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History
◮ People have created symmetrically colored patterns for hundreds

and perhaps thousands of years.

◮ The Dutch artist M.C. Escher created a pattern with 2-color
black-white) symmetry as early as 1921.

◮ H.J. Woods analyzes 2-color symmetry in “Counterchange
Symmetry in Plane Patterns” in Journal of the Textile Institute

(Manchester) in 1936.

◮ Escher created patterns with 3-color in the mid 1920’s, and in 1938
he created Regular Division Drawing 20 with 4-color symmetry.

◮ From 1958 to 1960, Escher created his hyperbolic four “Circle
Limit” patterns, two of which have color symmetry.

◮ In 1961, B.L. Van der Waerden and J.J. Burckhardt defined what
we now call (perfect) color symmetry in “Farbgrupen” in Zeitschrift

für Kristallographie.

◮ In the late 1970’s and early 1980’s computer programs were written
to draw repeating hyperbolic patterns with color symmetry.



An Escher Pattern with 2-color Symmetry (1921)



Escher’s Notebook Drawing Number 20
with 4-color symmetry (1938)



Escher’s Circle Limit II pattern
with 3-color symmetry (1959)



Escher’s Circle Limit III pattern
with 4-color symmetry (1959)



A computer generated fish pattern
with 5-color symmetry (1980’s))



Hyperbolic Geometry
◮ In 1901, David Hilbert proved that, unlike the sphere, there was no

isometric (distance-preserving) embedding of the hyperbolic plane
into ordinary Euclidean 3-space.

◮ Thus we must use models of hyperbolic geometry in which Euclidean
objects have hyperbolic meaning, and which must distort distance.

◮ One such model, used by Escher, is the Poincaré disk model.

◮ The hyperbolic points in this model are represented by interior point
of a Euclidean circle — the bounding circle.

◮ The hyperbolic lines are represented by (internal) circular arcs that
are perpendicular to the bounding circle (with diameters as special
cases).

◮ This model was preferred by Escher since (1) angles have their
Euclidean measure (i.e. it is conformal), so that motifs of a
repeating pattern retain their approximate shape as they get smaller
toward the edge of the bounding circle, and (2) it could display an
entire pattern in a finite area.



Escher’s Circle Limit I showing hyperbolic lines.



Repeating Patterns and Regular Tessellations

◮ A repeating pattern in any of the 3 “classical geometries”
(Euclidean, spherical, and hyperbolic geometry) is composed of
congruent copies of a basic subpattern or motif.

◮ For example if we ignore color, one fish is a motif for the fish
pattern on the title page.

◮ The regular tessellation, {p, q}, is an important kind of repeating
pattern composed of regular p-sided polygons meeting q at a vertex.

◮ If (p − 2)(q − 2) < 4, {p, q} is a spherical tessellation (assuming
p > 2 and q > 2 to avoid special cases).

◮ If (p − 2)(q − 2) = 4, {p, q} is a Euclidean tessellation.

◮ If (p − 2)(q − 2) > 4, {p, q} is a hyperbolic tessellation. The next
slide shows the {6, 4} tessellation.

◮ Escher based his 4 “Circle Limit” patterns, and many of his
spherical and Euclidean patterns on regular tessellations.



The {6, 4} tessellation.



A Table of the Regular Tessellations
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The {5, 4} tessellation underlying the fish pattern



Families of Patterns

◮ If a pattern is based on an underlying {p, q} tessellation, we can
conceive of other patterns with the same motif (actually slightly
distorted) based on a different tessellation {p′, q′}.

◮ This observation leads us to consider an whole family of such
patterns indexed by p and q.

◮ We use (p, q) to denote the pattern of the family that is based on
{p, q}.

◮ For example, the previous fish pattern would be denoted (5, 4).



Symmetries and Color Symmetry

◮ A symmetry of a repeating pattern is an isometry
(distance-preserving transformation) that maps the pattern onto
itselr. Thus each motif goes onto another copy of the motif.

◮ There are 5-fold (72◦) rotation symmetries about fish tails in the
preceding fish pattern, and also 4-fold rotations about dorsal fins.

◮ A reflection across a hyperbolic line in the Poincaré disk model is
represented by an inversion in the circular arc representing that line.
There are reflection symmetries across the backbone lines in the
Circle Limit I pattern.

◮ As in Euclidean geometry, a hyperbolic rotation can be produced by
successive reflections across intersecting lines. The rotation angle is
twice the angle of intersection.



Symmetries and Color Symmetry (Continued)

◮ A color symmetry of a pattern of colored motifs is a symmetry of
the uncolored pattern that takes all motifs of one color to motifs of
a single color — that is, it permutes the colors of the motifs.

◮ Thus rotation about the center of the preceding fish pattern
permutes the colors: red → yellow → blue → brown → white →
red, and black remains fixed since it is used as an outline/detail
color.



Implementation of Color Symmetry

◮ Symmetries of of uncolored patterns in the 3 classical geometries
can be implemented as matrices in many programming languages.

◮ We use integers to represent colors. In the fish pattern, 0 ↔ black,
1 ↔ white, 2 ↔ red, 3 ↔ yellow, 4 ↔ blue, and 5 ↔ brown.

◮ We use arrays to represent permutations (more convenient than
cycle notation). If α is the color permutation induced by the 72◦

central rotation of the fish pattern,

α =

(

0 1 2 3 4 5
0 2 3 4 5 1

)

in two-line notation, then

α[0] = 0, α[1] = 2, α[2] = 3, α[3] = 4, α[4] = 5, α[5] = 1.



Implementation of Color Symmetry (Continued)

◮ To multiply permutations α and β to obtain their product γ:
for i ← 0 to nColors - 1

γ[i] = β[α[i]]

◮ To obtain the inverse of a permutations α:
for i ← 0 to nColors - 1

α−1[α[i]] =i

◮ It is useful to “bundle” the matrix representing a symmetry with its
color permutation (as an array) into a single “transformation”
structure (or class in an object oriented language).



The Color Symmetry of Fish Patterns

◮ Theoretically, we can create a fish pattern based on {p, q} like the
one above for any values of p and q provided p ≥ 3 and q ≥ 3.

◮ For these patterns, p is the number of fish that meet their tails and
q is the number of fish that meet at their dorsal fins.

◮ This family of fish patterns is based on Escher’s 4-colored Notebook
Drawing Number 20 above, which is based on the Euclidean
“square” tessellation {4, 4}.

◮ For Notebook Drawing Number 20, at least three colors are needed
to satisfy the map-coloring principle, and I think four colors are
needed for color symmetry.

◮ The hyperbolic fish pattern based on the {5, 4} tessellation requires
at least five colors for color symmetry since five is prime.

◮ Large values of p or q or both usually do not produce aesthetically
appealing patterns, since such values lead to distortion of the motif
and/or push most of the pattern outward near the bounding circle.



A 5-colored fish pattern based on {5, 5}



A 4-colored pattern of distorted fish based on {8, 4}



Color Symmetry of Escher’s “Circle Limits”

◮ Circle Limit I does not have color symmetry, but related patterns
do. For a pattern in the Circle Limit I family, p and q must be even
due to reflection lines across the backbones of the fish. To obtain
2-color symmetry, p must equal q.

◮ Circle Limit II has 3-color symmetry, as seen above.

◮ Circle Limit III has 4-color symmetry, and cannot be symmetrically
colored with fewer colors.

◮ Patterns in the Circle Limit IV family cannot have color symmetry.



Escher’s Circle Limit I {6, 4} pattern
No color symmetry



A 2-colored Circle Limit I pattern
Based on the {6, 6} tessellation



A 3-colored Circle Limit I pattern
Based on the {6, 6} tessellation



Escher’s Circle Limit II {8, 3} pattern
3-colored (p must be even for these patterns)



A 2-colored Circle Limit II pattern
Based on the {8, 4} tessellation



Escher’s Circle Limit IV pattern
No color symmetry



Color Symmetry of Circle Limit III Patterns
◮ As mentioned above, Circle Limit III has 4-color symmetry, and

cannot be symmetrically colored with fewer colors.

◮ Circle Limit III solved the problems Escher saw in Circle Limit I:

◮ There was no “traffic flow” — the fish alternated directions
along a backbone line.

◮ The fish alternated colors along a backbone line.
◮ The fish were angular — not “fish shaped”.

◮ For other patterns in the Circle Limit III family, the restriction that
fish along a backbone line be the same color adds another
restriction to symmetric coloring.

◮ The Circle Limit III family of patterns depends on 3 numbers, p, q,,
the numbers of fish meeting at right and left fin tips, and r the
number of fish meeting at noses. So r must be odd so that the fish
swim head-to-tail.

◮ We use (p, q, r) to denote such a pattern.



Escher’s Circle Limit III

Needs 4 colors — a (4, 3, 3) pattern



A 5-colored (3, 3, 5) Circle Limit III pattern.



A 5-colored (5, 5, 3) Circle Limit III pattern.



A (5, 3, 3) Circle Limit III pattern
Needs 6 colors to maintain colors on backbones.



A 5-coloring of the (5, 3, 3) pattern
Colors on backbone lines alternate



Color Symmetries of Butterfly Patterns

◮ The patterns in the butterfly family are based on the {p, q}
tessellations and there is no restriction except that they must be
greater than or equal to 3.

◮ For these patterns, p is the number of butterflies meeting at left
front wingtips, and q is the number of butterflies meeting at their
left rear wings.

◮ Escher only created one pattern in this family, his Euclidean
Notebook Drawing 70, which based on the {6, 3} tessellation.

◮ Following Escher, we imposed an additional restriction that all
circles on the butterfly wings around a p-fold meeting point of left
wingtips be a color that is different from the butterflies meeting
there.



Escher’s 3-colored butterfly pattern
Notebook Drawing Number 70



A 3-colored butterfly pattern
Based on the {8, 3} tessellation Butterfly Pattern



A 6-colored butterfly pattern
Based on the {5, 4} tessellation



An 8-colored butterfly pattern
Based on the {7, 3} tessellation



Future Work

◮ Automatically generate the colors so that the pattern is
symmetrically colored. Currently this must be done manually for
each pattern in a family.

◮ Extend such a generation algorithm so that it can handle additional
restrictions, such as using the same color for fish along each
backbone line of a Circle Limit III pattern, or using a different color
for the wing circles on a butterfly pattern.

◮ Make more patterns!
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