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ABSTRACT: We present an algorithm that can create patterns that are locally fractal in nature, but

repeat in two independent directions in the Euclidean plane — in other word “wallpaper patterns”.

The goal of the algorithm is to randomly place progressively smaller copies of a basic sub-pattern or

motif within a fundamental region for one of the 17 wallpaper groups. This is done in such a way

as to completely fill the region in the limit of infinitely many motifs. This produces a fractal pattern

of motifs within that region. Then the fundamental region is replicated by the defining relations of

the wallpaper group to produce a repeating pattern. The result is a pattern that is locally fractal, but

repeats globally — a mixture of both randomness and regularity. We show several such patterns.

Keywords: Fractals, wallpaper groups, algorithm

1. INTRODUCTION

We have previously described how to fill a pla-

nar region with a series of progressively smaller

randomly-placed sub-patterns or motifs produc-

ing pleasing patterns [2, 5]. In this paper we ex-

plain how the basic algorithm can be modified

to fill fundamental regions of wallpaper groups,

and thus create wallpaper patterns. Figure 1

shows a random circle pattern with symmetry

group p1. Thus to create our patterns, we first

fill a fundamental region for one of the 17 2-

dimensional crystallographic groups (or wallpa-

per groups) with randomly placed, progressively

smaller copies of a motif, such as the circles in

Figure 1. Then we apply transformations of the

wallpaper group to the fundamental region in or-

der to tile the plane. This produces a locally ran-

dom, but globally symmetric pattern.

In the next section we describe how the ba-

sic algorithm works. Then we recall a few facts

about wallpaper groups, and indicate how the

alorithm can be modified to produce filled funda-

mental regions for those groups. Next we exhibit

some patterns. Finally, we draw conclusions and

summarize the results.

Figure 1: A circle pattern with p1 symmetry.

2. THE ALGORITHM

The algorithm works by placing a sequence of

progressively smaller sub-patterns or motifs mi

within a region R so that a motif does not overlap

any previously placed motif. Random locations

are tried until a non-overlapping one is found.

This process continues indefinitely if the motifs

adhere to an “area rule” which is described fol-

lowing the algorithm:



For each i = 0,1,2, . . .

Repeat:

Randomly choose

a point within R to

place the i-th mo-

tif mi.

Until (mi doesn’t intersect

any of m0,m1, ...,mi−1)

Add mi to the list of success-

ful placements

Until some stopping condition is met,

such as a maximum value of i or a min-

imum value of Ai.

It has been found experimentally by the second

author that the algorithm does not halt for a

wide range of choices of shapes of R and the

motifs provided that the motifs obey an inverse

power area rule: if A is the area of R, then for

i = 0,1,2, . . . the area of mi, Ai, can be taken to

be:

Ai =
A

ζ (c,N)(N + i)c
(1)

where c > 1 and N > 1 are parameters, and

ζ (c,N) is the Hurwitz zeta function: ζ (s,q) =

∑∞
k=0

1
(q+k)s . Thus limn→∞ ∑n

i=0 Ai = A, that is,

the process is space-filling if the algorithm con-

tinues indefinitely. In the limit, the fractal di-

mension D of the placed motifs can be com-

puted to be D = 2/c [5]. Examples of the al-

gorithm written in C code can be found at the

second author’s web site [6]. It is conjectured

by the authors that the algorithm does not halt

for non-pathological shapes of R and mi, and

“reasonable” choices of c and N (depending on

the shapes of R and the mis). In fact this has

been proved for 1 < c < 1.0965... and N ≥ 1 by

Christopher Ennis when R is a circle and the mo-

tifs are also circles [3].

3. WALLPAPER PATTERNS

It has been known for more than a century that

there 17 different kinds of patterns in the Eu-

clidean plane that repeat in two independent di-

rections. Such patterns are called wallpaper pat-

terns and their symmetry groups are called plane

crystallographic groups or wallpaper groups. In

1952 the International Union of Crystallography

(IUC) established a notation for these groups. In

1978 Schattschneider wrote a paper clarifying

the notation and giving an algorithm for identi-

fying the symmetry group of a wallpaper pattern

[4]. Later, Conway popularized the more general

orbifold notation [1]. So, as mentioned above,

we create fractal wallpaper patterns by first fill-

ing a fundamental region R for a wallpaper group

with motifs, then extend the pattern using trans-

formations of the wallpaper group. Figures 1

(above) and 2 show patterns that have p1 (or o in

orbifold notation) symmetry, the simplest kind

of wallpaper symmetry, with only translations in

two independent directions. In Figure 2 notice

that the peppers on the left edge “wrap around”

and are continued on the right edge; similarly

peppers on the top edge “wrap around” to the

bottom.

Figure 2: A pattern of peppers with p1 symme-

try.

We consider two issues that arise with motifs

being placed in a fundamental region for a wall-

paper group: (1) what to do if a motif crosses a

mirror line that is the boundary of the region, and

(2) what to do if the motif overlaps a center of ro-

tation. One solution is to just let that happen, as
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is shown in Figure 3 for circles overlapping mir-

ror lines. Another solution is to simply reject all

Figure 3: Overlapping circles on mirror bound-

aries.

motifs that cross a mirror boundary or overlap a

rotation point. Figure 4 shows a pattern of hearts

with p2mm symmetry that avoids the reflection

lines.

Figure 4: A pattern of hearts that avoids mirror

boundaries.

If a fundamental region has a mirror boundary

and the overlapping motif itself has mirror sym-

metry, then a more satisfactory solution is that

we move the motif (perpendicularly) onto the

boundary so that the mirror of the motif aligns

with the boundary mirror. Also, the area rule cal-

culation needs to be adjusted each time this hap-

pens since only half of the motif is placed within

the fundamental region. Figure 5 shows a frac-

tal pattern of flowers with p6mm symmetry with

flowers centered on the mirror lines.

Figure 5: A pattern of flowers with some on mir-

ror boundaries.

Similarly if the fundamental region has a ro-

tation point and the overlapping motif has that

kind of rotational symmetry, we move the mo-

tif to be centered on the rotation point. Figure 6

shows a p4 pattern of circles with magenta cir-

cles on one kind of 4-fold rotation point (those

4-fold points are at the corners, centers of the

edges, and center of the figure). Again the area

Figure 6: A p4 pattern of circles with some cen-

tered on 4-fold rotation points.

rule calculation needs to be adjusted if a motif
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overlaps one of the 4-fold points or the 2-fold

point. Of course circles make excellent motifs

for testing these solutions since they have mirror

symmetry across any axis through the center and

n-fold rotational symmetry for any n.

4. SAMPLE PATTERNS

In this section, we present a few more patterns.

First, Figure 7 shows a pattern of black and

white triangles on a blue background with p4mm

symmetry. Figure 8 shows another triangle pat-

Figure 7: A triangle pattern with p4mm symme-

try.

tern, but with p6mm symmetry. Finally, Figure 9

Figure 8: A triangle pattern with p6mm symme-

try.

shows a pattern of arrows with p6mm symmetry.

Figure 9: An arrow pattern with p6mm symme-

try.

5. CONCLUSIONS

We have presented a geometric algorithm that

can be used to fill the fundamental region of one

of the 17 wallpaper groups with a sequence of

progressively smaller motifs. In turn that filled

fundamental region can be replicated about the

Euclidean plane to produce a repeating pattern

that is locally fractal.

In the future we hope to extend this concept to

hyperbolic patterns and patterns with color sym-

metry.
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