplan [7].
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Figure 11: A pattern from the Alhambra with sym-
metry groupp3 ( = (3,3,3) ).

Figure 12: A hyperbolic pattern based on the pattern
of Figure 11, with symmetry group (3,3,4).
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