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History - Outline

e Early 1958: H.S.M. Coxeter sends M.C. Escher a reprint
containing a hyperbolic triangle tessellation.

e Later in 1958: Inspired by that tessellation, Escher cre-
atesCircle Limit I.

e Late 1959: Solving the “problems” dfircle Limit I,
Escher createGircle Limit [11.

e 1979: In aLeonardo article, Coxeter uses hyperbolic
trigonometry to calculate the “backbone arc” angle.

e 1996: In aMath. Intelligencer article, Coxeter uses
Euclidean geometry to calculate the “backbone arc”
angle.

e 2006: In aBridgespaper, D. Dunham introduces. @, r)
“Circle Limit IlI” patterns and gives an “arc angle” for-
mula for (p, 3, 3).

e 2007: In aBridges paper, Dunham shows an “arc an-
gle” calculation in the general case ¢, ).

e Later 2007: L. Tee derives an “arc angle” formula in
the general case.



The hyperbolic triangle pattern in Coxeter’s paper




A Computer Rendition of Circle Limit |

“There is no continuity, no ‘traffic flow’, no unity of

Escher: Shortcomings ofCircle Limit |
colour in each row ...



A Computer Rendition of Circle Limit I 11




Poincare Circle Model of Hyperbolic Geometry
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. Points: points within thebounding circle

. Lines: circular arcs perpendicular to the bounding cir-
cle (including diameters as a special case)



The Regular Tessellationsim,n}

There is aregular tessdllation, {m,n} of the hyper-
bolic plane by regular m-sided polygons meetingn at a
vertex provided (m — 2)(n — 2) > 4.

The tessellation{8,3} superimposed on theCircleLimit
1l pattern.



Equidistant Curves and Petrie Polygons

For each hyperbolic line and a given hyperbolic dis-
tance, there are twoequidistant curves, one on each

side of the line, all of whose points are that distance
from the given line.

A Petrie polygon is a polygonal path of edges in a
regular tessellation traversed by alternately taking the
left-most and right-most edge at each vertex.
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A Petrie polygon (blue) based on the{8,3} tessella-

tion, and a hyperbolic line (green) with two associated
equidistant curves (red).



Coxeter’s Leonardo and I ntelligencer
Articles

In Leonardo 12, (1979), pages 19-25, Coxeter used hy-
perbolic trigonometry to determine that the angle w
that the backbone arcs make with the bounding circle
IS given by:

cosw = (214 —271/4) /2 or w =~ 79.97°

Coxeter derived the same result, using elementary Eu-
clidean geometry, inThe Mathematical I ntelligencer 18,
No. 4 (1996), pages 42-46.



A General Theory?

The cover of The Mathematical Intelligencer contain-
Ing Coxeter’s article, showed a reproduction of Escher’s
CircleLimit Il printand the words “What Escher Left
Unstated”.

Also an anonymous editor, remarking on the cover,
wrote:

Coxeter’s enthusiasm for the gift M.C. Escher
gave him, a print of Circle Limit Ill, is under-
standable. So Is his continuing curiosity. See the
articles on pp. 35-46. He has not, however said
of what general theory this pattern is a special
case. Not as yet.
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A General Theory

We use the symbolisr(p,q,r) to denote a pattern of fish
In which p meet at right fin tipsg meet at left fin tips,
andr fish meet at their noses. Of courpeand g must

be at least three, anmdmust be odd so that the fish swim
head-to-tall.

The Circle Limit 11l pattern would be labeled (4,3,3) in
this notation.
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A (5,3,3) Pattern
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Dunham’s Bridges 2006 Paper

In the Bridges 2006 Conference Proceedings, Dunham
followed Coxeter’s Leonardo article, using hyperbolic
trigonometry to derive the more general formula that
applied to (p,3,3) patterns:

cCosw = %\/1 —3/4 cosQ(%)

For CircleLimit111,p=4andcosw = \ 3‘/2_4 , which
agrees with Coxeter’s calculations.

For the (5,3,3) pattern, cosw = 3*/430_5 and
w =~ 78.07°.
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Dunham’s Bridges 2006 Paper

In the Bridges 2006 Conference Proceedings, Dunham
presented a 5-step process for calculating for a gen-
eral (p, ¢, r) pattern. This calculation utilized the Weier-
strass model of hyperbolic geometry and the geometry
of a tessellation by “kites”, any one of which forms a
fundamental region for the pattern.

14



Welerstrass Model of Hyperbolic Geometry
. Points: points on the upper sheet of a hyperboloid of
two sheetsz? 4 3> — 22 = —1, 2 > 1.

. Lines: the intersection of a Euclidean plane through
the origin with this upper sheet (and so is one branch
of a hyperbola).

A line can be represented by psle, a 3-vector| ¢,

on the dual hyperboloié? + (2 — (2 = +1, so that the
line is the set of points satisfying/, + y¢, — z(. = 0.
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The Relation Between the Models

The models are related via stereographic projec-
tion from the Welerstrass model onto the (unit)

Poincae disk in thexy-plane toward the point
0

0|,
__1_

Given by the formula:
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A Nose-Centered Kite Tessellation
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The Geometry of the Kite Tessellation

The kite OPR(Q), its bisecting line/, the backbone line
(equidistant curve) through and R, and radius) B.
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Outline of the Calculation

. Calculate the Weierstrass coordinates of the padits
andq@.

. Find the coordinates dffrom those ofP and().

3. Use the coordinates défto compute the matrix of the

reflection across.

. ReflectO across?/ to obtain the Welerstrass coordi-
nates ofRR, and thus the Poincaicoordinates of:.

. Since the backbone equidistant curve is symmetric about
the y-axis, the originO and R determine that circle,
from which it is easy to calculate, the angle of inter-
section of the backbone curve with the bounding cir-
cle.
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Detalls of the Central Kite
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1. The Welerstrass Coordinates ofP and ()

From a standard trigonometric formula for hyperbolic tri-
angles, the hyperbolic cosines of the hyperbolic lengths of
the sidesD P andOQ of the triangleO P() are given by:

cos(m/q) cos(m/r) + cosm/p
sin(7 /q) sin(7 /1)

cosh(d,) =

and
cosh(d,) — cos(w/p) cos(w/r) + cos/q
sin(7 /p) sin(7 /1)
From these equations, we obtain the Weierstrass coor-
dinates ofP andQ:

cos(m/2r)sinh(d,) cos(m/2r)sinh(d,)
P = | sin(n/2r)sinh(d,) | @ = | —sin(7/2r)sinh(d,)
cosh(d,) cosh(d,)
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2. The Coordinates of¢

The coordinates of the pole éfare given by

[ — ?B - PxQ
gz [P x5 Q)
Where the hyperbolic cross-produetx;, () is given by:
Psz o PzQy
thQ: PzQx_PxQz
_Pny + Pny

and where the norm of a pole vectdris given by:|V| =
(VE+ V= V2)
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3. The Reflection Matrix - A Simple Case

The pole corresponding to the hyperbolic line perpendic-

sinh d
ular to thex-axis and through the poir{t 0 IS given
cosh d
cosh d |
by| 0 [
sinh d

The matrixRef representing reflection of Weierstrass points
across that line is given by:

—cosh 2d 0 sinh 2d
0 1 0
—sinh 2d 0 cosh 2d

whered is the the hyperbolic distance from the line (or
point) to the origin.

Ref =
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3. The Reflection Matrix - The General Case

In general, reflection across a line whose nearest point to
the origin is rotated by anglé from the x-axis is given

by: Rot(0)Ref Rot(—60) where, as usual,

cosf —sinf 0
sind  cosf 0

0 01

Rot(0) =

From ¢ we identifysinh d as¢., andcosh d as /(2 + (2),
which we denotg. Thencos 6 = *+ andsin § = %

Further,sinh 2d = 2sinhdcoshd = 2pf. andcosh 2d =
cosh® d 4 sinh® d = p? + 2.

ThusRef,, the matrix for reflection acrogsis given by:

5[0 e )| R0
Ref = |2 Lo 0 1 2O2 _%%o
0 01l 26 O0(+E)]] 00 1]

25



4. The Coordinates ofR

We useRef, to reflect the origin ta? since the kite) P R()
IS symmetric acrosé&

0] [ 20,0,
R=Ref,|0| =1 20,0,
1 _p2-+-€§_

Then we project Weierstrass poiRto the Poincag model:

20,0,
1+ 42
20,0,
14-p+0%
0

oS
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5. The Anglew

u —UuU
Thethree pointsv |,| v |, andthe origin determine the
0 0

(equidistant curve) circle centerechat= (u* + v?)/2v on
they-axis.

The y-coordinate of the intersection points of this circle,
z? + (y — w)? = w?, with the unit circle to be
Yint = 1/2w = v/(u* + v?).

In the figure showing the geometry of the kite tessellation,
the pointB denotes the right-hand intersection point.

The central angley, made by the radiu® B with the z-

axis is the complement of (which can be seen since the
equidistant circle is symmetric across the perpendicular
bisector ofOB).

Thusy;,; = sina = cosw, SO that
cosw = Yine = v/ (u* + v?),

the desired result.

27



Luns Tee’s Formula for w

In mid-2007, Luns Tee used hyperbolic trigonometry to
derive a general formula fap, generalizing the calcula-
tions of Coxeter in thd_eonardo article and Dunham in
the 2006Bridges paper.

As in those previous calculations, Tee based his computa-

tions on a fin-centered version of tr%gg r) tessellation,
with the centralp-fold fin point lab P, the opposﬂe

g-fold point Iabeled;), and the nose point labeled.

28



A Diagram for Tee’s Formula

The “backbone” equidistant curve is shown going through
R and R'. The hyperbolic line througli,, M and N has
the same endpoints as that equidistant curve. The seg-

Ir_nentsRL and QN are perpendicular to that hyperbolic
Ine.
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The Goal

By a well-known formula, the angle is given by:
cosw = tanh(RL)

SinceRLM is aright triangle, by one of the formulas for
hyperbolic right trianglesanh(RL) is related taanh( RM )

by:
tanh(RL) = cos(/LRM ) tanh(RM )

But /LRM = 7 — 7 since the equidistant curve bisects
/PRQ = ".
Thus

cos(/LRM) = cos(g — 21) = sin(g)
r r

and
tanh(RL) = Sin(%) tanh(RM) (1)

so that our task is reduced to calculatiagh(RM ).
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A Formula for tanh(RM)

To calculatetanh(RM ), we note that as hyperbolic distanceg =

RM + M(@), so eliminatingV/ () from this equation will relaté? M to
RQ), for which there are formulas.

By the subtraction formula fatosh
cosh(M Q) = cosh(RQ — RM) = cosh(RQ) cosh(RM) — sinh(RQ) sinh(RM)
Dividing through bycosh( RM) gives:

cosh(M @)/ cosh(RM) = cosh(RQ) — sinh(QR) tanh(RM)

Also by a formula for hyperbolic right triangles applied@d/ N and
RML:

cosh(M Q) = cot(/QMN) cot(g) and
cosh(RM) = cot(/RML) cot(g — 2—7;)

As opposite angles QM N) = /RM L, so dividing the first equation
by the second gives another expression:éeh(MQ)/ cosh(RM):
cosh(MQ)/ cosh(RM) = cot(z) cot(g)
q r
Equating the two expressions farsh(M Q) / cosh(RM) gives:

cosh(RQ) — sinh(RQ) tanh(RM) = cot(z) cot(l)

q 2r
Which can be solved famnh(RM ) in terms of RQ:

tanh(RM) = (cosh(RQ) — cot(g) cot(%)) /sinh(RQ) (2)
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The Final Formula

Another formula for general hyperbolic triangles, applied
to QPR gives:

cosh(RQ)) = (cos(

T T T T, T

— ) cos(—) + cos(—))/ sm(—)sm(—

) eos(5) +cos())sin ) sin )
We can calculateinh( RQ) from this by the formulainh? =
cosh? —1.

Plugging those values afosh(R(Q) and sinh(RQ) into
equation (2), and inserting that result into equation (1)
gives the final result:

sin(g;:) (cos(F) — cos(

osle) = \/ECOS(%P + COS(§>2 + cos(7)? + 2 cos(

)
) cos(7) cos(T) — 1)

S E IR
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Comments

1. Substitutingg = » = 3 into the formula and some
manipulation gives the same formula as in Dunham’s

2006 Brigdes paper.

2. If p # q, calculatingtan w gives the following alterna-
tive formula:
T (4 cos(7) cos(7) + 2cos(T) — 2)
tan(w) = COt<§>\/Z1—|— (cos(E) — cos(D))? )
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A (3,4,3) Pattern
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A (3,5,3) Pattern.
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A Nose-Centered (5,3,3) Pattern.
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Future Work

e Write software to automatically convert the motif of a
(p,q,r) pattern to a (p’,q’,r’) motif.

e Investigate patterns in which one @br r (or both) is
Infinity. Also, extend the current program to draw such
patterns.

e Find an algorithm for computing the minimum num-
ber of colors needed for a (p,q,r) pattern a<iincle
Limit I11: all fish along a backbone line are the same
color, and adjacent fish are different colors (the “map-
coloring principle”).
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