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Outline

• History

• Theory of general(p, q, r) “Circle Limit III” patterns
and hyperbolic geometry.

• Thep = q subfamily.

• Thep = r = 3 subfamily.

• A possible solution for the general case.

• Future work.
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History

• Early 1958: H.S.M. Coxeter sends M.C. Escher a reprint
containing a hyperbolic triangle tessellation.

• Later in 1958: Inspired by that tessellation, Escher cre-
atesCircle Limit I.

• Late 1959: Solving the “problems” ofCircle Limit I,
Escher createsCircle Limit III.

• 1979: In aLeonardo article, Coxeter uses hyperbolic
trigonometry to calculate the “backbone arc” angle.

• 1996: In aMathematical Intelligencer article, Coxeter
uses Euclidean geometry to calculate the “backbone
arc” angle.

• 2006: In aBridges paper, D. Dunham introduces gen-
eral (p, q, r) “Circle Limit III” patterns and gives an
“arc angle” formula for (p, 3, 3).

• 2007: L. Tee derives an “arc angle” formula for gen-
eral (p, q, r) patterns, reported inBridges 2008.
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The hyperbolic triangle pattern in Coxeter’s paper
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A Computer Rendition of Circle Limit I

Escher: Shortcomings ofCircle Limit I

“There is no continuity, no ‘traffic flow’, no unity of
colour in each row ...”
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A Computer Rendition of Circle Limit III
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Coxeter’s Leonardo and Intelligencer
Articles

In Leonardo 12, (1979), pages 19–25, Coxeter used hy-
perbolic trigonometry to find the following expression for
the angleω that the backbone arcs make with the bound-
ing circle inCircle Limit III.

cos(ω) = (21/4
− 2−1/4)/2 or ω ≈ 79.97◦

Later Coxeter derived the same result using elementary
Euclidean geometry inThe Mathematical Intelligencer 18,
No. 4 (1996), pages 42–46.
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Mathematical Intelligencer Cover
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Mathematical Intelligencer Contents Page
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“On The Cover:”

Coxeter’s enthusiasm for the gift M.C. Escher gave
him, a print of Circle Limit III, is understandable.
So is his continuing curiosity. See the articles on
pp. 35–46. He has not, however said of what gen-
eral theory this pattern is a special case. Not as yet.
Annonymous Editor
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A General Theory

We use the symbolism(p,q,r) to denote a pattern of fish in
which p meet at right fin tips,q meet at left fin tips, andr
fish meet at their noses. Of coursep andq must be at least
three, andr must be odd so that the fish swim head-to-tail
(as they do inCircle Limit III).

The Circle Limit III pattern would be labeled (4,3,3) in
this notation.
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A (5,3,3) Pattern
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A General Formula for the Intersection
Angle

The general formula for the angle of intersection be-
tween the backbone arcs and the bounding circle for a
(p, q, r) pattern (which agrees with Coxeter’s result for
Circle Limit III).

cos(ω) =
sin( π

2r) (cos(π
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q ))
√

cos(π
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q )
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An alternative formula:

cot(ω) =
tan( π

2r)(cos(π
q ) − cos(π

p))
√

(cos(π
p) + cos(π

q ))
2 + 2 cos(π

r ) − 2
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The Need for Models of Hyperbolic
Geometry

In 1901 David Hilbert proved that (unlike the sphere) there
was no smooth embedding of the hyperbolic plane in Eu-
clidean 3-space.

Thus we must use Euclideanmodels of hyperbolic geom-
etry.

Three useful models are the Poincaré circle model (used
by Escher), the Klein model, and the Weierstrass model.
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The Poincaŕe Circle Model of Hyperbolic Geometry

• Points: points within thebounding circle

• Lines: circular arcs perpendicular to the bounding cir-
cle (including diameters as a special case)
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The Klein Model of Hyperbolic Geometry

• Points: points within thebounding circle

• Lines: chords of the bounding circle (including diam-
eters as a special case)

• The chord corresponds to the Poincaré circular arc with
the same endpoints on the bounding circle.
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Weierstrass Model of Hyperbolic Geometry

• Points: points on the upper sheet of a hyperboloid of
two sheets:x2 + y2 − z2 = −1, z ≥ 1.

• Lines: the intersection of a Euclidean plane through
the origin with this upper sheet (and so is one branch
of a hyperbola).

A line can be represented by itspole, a 3-vector

















ℓx

ℓy

ℓz

















on the dual hyperboloidℓ2

x + ℓ2

y − ℓ2

z = +1, so that the
line is the set of points satisfyingxℓx + yℓy − zℓz = 0.

17



The Relation Between the Poincaŕe and
Weierstrass Models

The models are related via stereographic projec-
tion from the Weierstrass model onto the (unit)
Poincaŕe disk in thexy-plane toward the point
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Patterns with p = q

Whenp = q, the fish are symmetric, so half a fish can
serve as the fundamental region for the pattern since the
other half of the fish may be obtained by reflection. The
figure shows a(4, 4, 3) pattern.
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A (5,5,3) Pattern
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A (3,3,5) Pattern
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Patterns with p = r = 3

Whenp = r = 3, the backbone lines of the three center
fish form a Euclidean equilateral triangle. This equilateral
triangle can be scaled to correspond to different values of
q. Unfortunately, this only transforms the right sides of
the fish correctly. The figure shows a(3, 4, 3) pattern
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A (3,5,3) Pattern
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The Right Halves of the Fish of the (3,5,3)
Pattern
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A (3,4,3) Pattern of Right Fish Halves
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A (3,6,3) Pattern of Right Fish Halves
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A Possible Solution for the General Case

• In the two subcases above, the transformations worked
because half a fish motif could be made to fit inside a
Euclidean isosceles triangle, and one isosceles triangle
can be transformed into another by (differential) scal-
ing.

• Thus, in the general case, to transform the fish motif
of a (p, q, r) pattern to a(p′, q′, r′) fish motif might in-
volve separate processes to transform the left and right
halves of the fish.

• To transform right fish halves, one possible idea would
be to find a model of hyperbolic geometry the right
“distance” in between the Poincaré model and the Klein
model so that the backbone line (equidistant curve)
would “flatten out” to a Euclidean line. Then the trans-
formation would just be a Euclidean scaling.

• To transform a left fish half, we could hyperbolically
translate its fin tip to the origin (making it like a right
fish half), find the correct “in between” hyperbolic model
(probably different than for the right half), apply the
transformation, then hyperbolically translate back.
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Future Work

• Find a general method, possibly the one outlined above,
to transform the fish motif of a(p, q, r) pattern to a
(p′, q′, r′) fish motif.

• Find an algorithm to automatically color(p, q, r) pat-
terns with the minimum number of colors as Escher’s
did in Circle Limit III: all fish along a backbone line
are the same color, and adjacent fish are different col-
ors (the “map-coloring principle”).
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The End

Many thanks to Nat, Ergun, and the other organizers of
ISAMA ’09!
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