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ABSTRACT:
This paper discusses patterns ontriply periodic polyhedra, infinite polyhedra that repeat in three
independent directions in Euclidean 3-space. We further require that all the vertices be congruent by
a symmetry of the polyhedron, i.e. that they be uniform, and also that each of the faces is a single
regular polygon. We believe that we are the first to apply patterns to such polyhedra. The patterns we
use are inspired by the Dutch artist M.C. Escher. The patterns are preserved, up to color symmetry,
by the symmetries of the polyhedra.
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1. INTRODUCTION
A number of artists, including M.C. Escher, have
placed patterns on convex polyhedra. In contrast,
we show Escher-inspired patterns ontriply pe-
riodic polyhedra, infinite polyhedra that repeat
in three independent directions in Euclidean 3-
space. Doris Schattschneider’s bookM.C. Es-
cher: Visions of Symmetryis a good reference
for Escher’s works [3]. We require that those
polyhedra (1) be composed of copies of a regu-
lar polygon, and (2) that they beuniform: all ver-
tices are congruent by a symmetry of the polyhe-
dron. Figure 1 shows a pattern of angular fish on
the simplest triply periodic polyhedron, which is
based on the cubic lattice.

The triply periodic polyhedra we discuss are
often called hyperbolic since the sum of the an-
gles of the polygons at each vertex is greater than
360 degrees (if the angle sum were 360 degrees,
the “polyhedron” would be flat; and if it were
less than 360 degrees, the polyhedron would be
finite).

In 1926 H.S.M. Coxeter and John Petrie dis-
covered a regular class of triply periodic poly-
hedra which they calledinfinite skew polyhe-
dra and have symmetry groups that are flag-
transitive, and thus are natural analogs of the Pla-
tonic Solids. They designated those polyhedra

Figure 1: A pattern of angular fish on the{4,6 |
4} polyhedron.

by the extended Schläfli symbol{p,q | n}, indi-
cating that there areq p-gons around each vertex
andn-gonal holes. Coxeter and Petrie showed
there are three possibilities:{4,6 | 4} (shown in
Figure 1),{6,4 | 4}, and{6,6 | 3} [1].

In the following section we dicuss the rela-
tionship between triply periodic polyhedra and
regular hyperbolic tessellations. Then we show
patterns on each of the infinite skew polyhedra.
Next we show a patterns on less regular polyhe-



dra. Finally we draw conclusions and indicate
directions of future work.

2. PERIODIC POLYHEDRA AND REGU-
LAR TESSELLATIONS

We use the Schläfli symbol{p,q} to denote the
regular tessellation formed by regularp-sided
polygons orp-gonswith q of them meeting at
each vertex. If(p− 2)(q− 2) > 4, {p,q} is a
tessellation of the hyperbolic plane (otherwise it
is Euclidean or spherical). Figure 2 shows the
tessellation{4,6} in the Poincaré disk model of
hyperbolic geometry. Escher based all four of

Figure 2: The regular tessellation{4,6}.

his hyperbolic “Circle Limit” patterns, and many
of his Euclidean patterns on regular tessellations.
Figure 3 shows that tessellation superimposed
on an Escher-like pattern of angular fish similar
to those of Figure 1.

As mentioned, each of the triply periodic poly-
hedra we consider have ap-gon for each of its
faces, withq p-gons around each vertex (since
the polyhedron is uniform). Thus we can also
use the Schläfli symbol{p,q} to refer to such
polyhedra, however, unlike regular tessellations,
different polyhdera can have the same{p,q}, as
we will see below. We have already introduced
the extended extended Schläfli symbol{p,q | n}
used by Coxeter and Petrie to (uniquely) specify

Figure 3: The regular tessellation{4,6} super-
imposed on a pattern of angular fish.

their more regular infinite skew polyhedra.
For the three infinite skew polyhedra and the

other triply periodic polyhedra discussed below,
there is an intermediate “connecting surface” be-
tween the polyhedron{p,q} (or {p,q | n}) and
the corresponding regular tessellations{p,q}.
First, these periodic polyhedra are approxima-
tions to triply periodic minimal surfaces (TPMS).
Alan Schoen has done extensive investigations
into TPMS [2]. Figure 4 shows the Schwarz
P-surface, which has the same topology as the
polyhedron in Figure 1. In fact the embedded
Euclidean lines of the P-surface are just the back-
bone lines of the fish in Figure 1.

Second, each smooth surface has auniversal
covering surface: a simply connected surface
with a covering map onto the original surface,
which is a sphere, the Euclidean plane, or the hy-
perbolic plane. Since each TPMS has negative
curvature (except for possible isolated points),
its universal covering surface does too, and thus
has the same large-scale geometry as the hyper-
bolic plane. In the same vein, we might call a hy-
perbolic pattern based on the tessellation{p,q}
the “universal covering pattern” for the related
pattern on the polyhedron{p,q}. Thus Figure
5 shows the universal covering pattern for the
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Figure 4: The Schwarz P-surface, showing em-
bedded lines.

patterned polyhedron of Figure 1. In the next
section we discuss fish patterns on infinite skew
polyhedra.

3. ANGULAR FISH ON INFINITE SKEW
POLYHEDRA

In Figure 1 we have shown a pattern of angular
fish on the infinite skew polyhedron{4,6 | 4}. In
this section we also show patterns of angular fish
on the other two infinite skew polyhedra:{6,4 |
4} and{6,6 | 3}.

The {6,4 | 4} polyhedron is the dual of the
{4,6 | 4} polyhedron in which each vertex is
replaced by a hexagon. The{4,6 | 4} polyhe-
dron is based on the bi-truncated, cubic, space-
filling tessellation by truncated octahedra. The
{6,4 | 4} polyhedron divides space into two sets
of truncated octahedra which are connected by
their square faces. Figure 6 shows the polyhe-
dron decorated with angular fish. Figure 7 shows
a top view of the backbone lines of the fish on
the {6,4 | 4} polyhedron, which are the same
lines as the backbone lines of the fish in Figure
1 — not surprising since the polyhedra are duals.
Thus the TPMS corresponding to the{6,4 | 4}
polyhedron is the same as for the{4,6 | 4} poly-

Figure 5: The “universal covering pattern” for
Figure 1.

Figure 6: The{6,4 | 4} polyhedron decorated
with angular fish.
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hedron: the Schwarz P-surface. Figure 8 shows

Figure 7: A top view of the{6,4 | 4} polyhe-
dron.

the universal covering pattern for the pattern
shown in Figures 6 and 7.

The self-dual{6,6 | 3} polyhedron is more
difficult to understand than the other two infi-
nite skew polyhedra. It is formed from trun-
cated tetrahedra with their triangular faces re-
moved. Such “missing” triangular faces from
four truncated tetrahedra are then placed in a
tetrahedral arrangement (around a small invisi-
ble tetrahedron). Figure 9 shows a side view
of a {6,6 | 3} polyhedron decorated with angu-
lar fish. Figure 10 shows a top view looking
down at one of the vertices (where six hexagons
meet). The corresponding TPMS is Schwarz’s
D-surface, where D stands for Diamond [2]. The
Schwarz D-surface divides space into two con-
gruent parts, each with the shape of a thickened
diamond lattice. It also has embedded Euclidean
lines, which correspond to the backbone lines of
the fish. Figure 11 shows the corresponding uni-
versal covering pattern based on the{6,6} tes-
sellation.

In the next section we discuss patterns on
{3,8} polyhedra.

Figure 8: The “universal covering pattern” for
Figures 6 and 7.

Figure 9: The{6,6 | 3} polyhedron decorated
with angular fish.
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Figure 10: A top view of a pattern of fish shown
in Figure 9.

Figure 11: The universal covering pattern for
Figures 9 and 10.

4. PATTERNS ON {3,8} POLYHEDRA
In this section we start by examining butterfly
patterns on two different{3,8} Polyhedra, so we
can see visually that the Schläfli symbol is not
enough to specify a triply periodic minimal sur-
face. Then we end by considering a fish pattern
on one of those polyhedra.

The butterfly pattern was inspired by Escher’s
Regular Division Drawing 70, which is shown
in Figure 12. Figure 13 shows the correspond-

Figure 12: Escher’s Regular Division Drawing
70.

ing hyperbolic universal covering pattern for the
patterns on the first two polyhedra that we will
discuss.

The first{3,8} polyhedron has the shape of a
diamond lattice, like the Schwarz D-surface, and
thus the intermediate TPMS is that surface. This
polyhedron is made up of parts of regular octa-
hedra of two types: “hub” octahedra and “strut”
octahedra. Each hub octahedron has four strut
octahedra placed on alternate faces of that hub,
so four hub triangles are covered by struts and
four are exposed. Each strut connects two hubs
to opposite faces of the strut, which are covered
by the hubs, leaving six exposed triangle faces.
Thus eight equilateral triangles meet at each ver-
tex, and this a{3,8} polyhedron. However it
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Figure 13: A butterfly pattern based on the
{3,8} tessellation.

is not as regular as the infinite skew polyhedra
since there is no symmetry of the polyhedron
that maps a hub triangle face to a strut triangle
face (and vice versa). Figure 14 shows this poly-
hedron covered with butterflies.

Figure 14: Butterflies on a{3,8} diamond lat-
tice polyhedron.

The second{3,8} polyhedron is composed
of skew cubes with alternating chiralities cen-
tered at cubic lattice points and connected by
their (missing) square faces. Thus the interme-

diate TPMS is the Schwarz P-surface. Figure 15
shows that polyhedron with a butterfly pattern.

Figure 15: Butterflies on a{3,8} polyhedron
made of snub cubes.

Finally we show a pattern of fish on the
“diamond lattice” {3,8} polyhedron that was
inspired by Escher’s hyperbolic patternCircle
Limit III . Figure 16 shows one view of that poly-
hedron. Figure 17 shows Escher’sCircle Limit
III pattern with the{3,8} tessellation superim-
posed. Figure 18 is a view of the polyhedron
down a 3-fold rotation axis.

5. CONCLUSIONS
We have discussed some of the theory of triply
periodic polyhedra. In particular we have con-
centrated on triply periodic polyhedra that are
uniform (all veritces are congruent) and com-
posed of copies of a regularp-sided polygon.
We have also shown how those polyhedra can be
decorated with patterns that are related to repeat-
ing patterns of the hyperbolic plane. In particu-
lar, we have shown angular fish patterns on each
of the three most regular triply periodic polyhe-
dra, the infinite skew polyhedra of Coxeter and
Petrie. We have also shown an Escher-inspired
butterfly pattern on two different{3,8} polyhe-
dra. Finally we have shown a fish pattern on a
{3,8} polyhedron that was inspired by Escher’s
hyperbolic printCircle Limit III .

6



Figure 16: A fish pattern on the diamond lattice
{3,8} polyhedron.

Figure 17: Escher’sCircle Limit III with {3,8}
superimposed.

Figure 18: The polyhedron showing a 3-fold ro-
tation axis.

In the future we hope to investigate other less
regular triply periodic polyhedra. We would also
like to place other Escher-inspired patterns on
triply periodic polyhedra, either regular or less
regular.
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