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ABSTRACT: In 1958, the Dutch artist M.C. Escher became the first person to
create artistic patterns in hyperbolic geometry. He used the Poincaré circle model
of hyperbolic geometry. Slightly more than 20 years later, my students and I
implemented a computer program that could draw repeating hyperbolic patterns
in this model. The program made substantial use of the Weierstrass model of
hyperbolic geometry as an intermediate step. We have also made use of the Klein
model of hyperbolic geometry, both for approximating hyperbolic lines and for
transforming motifs from one set of combinatorial values to another.
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1.INTRODUCTION

For over 100 years mathematicians
have created repeating patterns in
the hyperbolic plane, but the Dutch
artist M.C. Escher was the first person
to create such patterns for artistic
purposes. In 1958 he was inspired by
an article he received from the
Canadian
Coxeter who had used one of Escher's
patterns in that article. The article
contained a figure displaying a
triangle pattern in the Poincaré circle
model of hyperbolic geometry. Figure
1 shows a copy of that pattern. In
Escher's words, this figure gave him
“quite a shock” because it showed
him how to construct an infinite
pattern with a circular limit — that is
with motifs that got smaller towards
the edge of a circular disk — and it
also gave Escher's hyperbolic patterns
their “Circle Limit” names.

Escher created his patterns as wood
block prints, so he had to laboriously
carve each one and print it by hand.

mathematician H.S.M.

It seemed to me that computer
graphics would provide a much easier
solution to the problem of creating
such hyperbolic patterns.
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Figure 1: Coxeter's figure.

In 1980 two students and I set about
to design and implement a computer
program that could draw repeating
hyperbolic patterns as Escher had
done. Of course we wanted to display
the output in the Poincaré circle



model, but it turned out that the
transformations were  easier  to
represent in the Weierstrass model of
hyperbolic geometry. Since there are
simple mappings between the two
models, the Weierstrass model was
also incorporated into our program.
Later, I also made use of the Klein
model of hyperbolic geometry. It was
used in two ways: first to obtain
simple approximations to circular
arcs that represented hyperbolic
lines, and second to transform motifs
from one combinatorial pattern to
another.

In the following sections, I will start
with a review of some concepts from
hyperbolic geometry, including the
Poincaré and Weierstrass models of
it. Then 1 will discuss repeating
patterns and regular tessellations.
Next, I will describe the pattern
generation algorithm. Then 1 will
show how the Klein model was used
in creating patterns. Finally, I will
summarize the results.

2.HYPERBOLIC GEOMETRY AND
THE POINCARE AND
WEIERSTRASS MODELS

By its definition, hyperbolic geometry
satisfies the negation of the Euclidean
parallel axiom together with all the
other axioms of (plane) Euclidean
geometry. Specifically, the hyperbolic
parallel axiom states that given a line
and a point not on that line, there is
more than one line through the point
that does not meet the original line.
In contrast to the Euclidean plane and
the sphere, there is no isometric
(distance preserving) embedding of
the hyperbolic plane in Euclidean 3-
space, which was proved by David
Hilbert in 1901 [4]. Thus we must
rely on models of hyperbolic

geometry: constructions in which
Euclidean objects have hyperbolic
interpretations, and which must
perforce distort distances from their
Euclidean values.

As an example, in the Poincaré circle
model, the hyperbolic points are just
the points in the interior of a
Euclidean bounding circle, and the
hyperbolic lines are represented by
circular arcs within the bounding
circle that are perpendicular to it
(with diameters as special cases). The
Poincaré circle model appealed to
Escher and has appealed to other
artists who wished to create repeating
hyperbolic patterns for two reasons:
(1) it can show an entire pattern in a
bounded region, and (2) is s
conformal, that is, angles have their
Euclidean measure, which means that
copies of motifs retain the same
approximate shape regardless of size.
Distances are measured in such a way
that equal hyperbolic  distances
correspond to ever smaller Euclidean
distances as one approaches the
bounding circle. Figure 2 shows a
rendition of Escher's first hyperbolic
pattern Circle Limit I

Figure 2: A rendition of Escher's
hyperbolic pattern Circle Limit 1.



In Circle Limit I the circular arcs
forming the backbone lines of the fish
are hyperbolic lines in the Poincaré
model and trailing edges of the fishes'
fins also lie along hyperbolic lines.

The points of the Weierstrass model
of hyperbolic geometry are points on
the upper sheet of the ‘“unit”
hyperboloid of two sheets in
Euclidean 3-space: z’-x’-y’=1, z>0.
Each line of the Weierstrass model is
a hyperbola that is the intersection of
a plane through the origin with the
upper sheet of the hyperboloid. There
is a simple mapping from the
Weierstrass model to the Poincaré
model considered as the unit disk in
the xy-plane - it is “stereographic”
projection toward the point (0,0,-1)
(the vertex of the lower sheet of the
unit hyperboloid). It is given by the
formula (x,y,z) = (x/(1+ z), y/(1+ z), 0),
the intersection of the projector with
the xy-plane. The inverse mapping is
also simple - its formula is given by
(xy) = 2x/(1-15),2y/(1-5),(1+s)/(1-5)),
where s=x’+y°.

Poincaré also devised his upper half-
plane model whose points are those in
the xy-plane with y>0. This model is
also conformal, but since it could not
be displayed in a finite area, it does
not have as much appeal to artists.
Neither have I found a use for this
model in creating hyperbolic patterns.
The book by Greenberg [3] has an
extensive discussion of hyperbolic
geometry, including the various
models of it.

3.REPEATING PATTERNS, REGULAR
TESSELLATIONS, AND SYMMETRIES
A repeating pattern is a pattern made
up of congruent copies of a basic
sub- pattern or motif. If we disregard
color, a triangle is a motif for the

pattern of Figure 1 (taking color into
account, the triangle patterns has
what is called perfect 2-color
symmetry, however). In Figure 2, the
motif can be taken to be half a black
fish together with half of an adjacent
white fish. Note that in that pattern,
the black fish are not congruent to
the white fish, since three black fish
meet nose- to- nose whereas only two
white fish meet nose- to- nose. The
same definition of a repeating pattern
applies to each of the three “classical”
geometries: the sphere, the Euclidean
plane, and the hyperbolic plane
(which have constant positive, zero,
and negative curvatures respectively).
One important kind of repeating
pattern is the regular tessellation,
denoted f{p,q}, consisting of regular
p-sided polygons or p-gons meeting
q at a vertex. If (p-2)(¢-2) > 4, the
tessellation {p,q} is a tessellation of
the hyperbolic plane; otherwise if
(p-2)(g-2) = 4 or (p-2)(g-2) < 4, the
tessellation is Euclidean or spherical
respectively. Figure 3 shows the {6,4}
tessellation superimposed on the
Circle Limit I pattern of Figure 2.

superimposed on a rendition of the
Circle Limit I pattern .



Regular tessellations form the basis
for all four of Escher's Circle Limit
patterns, with {6,4} also forming the
basis for Circle Limit IV, and the {8,3}
tessellation forming the basis for
Circle Limit Il and Circle Limit III
Figure 4 shows the {8,3} tessellation
superimposed on a rendition of the
Circle Limit III pattern. Regular
tessellations also form the basis for
all of Escher's spherical patterns, and
many of his Euclidean repeating
patterns.

Figure 4: The {8,3} tessellation
superimposed on a rendition of the
Circle Limit IIl pattern .

A symmetry of a repeating pattern is
an isometry  (distance- preserving)
transformation that takes the pattern
onto itself. For example reflections
across the sides of the triangles of
Figure 1  (ignoring color) are
symmetries of that pattern.
Reflections across a line in the
Poincaré model are inversions in the
circular arcs representing the lines.
Reflections across the backbone lines
are symmetries of the pattern of
Figure 2. Other symmetries of that
pattern include rotations by 60
degrees about meeting points of
noses of the black fish, and

translations by four fish- lengths
along backbone lines. In hyperbolic
geometry, as in Euclidean geometry,
successive reflections across two lines

having a common perpendicular
results in a translation, and
successive reflections across

intersecting lines results in a rotation
about the intersection point by twice
the angle of intersection.

A repeating pattern has n-color
symmetry if it is colored with n colors
and each symmetry of the uncolored
pattern maps all motifs of one color
to a single color, that is, a symmetry
of the wuncolored pattern permutes
the colors. It is also required that
colors be permuted transitively so
that all the colors get mixed around.
This concept is usually called perfect
color symmetry. The pattern of Figure
1 has 2-color symmetry; in Figure 4,
the Circle Limit IIl pattern has 4- color
symmetry. The pattern in Figure 2
does not have color symmetry since
there is no symmetry that maps the
black fish to the white fish because,
as mentioned above, the black and
white fish are not congruent.

4.THE PATTERN GENERATION
ALGORITHM

The patterns that our algorithm can
generate are based on the regular
tessellations {p,q }. We start by
interactively constructing a motif
within the central p-gon. That motif
is then copied by using reflections
across diameters or rotations about
the center of the bounding circle (or
both), depending on the symmetries
of the desired pattern, to form what
we call the super- motif. Thus the
super- motif of the Circle Limit Il
pattern consists of four fish. In
theory, the super- motif can be
successively transformed across the



sides of the p-gons until they fill the
disk. Since there are an infinite
number of p-gons, we stop after the
disk has been sufficiently filled to
give an 1idea of what the infinite
pattern would look like. There are
different ways to choose which p-
gon to fill next. There is an overview
of these choices in [2].
In the Weierstrass model, reflections
can be represented by 3-by-3
matrices that map the upper sheet of
the hyperboloid onto itself. For
example, reflection across a line that
makes an angle 6 with the x-axis is
represented by reflection in a plane
that makes an angle 6 with the x- axis:

cos(260) sin(20) O

sin(20) —cos(260) 0 (1)

0 0 1

Reflection across a hyperbolic line/
circular arc in the Poincaré model that
is perpendicular to the x-axis (and
the bounding circle) is represented in
the Weierstrass model by:

—cosh(2d) 0 sinh(2d)

0 1 0

—sinh(2d) 0 cosh(2d)
where d is the hyperbolic distance
from the origin to the intersection of
the circular arc and the x-axis. The
product of two reflections as in (1) is
a rotation about the z- axis. If we
apply such a rotation, then the
reflection represented in (2), then the
inverse of the rotation, we can obtain
the matrix that represents reflection
across any line. Since any isometry
can be built from at most three
reflections, the matrices above can be
used to generate the isometry. The
reason for using 3-by- 3 real matrices
instead of complex linear fractional
mappings is that the latter cannot
easily represent orientation- reversing
transformations.
Once the motif has been created in

()

the Poincaré model, the points that
describe it are mapped up onto the
Weierstrass model. The resulting
points in 3- space are then
transformed around the Weierstrass
model using the 3-by-3 matrices as
described  above. Finally  the
transformed copies of the motif are
mapped back down onto the Poincaré
disk to generate the whole pattern.
The details are treated in [1]. Figure 5
shows a rendition of Escher's Circle
Limit IV pattern that was generated by
this process.

Figure 5: A rendition of Escher's
hyperbolic pattern Circle Limit IV.

S.THE KLEIN MODEL AND ITS USES
As in the Poincaré model, the points
in the are the interior points of the
unit circle. But unlike the Poincaré
model, hyperbolic lines are
represented by chords. There is a
simple relation between the models:
the orthogonal circular arc and the
chord that represent a hyperbolic line
have the same endpoints on the
bounding circle.

There is a simple mapping from the
Poincaré model to the Klein model:

(x,y) = 2x/(1+ 5), 2y/(1+ s)), where s =
x*+y>. The mapping (x,y) — (x/d, y/d)



is its inverse, where d=1+V1-x*-y* .

One use of the Klein model is to
obtain an approximation of a segment
of a hyperbolic line/orthogonal
circular arc in the Poincaré model by
Euclidean line segments. This is
useful when the orthogonal circular
arc is close to the center of the
bounding circle, and thus has a large
radius of curvature. Some graphics
systems do not handle this situation
well. The approximation works by
mapping the endpoints of the arc
segment to the Klein model, obtaining
a Euclidean line segment which can
easily be finely subdivided, mapping
the subdivision points back to the
Poincaré model and connecting them
with short Euclidean line segments.
The Klein model also proved useful in
another situation. After a motif has
been created for a pattern based on a
{p.q} tessellation, we would like to
transform it so that it works with a
{p’.q'} tessellation, thus giving a new
pattern. Consider the subdivision of
the central p-gon into p isosceles
triangles with angles 2n/p,m/q, and
w/q. 1If the motif for the pattern
based on {p,q}fits in such an isosceles
triangle, we proceed as follows. First
map the motif inside the triangle to
the Klein model, which would be a
Euclidean isosceles triangle. That
isosceles triangle can be deformed by
a differentially scaling along the x-
axis and y-axis to obtain the
Euclidean/Klein  isosceles  triangle
associated with the {p’q'} tessellation.
This last isosceles triangle and the
motif within it can then be mapped to
the Poincaré model.

As an example of this process, we
start with Escher's Circle Limit 1
pattern and then create a pattern
based on the {6,6} tessellation in
which the black fish are congruent to

the white fish, and thus has 2-color
symmetry. Figure 6 shows the
Poincaré isosceles triangle pattern
associated with the {6,4} tessellation.

Figure 6: The isosceles triangle motif
associated with the {6,4} tessellation.

Figure 7 shows the transformed
isosceles triangle motif associated
with the {6,6} tessellation. Note that
since p'= p and g’ > g the {p',q'} motif
extends farther toward the bounding
circle.

Figure 7: The isosceles triangle motif
associated with the {6,6} tessellation.

Finally, we use the transformed motif



to generate the whole pattern, as
shown in Figure 8.

Figure 8: The Circle Limit I pattern
transformed to the {6,6} tessellation.

As another example of this process,
we transform the 4-arm cross pattern
of Escher's Circle Limit Il print to a
corresponding 5-arm cross pattern.
Figure 9 shows a rendition of Escher's

Figure 9: A rendition of Escher's
hyperbolic pattern Circle Limit II.

Figure 10 shows the corresponding 5-
arm cross pattern that is based on the
{10,3} tessellation.

We note that this transformation
process only works if the motif is
associated with the isosceles triangle

described above. For example in
Circle Limit III, which is based on the
{8,3} tessellation, there are four fish
in the super- motif, which therefore
must be contained in two of the
isosceles triangles. However, by
designing a new fish motif like that of
Circle Limit III, we can create a new
pattern based on the {10,3}

Figure 10: A 5-arm cross pattern
based on the {10,3} tessellation.

S

Figure 11: A fish pattern based on the
{10,3} tessellation.



6. CONCLUSIONS

After discussing basic concepts, we
have shown how different models of
hyperbolic geometry play important
roles in the generation of repeating
patterns of the hyperbolic plane.
First, the Poincaré circle model is
useful for actually displaying such
patterns because: (1) it is finite, so
that viewers can see the entire pattern
at once, and (2) it is conformal, so
that copies of the motif retain their
approximate shapes and are thus
recognizable even when small. Next,
the Weierstrass model plays a key
role in the pattern  generation
process, since the transformations are
easy to represent in that model.
Finally, the Klein model can be used
to create new motifs from existing
motifs and thus to create new
patterns.
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