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History

e Early 1958: H.S.M. Coxeter sends M.C. Escher a reprint
containing a hyperbolic triangle tessellation.

e Laterin 1958: Inspired by that tessellation, Escher cre-
atesCircle Limit I.

e Late 1959: Solving the “problems” dfircle Limit I,
Escher createGircle Limit I11.

e 1979: In aLeonardo article, Coxeter uses hyperbolic
trigonometry to calculate the “backbone arc” angle.

e 1996: In aMathematical Intelligencer article, Coxeter
uses Euclidean geometry to calculate the “backbone
arc” angle.

e 2006: In aBridges paper, D. Dunham introduces gen-
eral (p, q,r) “Circle Limit llII” patterns and gives an
“arc angle” formula for g, 3, 3).

e 2007: L. Tee derives an “arc angle” formula for gen-
eral (p, ¢, r) patterns, reported iBridges 2008.



The hyperbolic triangle pattern in Coxeter’'s paper




A Computer Rendition of Circle Limit |

Escher: Shortcomings ofCircle Limit |

“There is no continuity, no ‘traffic flow’, no unity of
colour in each row ...”



A Computer Rendition of Circle Limit I 11




Coxeter’s Leonardo and I ntelligencer
Articles

In Leonardo 12, (1979), pages 19-25, Coxeter used hy-
perbolic trigonometry to find the following expression for
the anglew that the backbone arcs make with the bound-
Ing circle inCircle Limit 111.

cos(w) = (214 —271/4) /2 or w = 79.97°

Later Coxeter derived the same result using elementary
Euclidean geometry ifihe Mathematical Intelligencer 18,
No. 4 (1996), pages 42-46.



Mathematical Intelligencer Cover

What Escher

Left Unstated
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“On The Cover:”

Coxeter’s enthusiasm for the gift M.C. Escher gave
him, a print of Circle Limit Ill, is understandable.
So is his continuing curiosity. See the articles on
pp. 35—-46. He has not, however said of what gen-
eral theory this pattern is a special case. Not as yet.
Annonymous Editor
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A General Theory

We use the symbolisifp,q,r) to denote a pattern of fish in
which p meet at right fin tipsg meet at left fin tips, and
fish meet at their noses. Of cousandg must be at least
three, and must be odd so that the fish swim head-to-tall
(as they do irCircle Limit [11).

The Circle Limit 11l pattern would be labeled (4,3,3) in
this notation.
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A (5,3,3) Pattern
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A General Formula for the Intersection
Angle

The general formula for the angle of intersection be-
tween the backbone arcs and the bounding circle for a
(p, q,r) pattern (which agrees with Coxeter’s result for
Circle Limit [11).

Sln(%) (cos(5) — cos(7))

\/cos 24 cos(%)? + cos(T)% + 2 cos(%) cos(7) cos(7) — 1)

cos(w) =

An alternative formula:
tan(g;)(cos(7) — cos(7))
\/<COS< ) + cos(7))? + 2 cos(7) — 2

cot(w) =
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The Need for Models of Hyperbolic
Geometry

In 1901 David Hilbert proved that (unlike the sphere) there
was no smooth embedding of the hyperbolic plane in Eu-
clidean 3-space.

Thus we must use Euclideamodels of hyperbolic geom-
etry.

Three useful models are the Poineaircle model (used
by Escher), the Klein model, and the Welerstrass model.
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The Poincare Circle Model of Hyperbolic Geometry

. Points: points within thebounding circle

. Lines: circular arcs perpendicular to the bounding cir-
cle (including diameters as a special case)
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The Klein Model of Hyperbolic Geometry

. Points: points within thebounding circle

. Lines: chords of the bounding circle (including diam-
eters as a special case)

. The chord corresponds to the Poirgaircular arc with
the same endpoints on the bounding circle.
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Welerstrass Model of Hyperbolic Geometry

. Points: points on the upper sheet of a hyperboloid of
two sheetsz? + ¢y — 2 = —1,2 > 1.

. Lines: the intersection of a Euclidean plane through
the origin with this upper sheet (and so is one branch
of a hyperbola).

ly
fy
L,
on the dual hyperboloid. + ¢ — (2 = +1, so that the
line is the set of points satisfying/, + y¢, — z{. = 0.

A line can be represented by pele, a 3-vector
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The Relation Between the Poincag and
Weilerstrass Models

The models are related via stereographic projec-
tion from the Welerstrass model onto the (unit)

Poincae disk in thexy-plane toward the point
0

0|,
__1_

Given by the formulal y | — |y/(1 + 2) |.

N
-
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Patterns withp =g

Whenp = ¢, the fish are symmetric, so half a fish can
serve as the fundamental region for the pattern since the
other half of the fish may be obtained by reflection. The
figure shows a4, 4, 3) pattern.
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A (5,5,3) Pattern
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A (3,3,5) Pattern
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Patterns withp=r=23

Whenp = r = 3, the backbone lines of the three center
fish form a Euclidean equilateral triangle. This equildtera
triangle can be scaled to correspond to different values of
g. Unfortunately, this only transforms the right sides of
the fish correctly. The figure showsa 4, 3) pattern
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A (3,5,3) Pattern
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The Right Halves of the Fish of the (3,5,3)
Pattern
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A (3,4,3) Pattern of Right Fish Halves
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A (3,6,3) Pattern of Right Fish Halves
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A Possible Solution for the General Case

¢ In the two subcases above, the transformations worked
because half a fish motif could be made to fit inside a
Euclidean isosceles triangle, and one isosceles triangle
can be transformed into another by (differential) scal-

ing.

e Thus, in the general case, to transform the fish motif
of a(p,q,r) pattern to ap’, ¢, r') fish motif might in-
volve separate processes to transform the left and right
halves of the fish.

¢ To transform right fish halves, one possible idea would
be to find a model of hyperbolic geometry the right
“distance” in between the Poin@amodel and the Klein
model so that the backbone line (equidistant curve)
would “flatten out” to a Euclidean line. Then the trans-
formation would just be a Euclidean scaling.

e To transform a left fish half, we could hyperbolically
translate its fin tip to the origin (making it like a right
fish half), find the correct “in between” hyperbolic model
(probably different than for the right half), apply the
transformation, then hyperbolically translate back.
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Future Work

e Find a general method, possibly the one outlined above,
to transform the fish motif of &p, ¢, r) pattern to a
(p', ¢, r") fish motif.

e Find an algorithm to automatically coldp, ¢, ) pat-
terns with the minimum number of colors as Escher’s
did in Circle Limit 111: all fish along a backbone line
are the same color, and adjacent fish are different col-
ors (the “map-coloring principle”).
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The End

Many thanks to Nat, Ergun, and the other organizers of
ISAMA "09!
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