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Outline

◮ A detour: A papercrafted fish pattern on the triply periodic
polyhedron {6, 6 | 3} — joint work with Lisa Shier

◮ Families of patterns - the basic idea

◮ Some theory

◮ The family of butterfly patterns

◮ Other families of patterns

◮ Future research



Detour: A Fish Pattern on the {6, 6 | 3} Poyhedron
Joint work with Lisa Shier



Detour Outline

◮ Background and motivation

◮ M.C. Escher’s Circle Limit I and Circle Limit III
◮ Regular {p, q | r} triply periodic polyhedra
◮ Previous polyhedra and their aesthetic problems

◮ The papercrafted part of a {4, 6 | 4} polyhedron

◮ A part of the {6, 6 | 3} polyhedron that solves all the problems



Escher’s Woodcut Circle Limit I



Aesthetic Problems with Circle Limit I per Escher

1. The fish were not consistently colored along backbone lines — they
alternated from black to white and back every two fish lengths.

2. The fish also changed direction every two fish lengths — thus there
was no “traffic flow” (Escher’s words) in a single direction along the
backbone lines.

3. The fish are very angular and not “fish-like”



Escher’s Woodcut Circle Limit III

— solved the problems



Regular Triply Repeating Polyhedra

In 1926 H.S.M. Coxeter defined regular skew polyhedra (apeirohedra) to
be infinite polyhedra repeating in three independent directions in
Euclidean 3-space, with the symmetry group of isometries being
transitive on flags.

Coxeter denoted them by the extended Schläfli symbol {p, q | r} which
denotes the polyhedron composed of p-gons meeting q at each vertex,
with regular r -sided polygonal holes.

Coxeter and John Flinders Petrie proved that there are exactly three of
them: {4, 6 | 4}, {6, 4 | 4}, and {6, 6 | 3}.

Since the sum of the vertex angles is greater than 2π, they are considered
to be the hyperbolic analogs of the Platonic solids and the regular
Euclidean tessellations {3, 6}, {4, 4}, and {6, 3}

In 2012 Dunham was the first person to decorate those solids with
Escher-inspired patterns.



The simplest regular skew polyhedron: {4, 6 | 4}

Also called the Mucube (for Multi-cube). It consists of invisible “hub”
cubes connected by “strut” cubes, hollow cubical cylinders with their
open ends connecting neighboring hubs.



An old patterned {4, 6 | 4} with fish



Problems with the old fish polyhedron

1. The same three problems Escher saw in Circle Limit I.

2. A fourth problem: the backbone lines of a particular color are not
parallel — which can be seen in a mirror.



The old fish polyhedron on a mirror



A new papercrafted fish pattern on the {4, 6 | 4} polyhedron

Fixes the first and third problems.



The papercrafted {4, 6 | 4} polyhedron on a mirror

Fixes the fourth problem too, but not the second one.



Colors of fish on the {4, 6 | 4} polyhedron

1. There are six families of fish backbone lines that are parallel to the
face diagonals of a cube.

2. All the fish in one family are the same color.



The dual of the Mucube is the {6, 4 | 4} polyhedron

Also called the Muoctahedron (for Multi-octahedron). It consists of
truncated octahedra in a cubic lattice arrangement, connected on their
invisible square faces (which are also the square holes between the
truncated octahedra).



An angular fish pattern on the {6, 4 | 4} polyhedron



A top view of the fish pattern on the {6, 4 | 4} polyhedron

It solves Escher’s first problem, but still has problems two and three.



The {6, 6 | 3} polyhedron is self-dual

Also called the Mutetrahedron (for Multi-tetrahedron). It consists of
truncated tetrahedra in a diamond lattice arrangement, connected by
their missing triangular faces to faces of invisible regular tetrahedra
between them.



The new {6, 6 | 3} patterned polyhedron
Also fixes the second, ”traffic flow”, problem.



Colors of fish on the {6, 6 | 3} polyhedron

1. Again, there are six families of fish backbone lines that go through
the centers of the hexagon faces of the {6, 6 | 3} polyhedron.

2. And again, the fish in one family are the same color.

3. Each of the families is parallel to one of the sides of a tetrahedron
— which can be one of the truncated tetrahedra, since all the
(patterned) truncated tetrahedra in the {6, 6 | 3} polyhedron are
translates of one another.

4. In each family half the lines of fish go one direction, and the other
half go the opposite direction — so that fish of one color on one
truncated tetrahedron go in opposite directions on adjacent faces.



A Papercrafted Version of the New Polyhedron: End Detour



Families of Patterns
◮ Many artists have created related works.

◮ Example: the paintings of Picasso’s ”Blue Period”

◮ We will examine works that are related in a more precise
mathematical way.

◮ We will consider patterns that can be classified by two integer
parameters.

◮ M.C. Escher was most likely the first artist to create patterns
related in this way.

◮ These patterns can exist in any of the three ”Classical Geometries”:
the Euclidean plane, the sphere, and the hyperbolic plane.



Escher’s (Euclidean) Regular Division Drawing 45



Escher’s ”Angles and Devils” carved sphere



Escher’s (hyperbolic) Circle Limit IV



The Classical Geometries

◮ Euclidean geometry — zero curvature, i.e. flat

◮ Spherical geometry — constant positive curvature

◮ Hyperbolic geometry — constant negative curvature

◮ The hyperbolic plane cannot be smoothly embedded in Euclidean
3-space, unlike the sphere (proved in 1901 by David Hilbert).

◮ Therefore we must rely on models hyperbolic geometry —
Euclidean constructs that can be interpreted as hyperbolic objects.



A Model of Hyperbolic Geometry

◮ M.C. Escher (and other artists) used the Poincaré circle model of
hyperbolic geometry.

◮ Hyperbolic points are represented by Euclidean points within a
(Euclidean) bounding circle.

◮ Hyperbolic lines are represented by (Euclidean) circular arcs that are
orthogonal to the bounding circle (including diameters as special
cases).

◮ Preferred by M.C. Escher and other artists since (1) it is contained
in a finite area of the Euclidean plane, and (2) it is conformal, the
hyperbolic measure of an angle is the same as its Euclidean
measure, so that motifs retain approximately the same shape as
they get smaller toward the bounding circle.



Escher’s Circle Limit I Showing Hyperbolic Lines.



Repeating Patterns and Regular Tessellations
◮ A repeating pattern in any of the 3 “classical geometries”

(Euclidean, spherical, and hyperbolic geometry) is composed of
congruent copies of a basic subpattern or motif.

◮ For example if we ignore color, one butterfly is a motif for the
butterfly pattern on the title page.

◮ The regular tessellation, {p, q}, is an important kind of repeating
pattern composed of regular p-sided polygons meeting q at a vertex.

◮ If (p − 2)(q − 2) < 4, {p, q} is a spherical tessellation (assuming
p > 2 and q > 2 to avoid special cases).

◮ If (p − 2)(q − 2) = 4, {p, q} is a Euclidean tessellation.

◮ If (p − 2)(q − 2) > 4, {p, q} is a hyperbolic tessellation. The next
slide shows the {6, 4} tessellation.

◮ Escher based his 4 “Circle Limit” patterns, and many of his
spherical and Euclidean patterns on regular tessellations.



The {6, 4} tessellation.



A Table of the Regular Tessellations
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The {5, 4} tessellation overlaying a butterfly pattern:
5 butterflies meet at left front wingtips; 4 meet at right rear wingtips



Parameterized Families of Patterns

◮ If a pattern is based on an underlying {p, q} tessellation, we can
conceive of other patterns with the same motif (actually somewhat
distorted) based on a different tessellation {p′, q′}.

◮ This observation leads us to consider a whole family of such
patterns indexed by p and q.

◮ We use (p, q) to denote the pattern of the family that is based on
the tessellation {p, q}.

◮ For example, the butterfly pattern above would be denoted (5, 4).

◮ Unfortunately, large values of p or q or both usually do not produce
aesthetically appealing patterns, since such values lead to distortion
of the motif and/or push most of the pattern outward near the
bounding circle.



A (10, 4) butterfly pattern showing distortion



The Family of Butterfly Patterns
◮ Theoretically, we can create a butterfly pattern, denoted (p, q), that

is based on {p, q} like the one above for any values of p and q

provided p ≥ 3 and q ≥ 3.

◮ For these patterns, p butterflies meet at their left front wing tips
and q butterflies meet at their right rear wings.

◮ Escher created only one member of this family of patterns, his
Regular Division Drawing Number 70, based on the Euclidean
hexagon tessellation {6, 3} (which we would denote (6, 3) ). At
least 3 colors are needed to satisfy the map-coloring principle at the
meeting points of right rear wings.

◮ Following Escher, we add the restriction to our patterns that all
circles on the butterfly wings around a p-fold meeting point of left
wingtips be a different color from the butterflies meeting there.

◮ The hyperbolic butterfly pattern (5, 4) requires at least five colors
for color symmetry since five is prime, and six colors if the circles on
the wings are to be a different color.



Escher’s 3-colored butterfly pattern
Regular Division Drawing Number 70



Schattschneider and Walker’s (3, 5) butterfly pattern on an icosahedron



A 3-colored (8, 3) butterfly pattern



The 6-colored (5, 4) pattern



A 6-colored (5, 5) butterfly pattern



An 8-colored (7, 3) butterfly pattern



An 8-colored (7, 4) butterfly pattern



A 3-colored (6, 4) butterfly pattern
that violates the color of circles convention



Other Families of Patterns

◮ We have seen Escher’s three ”Angles and Devils” patterns, all based
on {p, q} tessellations with p even:

◮ Regular Division Drawing 45, which is based on the “square”
{4, 4} tessellation.

◮ The carved sphere, based on the {4, 3} tessellation.
◮ The hyperbolic Circle Limit IV, based on the {6, 4} tessellation.

◮ The fact that p must be even is a divisibility condition.

◮ Escher’s Circle Limit I (shown below) is the only pattern he made in
that family. These patterns are based on on {p, q} tessellations with
both p and q even, since the backbones of both the black and white
fish are lines of reflection.



Escher’s hyperbolic Circle Limit I pattern
Based on the {6, 4} tessellation.



Future Work
◮ Investigate other families of Escher-like patterns, and draw such

patterns, including 3-parameter families.

◮ Automatically generate the colors so that the pattern is
symmetrically colored. Currently this must be done manually for
each pattern in a family.

◮ Generate patterns of a family on a polyhedron of genus ≥ 2, since
such polyhedra have the hyperbolic plane as their universal covering
space.



Thank You

To Karl Kattchee, Doug Norton, Anil Venkatesh, and the AMS for
organizing this session.
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