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Abstract

M.C. Escher’s repeating patterns have two distinguishiéagures: they interlock without gaps or overlaps, and they
are colored in a regular way. In this paper we will discuss #ieicond characteristic, which is usually called color
symmetry. We will first discuss the history and theory of cadgmmetry, then show several patterns that exhibit
color symmetry.

Introduction

Figure 1 below shows a pattern with color symmetry in theesbflthe Dutch artist M.C. Escher’s “Circle
Limit” patterns. Escher was a pioneer in creating pattdmaswere colored symmetrically, using two colors

Figure 1. A pattern with 5-color symmetry.

(black-white) andn colors forn > 2. In the next section, we review the history and theory of colo
symmetry. Then we briefly discuss regular tessellationshgmerbolic geometry, since such tessellations
provide a framework for repeating patterns, and hyperbgdiometry allows for many different kinds of
repeating patterns and thus many kinds of color symmetryxt,Nee explain how to implement color
symmetry in common programming languages. With that bazkys, we show patterns of fish like those of
Figure 1 that illustrate these concepts. Then we discudsgEstyperbolic prinCircle Limit 1l and related
patterns which have an additional color restriction. Hinale suggest directions for future research.



Color Symmetry: History and Theory

Others created patterns with color symmetry before Esbhéhe was quite prolific at making such patterns
and, the use of color symmetry was one of the hallmarks of lbikkwAs early as 1921 Escher created a
pattern with 2-color (black-white) symmetry shown in Fig&, 15 years before the theory of such patterns
was elucidated [Woods36]. Figure 3 shows a hyperbolic pattéth 2-color symmetry. Starting in the mid

Figure2: An Escher pattern with 2-color symmetryrigure 3: A hyperbolic pattern of angular fish with
2-color symmetry.

1920's, Escher drew patterns with 3-color symmetry, and988lhe created Regular Division Drawing
20 (Figure 6 below, and the inspiration for Figure 1), a pattef fish, with 4-color symmetry. From
1938 to 1942 Escher developed his own theory of repeatingrpat some of which had 3-color symmetry
[Schattschneider04]. This was two decades before matiaaret defined their own theory af-color
symmetry forn > 2 [Van der Waerden61].

In order to understand color symmetry, it is necessary tergtdnd symmetries without respect to color.
A repeating patterris a pattern made up of congruent copies of a basic subpattemnotif. A symmetry
of a repeating pattern is an isometry (a distance presetramgformation) that takes the pattern onto itself
so that each copy of the motif is mapped to another copy of thf.n-or example, reflection across the
vertical diameter in Figure 3 is a symmetry of that pattemame reflections across the diameters that make
60 degree angles with the vertical diameter. Also rotatipri®0 degrees about the center is a symmetry
of the pattern in Figure 2. &olor symmetnyof a pattern of colored motifs is a symmetry of the uncolored
pattern that takes all motifs of one color to motifs of a singblor — that is, it permutes the colors of the
motifs. This concept is sometimes callpdrfectcolor symmetry. Escher required that colored patterns
adhere to thenap-coloring principle motifs that share an edge must be different colors (butfsofithe
same color can share a vertex), and we will follow that pplecialso. For example, reflection about the
horizontal or vertical axis through the center of Figure 2limost a color symmetry of that pattern since
it interchanges black and white (there are a few small pidtasdo not quite correspond). In Figure 1, a
counter-clockwise rotation about the center by 72 degreascolor symmetry in which ree> yellow —
blue — brown — white — red. Black remains fixed since it is used as an outline/detddr. Note that if
a symmetry of an uncolored pattern has pefipthen the period of the color permutation it induces must



divide k. In group theory terms, this means that the mapping from sgimes to color permutations is a
homomorphism. So, in Figure 1, since rotation about theecdnt 72 degrees has period 5 (and the five
central fish must be different colors by the map-coloringigiple), the color permutation also has period 5
since 5 is a prime. In general any rotation of prime pe#aslould induce a color permutation of periéd
See [Schwarzenberger84] for an account of the developnfi¢éiné eheory of color symmetry.

Regular Tessellations and Hyperbolic Geometry

One important kind of repeating pattern is tiegular tessellationdenoted{p, ¢}, of the hyperbolic plane

by regularp-sided polygons meeting at a vertex. Actually this definition also works for the sghand

in the Euclidean plane. It is necessary that— 2)(¢ — 2) > 4 to obtain a hyperbolic tessellation. If
(p—2)(q — 2) = 4, the tessellation is Euclidean and there are three pasisilthe tessellation by squares
{4,4}, by regular hexagon§&, 3}, and by equilateral triangle8, 6}. If (p —2)(¢—2) < 4, the tessellation

is spherical and there are five possibilities, correspanttirthe five Platonic solids. Escher made extensive
use of the Euclidean tessellations as a framework for hisiRedivision Drawings [Schattschneider04].
He used{6,4} in his construction of his hyperbolic patter@rcle Limit | and Circle Limit IV; he used

{8, 3} for Circle Limit Il andCircle Limit Ill. Figure 4 showg6,4} in red superimposed d@ircle Limit [;
Figure 5 showg8, 3} in blue superimposed daircle Limit Il. Figures 1 and 3 are based on the tessellations

Figure 4. The {6,4} tessellation (red) superimFigure 5. The {8, 3} tessellation (blue) superim-
posed on th€ircle Limit | pattern. posed on th€ircle Limit Il pattern.

{5,4} and{6,6} respectively.

Since there are infinitely many solutions to the inequality- 2)(q — 2) > 4, there are infinitely many
different hyperbolic patterns. Escher undoubtedly wowdencreated many more such patterns if it had not
required so much tedious hand work. In this age of computieisjs not a problem, so we can investigate
many such patterns with many kinds of color symmetry.

The patterns of Figures 1, 3, 4, and 5 are drawn in the Eucligime, but they could also be interpreted
as repeating patterns in tiReinca€ disk modebf hyperbolic geometry. In this model, hyperbolic points
in this model are just the (Euclidean) points within a Eugfid bounding circle. Hyperbolic lines are
represented by circular arcs orthogonal to the boundirdeciincluding diameters). Thus, the backbone



lines of the fish lie along hyperbolic lines in Figure 3, as lde édges 0{6, 4} in Figure 4. The hyperbolic
measure of an angle is the same as its Euclidean measure disthenodel — we say such a model is
conformal Equal hyperbolic distances correspond to ever smallelidaamn distances toward the edge of
the disk. Thus, all the fish in Figure 1 are hyperbolically shene size, as are all the fish in Figure 3.

A reflection in a hyperbolic line is an inversion in the ciraulrc representing that line (or just Eu-
clidean reflection across a diameter). As in Euclidean gégrremy isometry can be built up from at most
three reflections. For example, successive reflectionsadntersecting lines produces a rotation about the
intersection point by twice the angle between the lines th Bauclidean and hyperbolic geometry. This can
best be seen in Figure 3 which has 120 degree rotations dimuatdeting points of noses; there are also 90
degree rotations about the points where the trailing edffis tips meet. In Figure 1, there are 72 degree
rotations about the tails and 90 degree rotations aboutdisabifins. For more on hyperbolic geometry see
[Greenberg08].

I mplementation of Color Symmetry

Symmetries of of uncolored patterns in both Euclidean amukhyolic geometry [Dunham86] can be im-
plemented as matrices in many programming languages. Tefngmt permutations of the colors, it is
convenient to use integers to represent the colors andsatoagpresent the permutations. The representa-
tion of permutations by cycles or matrices seems less uskfiHigure 1, we let 0— black, 1+ white, 2

+ red, 3« yellow, 4 — blue, and 5— brown. If « is the color permutation induced by counter clockwise
rotation about the center by 72 degrees,

al0] =0, aofl] =2, af2] =3, a[3] =4, a[4] =5, a5 =1.

It is then easy to multiply permutatiomsand 3 to obtain their product as follows:
for i <0 to nColors - 1
Vi ] = Blafi ]]
It is also easy to obtain the inverse of a permutatiorss follows:
fori <0 to nColors - 1
atali )] =i
It is useful to “bundle” the matrix representing a symmetrigtwits color permutation as an array into a
single “transformation” structure (or class in an objedénted language).

Patterns Based on Escher’s Notebook Drawing 20

Escher's Notebook Drawing 20, Figure 6, seems to be the filsisoepeating patterns with 4-color sym-
metry. It is based on the Euclidean square tesselldtion}. It requires four colors since there is a meeting
point of three fish near the fish mouths and thus needs at lea#h®, and the number of colors must divide
4. It was the inspiration for the hyperbolic pattern of Figdr, which as noted above requires at least five
colors since it has rotation points of prime period five, anidan be seen, five colors suffice. Figure 7 shows
a related pattern with 4-fold rotations at the tails and l8-fotations at the dorsal fins — the reverse of
Figure 1. We present two more patterns in this family. Figdiie based on the th5, 5} tessellation. In
order to obtain 4-colored pattern as in Escher’s Noteboawldrg 20, it is necessary that four dividesnd

g — Figure 9 shows such a pattern of distorted fish basefBot}.



Figure 6: Escher’'s Notebook Drawing 20. Figure 7: A fish pattern based on thel, 5} tessel-
lation.

Figure 8: A fish pattern based on thg, 5} tessel- Figure 9: A pattern of distorted fish based on the
lation. {8, 4} tessellation.



The Color Symmetry of CircleLimit 111 and Related Patterns

Escher’s printCircle Limit 11l is probably his most attractive and intriguing hyperbolattprn. Figure 10
shows a computer rendition of that pattern. Escher wantetesign a pattern in which the fish along a
backbone line were all the same color. This is nominally ateddrestriction to obtaining a symmetric
coloring. However in the case dircle Limit lll, four colors are required anyway. Certainly at least three
colors are required since three fish meet at left rear fin Bosthree colors are not enough to achieve color
symmetry. A contradiction will arise if we assume that we oeutolor some of the fish i€ircle Limit 111
using only three colors and while maintaining color symmelio see this, focus on the yellow fish to the
upper right of the center of the circle (with its right fin aetbenter). Red and blue fish meet at its left fin.
There are two possibilities for coloring the fish that megtibse: (1) use two colors, with all the “nose”
fish colored yellow and all the “tail” fish colored red (to peege the coloring of the fish at the yellow fish’s
left fin), or (2) use three colors, with yellow and red fish a€ircle Limit Ill, and the green fish &@ircle
Limit Il being colored blue instead (since yellow, red, and blueterdttree colors). In both cases the color
symmetry requirement would imply that there were at leagtethilifferent colors for the four fish around the
center of the circle. In case (1), the green lower right fistheffour center fish would be red instead since
it is a “tail” fish at the nose of the yellow “focus” fish, and thpper left fish of the four center fish would
be blue, since the “nose” fishes at the tail of the “focus” fighladue. In case (2), the only way that we can
use three colors is to have fish along the same backbone litheelsame color. In this case the green lower
right fish of the four center would have to be blue, and the upgfefish of the four center fish would be
red. So in both cases the central four fish would be colored Baat three different colors, and thus must
use at least four colors to have color symmetry (since theecéna 4-fold rotation point), a contradiction
to the assumption thaircle Limit Il could be 3-colored.

Figure 11 shows a pattern based on {i1@, 3} tessellation and related @ircle Limit Ill, but with five
fish meeting at right fins. Lik€ircle Limit Ill, Figure 11 also satisfies Escher’s additional restrictiat t

Figure 10: A computer rendition of th€ircle Limit Figure 11: A Circle Limit 1l like pattern based on
[l pattern. the {10, 3} tessellation.

fish along the same backbone line be the same color. Cerfaialgolors are needed to color this pattern,



since there is a 5-fold rotation point in the center, but it ba proved that a sixth color, yellow, is actually
needed to satisfy Escher’s restriction.

If Escher’s restriction is removed, it turns out that thetgrat of Figure 11 can be 5-colored, as is shown
in Figure 12. If the fish are “symmetric”, with five fish meetiagboth the right and left fins, then the pattern
can be colored with only five colors and still adhere to Esshstriction that fish along each backbone
line be the same color. Figure 13 shows such a pattern. Fa oropatterns related ircle Limit 1l see
[Dunham09].

Figure 12: A 5-coloring of the pattern of Figure 11.Figure 13: A 5-colored “symmetric” fish pattern.

Conclusions and Future Work

Except for Escher’s patterns, | determined the coloringalldhe patterns of Figures “by hand”, which was
usually a trial and error process. It seems to be a difficdblem to automate the process of coloring a
pattern symmetrically — i.e. with color symmetry while adhg to the map-coloring principle. And even if
that is possible, it would seem to be even harder if we adddtsciestriction that fish alone each backbone
line be the same color faZircle Limit Ill like patterns.
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