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Abstract: We describe each of the three infinite skew polyhedra and show how
they can be decorated with angular fish patterns. The infinite skew polyhedra are
reqular polyhedra that repeat in three different directions in Fuclidean 3-space, and
are natural extensions of the Platonic solids. The fish patterns we place on them
are inspired by M.C. Escher. Ordinary finite polyhedra have been decorated with
patterns for centuries, but to our knowledge, this author is the first one to apply
patterns to infinite polyhedra.
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1. INTRODUCTION

The Dutch artist M.C. Escher drew patterns on a few Platonic solids (shown in
[Schattschneider 2004]). Later Doris Schattschneider and Wallace Walker deco-
rated other Platonic solids with Escher patterns [Schattschneider 2005].

We show patterns on infinite skew polyhedra, which are natural extensions of the
Platonic solids to triply periodic polyhedra. Triply periodic polyhedra are con-
nected polyhedra with translation symmetries in three independent directions in
Euclidean 3-space. Figure 1 below shows (a piece of) such a polyhedron decorated
with angular fish and colored backbone lines. The infinite skew polyhedra are each
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composed of copies of a regular polygon, either a square or a regular hexagon. They
are called “skew” since their vertex figures are skew (non-planar) polygons, in fact
these polyhedra are 3-dimensional generalizations of skew polygons [Wikipedia,
2012]. We decorate each of the polyhedra with patterns of angular fish with bi-
lateral symmetry, such as those exhibited by the Dutch artist M.C. Escher in his
hyperbolic print Circle Limit I (a computer rendition of which can be seen in
Figure 2 below). The backbone lines of the fish lie on Euclidean lines that are
embedded in the polyhedra.

These polyhedra have the same topology as corresponding triply periodic min-
imal surfaces (TPMS); for information on TPMS’s see [Schoen, 2013]. In fact
each corresponding TPMS has embedded Euclidean lines that are the same as the
backbone lines of the fish. Since each TPMS is a minimal surface, it has neg-
ative curvature, and thus its universal covering surface has the same large scale
geometry as the hyperbolic plane. So we can theoretically transfer a pattern on
an infinite skew polyhedron first to the corresponding TPMS and then from the
TPMS to the hyperbolic plane. Consequently we can think of the transferred pat-
tern in the hyperbolic plane as the universal covering pattern for the pattern on
the polyhedron. In this two-step transformation, the backbone lines embedded in
the polyhedra become hyperbolic lines in the hyperbolic plane.

In the next section, we begin with a review of regular tessellations and triply pe-
riodic polyhedra, and explain how they are related via minimal surfaces. Then we
discuss fish patterns on each of the three the infinite skew polyhedra in Sections 3,
4, and 5. Finally, we indicate possibilities for other patterns on infinite polyhedra.

2. REGULAR TESSELLATIONS AND PERIODIC POLY-
HEDRA

We use the Schlafli symbol {p, ¢} to denote the regular tessellation formed by copies
of a regular p-sided polygon, or p-gon, with ¢ of them meeting at each vertex. If
(p—2)(qg—2) > 4, {p,q} is a tessellation of the hyperbolic plane, otherwise it
is Euclidean or spherical. In particular {4,4}, {3,6}, and {6,3} are the familiar
Euclidean tessellations, and {3,3}, {3,4}, {3,5}, {4,3}, and {5,3} are spherical
tessellations corresponding to the Platonic solids. Figure 2 shows how Escher’s
Circle Limit I pattern is based on the {6,4} tessellation.

An infinite skew polyhedron has p-gons for faces, translation symmetries in three
independent directions, and symmetry group that is transitive on flags, where
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Figure 1: A piece of the {4, 6|4} polyhedron Figure 2: A computer rendition of Escher’s
decorated with angular fish. Circle Limit I pattern with the {6,4} tessel-
lation superimposed.

a flag is any triple consisting of a vertex, an edge containing that vertex, and
a face containing that edge. They were discovered in 1926 by John Petrie and
H.S.M. Coxeter who designated them by the extended Schlafli symbol {p,q|n},
indicating that there are ¢ p-gons around each vertex and n-gonal holes [Wikipedia,
2012]. There are exactly three of them, {4,6|4} (shown in Figure 1), {6, 4[4}, and
{6,6|3}. We discuss fish patterns on them in the next three sections.

3. A FISH PATTERN ON THE {4,6/4} POLYHEDRON

One can see by examining Figure 1 that the {4, 6|4} polyhedron is based on the
cubic lattice in 3-space. In fact it divides 3-space into two complementary con-
gruent solids. Each of the solids is composed of “hub” cubes with “strut” cubes on
each of its faces, with each strut cube connecting two hub cubes.

In the pattern of Figure 1, the backbones of the fish in a horizontal plane lie
along parallel red lines or parallel yellow lines that are perpendicular to the red
lines. Similarly for planes facing the lower left, fish backbones lie along green
and cyan lines; and for planes facing the lower right, the backbones lie along blue
and magenta lines. Also there are two kinds of vertices: those where red, blue,
and green backbone lines intersect (at 60 degree angles), and those where cyan,
magenta, and yellow lines intersect. Figure 3 shows a close-up view of the latter
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Figure 3: A vertex view of the fish pattern on the {4, 6|4} polyhedron.

kind of vertex. Figure 4 shows the universal covering pattern of Figure 1, including
the colored backbone lines. The backbone lines of the fish in Figures 1 and 3 are
closely related to the Schwarz P-surface (the P stands for Primative), since they
all lie on that surface (for information on the P-surface, a TPMS, see [Schoen,
2013]). Figure 5 shows the P-surface with the embedded lines. One can see that
they are the same as the backbone lines of Figure 1. In fact the backbone lines
form skew rhombi, which can be seen in Figures 1 and 3. If these rhombi are
spanned by soap films, i.e. minimal surfaces, one obtains the Schwarz P-surface.

4. A FISH PATTERN ON THE {6,4/4} POLYHEDRON

The {6, 4/4} polyhedron is the dual of the {4, 6|4} polyhedron in which each vertex
is replaced by a hexagon. The {4, 6|4} polyhedron is based on the bi-truncated,
cubic, space-filling tessellation by truncated octahedra. The {6,4|4} polyhedron
divides space into two sets of truncated octahedra, the truncated octahedra of each
set being connected by their square faces. Figure 6 shows the backbone lines of the
fish pattern on the {6,4|4} polyhedron, which are the same lines as the backbone
lines of the fish in Figure 1, which is not surprising since the polyhedra are duals
to each other. Consequently the TPMS corresponding to the {6, 4|4} polyhedron
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Figure 4: A hyperbolic plane pattern corresponding to Figure 1.

Figure 5: Schwarz’s P-surface showing embedded lines.
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Figure 6: A piece of the {6,4|4} polyhedron decorated with angular fish.

is the same as that of the {4,6|4} polyhedron: the Schwarz P-surface. Figure 7
shows a top view of the polyhedron of Figure 6, in which some of the backbone
lines become more apparent. Figure 8 shows the “hyperbolic covering pattern” of
Figures 6 and 7.

4. A FISH PATTERN ON THE {6,6/3} POLYHEDRON

The self-dual {6,6|3} polyhedron may be the most difficult to understand. It
is formed from truncated tetrahedra with their triangular faces removed. Such
“missing” triangular faces from four truncated tetrahedra are then placed in a
tetrahedral arrangement (around a small invisible tetrahedron). Figure 9 shows a
side view of a {6, 6|3} polyhedron decorated with angular fish. Figure 10 shows a
top view looking down at one of the vertices (where six hexagons meet). Figure 11
shows the corresponding universal covering pattern based on the {6, 6} tessellation.

The corresponding TPMS to the {6,6|3} polyhedron is the Schwarz D-surface (the
D stands for Diamond; see [Schoen, 2013]). The Schwarz D-surface divides space
into two congruent parts, each with the shape of a thickened diamond lattice.
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Figure 8: The pattern in the hyperbolic plane corresponding to Figure 6.
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Figure 10: A top view of a pattern of fish on the {6, 6|3} polyhedron shown in Figure 9.
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Figure 11: The pattern in the hyperbolic plane corresponding to Figures 9 and 10.

The backbone lines of Figure 9 are embedded lines in the Schwarz D-surface. As
with the {4,6]4} and {6,4|4} polyhedra, the backbone lines form skew rhombi.
And as before, if the rhombi of the {6,6|3} pattern are spanned by soap films,
i.e. minimal surfaces, one obtains the Schwarz D-surface in this case. Figure 12
shows a piece of the Schwarz D-surface within a rhombic dodecahedron, and since
rhombic dodecahedra fill space, one can obtain the entire Schwarz D-surface.

3. CONCLUSION AND FUTURE WORK

We have shown fish patterns on each of the infinite skew polyhedra. It would be
interesting to place other patterns on these polyhedra too. Although it has been
known for 85 years that there are only three infinite skew polyhedron, the more
general uniform triply periodic polyhedra have not been classified, but a number of
examples are known. It would be challenging not only to place mathematically and
artistically interesting patterns on the known polyhedra, but even more challenging
to discover new polyhedra.
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Figure 12: A piece of the Schwarz D-surface within a rhombic dodecahedron.
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