
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 6:

Using Design Patterns

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 2

6.1 Introduction to Patterns

The recurring aspects of designs are called design patterns.

• A pattern is the outline of a reusable solution to a general problem

encountered in a particular context

• Many of them have been systematically documented for all

software developers to use

• A good pattern should

—Be as general as possible

—Contain a solution that has been proven to effectively solve the

problem in the indicated context.

Studying patterns is an effective way to learn from the experience of

others

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 3

Pattern description
Context:

• The general situation in which the pattern applies

Problem:

—A short sentence or two raising the main difficulty.

Forces:

• The issues or concerns to consider when solving the problem

Solution:

• The recommended way to solve the problem in the given context.

—‘to balance the forces’

Antipatterns: (Optional)

• Solutions that are inferior or do not work in this context.

Related patterns: (Optional)

• Patterns that are similar to this pattern.

References:

• Who developed or inspired the pattern.

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 4

6.2 The Abstraction-Occurrence Pattern

• Context:

—Often in a domain model you find a set of related objects

(occurrences).

—The members of such a set share common information

- but also differ from each other in important ways.

• Problem:

—What is the best way to represent such sets of occurrences in a

class diagram?

• Forces:

—You want to represent the members of each set of occurrences

without duplicating the common information

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 5

 Abstraction-Occurrence

● Solution:

«Occurrence»«Abstraction» ******

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 6

 Abstraction-Occurrence

● Solution:

TVSeries

seriesName
producer

Episode

number
title
storySynopsis

«Occurrence»«Abstraction» ******

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 7

 Abstraction-Occurrence

● Solution:
«Occurrence»«Abstraction» ******

Title

name
author

LibraryItem

barCodeNumber

isbn
publicationDate
libOfCongress

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 8

 Abstraction-Occurrence

Antipatterns:

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 9

 Abstraction-Occurrence

Square variant
ScheduledTrain

number

SpecificTrain

date
**

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 10

 Abstraction-Occurrence

Square variant
ScheduledTrain

number

SpecificTrain

date
**

*

ScheduledLeg

scheduledDepTime
scheduledArrTime

Station

origin destination
* *

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 11

 Abstraction-Occurrence

Square variant
ScheduledTrain

number

SpecificTrain

date
**

* *

ScheduledLeg SpecificLeg

actualDepTime
*

actualArrTime
scheduledDepTime
scheduledArrTime

Station

origin destination
* *

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 12

 Abstraction-Occurrence

Square variant

Exercise E6.1

Apply the Abstraction-Occurrence pattern in the

following situations. For each situation, show the two

linked classes, and the attributes in each class.

a) The issues of a periodical

Exercise E6.1

Apply the Abstraction-Occurrence pattern in the

following situations. For each situation, show the two

linked classes, and the attributes in each class.

a) The issues of a periodical

b) The copies of the issues of a periodical

Exercise E6.1

Apply the Abstraction-Occurrence pattern in the

following situations. For each situation, show the two

linked classes, and the attributes in each class.

a) The issues of a periodical

b) The copies of the issues of a periodical

c) The repeats and re-runs of the same television program

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 16

6.3 The General Hierarchy Pattern
• Context:

—Objects in a hierarchy can have one or more objects above

them (superiors),

- and one or more objects below them (subordinates).

—Some objects cannot have any subordinates

• Problem:

—How do you represent a hierarchy of objects, in which some

objects cannot have subordinates?

• Forces:

—You want a flexible way of representing the hierarchy

- that prevents certain objects from having subordinates

—All the objects have many common properties and operations

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 17

 General Hierarchy

● Solution:

«subordinate»
*«Node»

«SuperiorNode»«NonSuperiorNode»

0..1

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 18

 General Hierarchy

● Solution: «subordinate»
*«Node»

«SuperiorNode»«NonSuperiorNode»

* supervises

Manager

Employee

TechnicianSecretary

0..1

0..1

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 19

 General Hierarchy

● Solution:
«subordinate»
*«Node»

«SuperiorNode»«NonSuperiorNode»

0..1

* contains

Directory

FileSystemItem

File

0..1

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 20

 General Hierarchy

Antipattern:

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 21

 General Hierarchy

Antipattern:

RockRecordingBluesRecordingClassicalRecordingJazzRecordingMusicVideo

VideoRecoding AudioRecording

Recording

RecordingCategory
*
subcategorydescription

Recording *
hasCategory

title
artist

Better:

Exercise E6.2

Figure 5.20 (see next slide) shows a hierarchy of vehicle

parts. Show how this hierarchy might be better

represented using the General Hierarchy pattern (or

more precisely, by the Composite pattern).

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 23

Fig. 5.20 Aggregation hierarchy

* *

*
WheelTransmissionEngineFrame

DoorBodyPanelChassis

Vehicle

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 24

6.4 The Player-Role Pattern

• Context:

—A role is a particular set of properties associated with an

object in a particular context.

—An object may play different roles in different contexts.

• Problem:

—How do you best model players and roles so that a player

can change roles or possess multiple roles?

• Forces:

—It is desirable to improve encapsulation by capturing the

information associated with each separate role in a class.

—You want to avoid multiple inheritance.

—You cannot allow an instance to change class

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 25

Player-Role

• Solution:

© Lethbridge/Laganière 2001 Chapter 5: Modelling with classes 26

Player-Role

• Example of redundant hierarchy

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 27

Player-Role

Example 1:

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 28

Player-Role

Example 2:

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 29

Player-Role

Antipatterns:

• Merge all the properties and behaviours into a single

«Player» class and not have «Role» classes at all.

• Create roles as subclasses of the «Player» class.

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 30

6.5 The Singleton Pattern

• Context:

—It is very common to find classes for which only one
instance should exist (singleton)

• Problem:

—How do you ensure that it is never possible to create

more than one instance of a singleton class?

• Forces:

—The use of a public constructor cannot guarantee that

no more than one instance will be created.

—The singleton instance must also be accessible to all

classes that require it

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 31

Singleton

● Solution:

«Singleton»

theInstance

getInstance

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 32

Singleton

● Solution:

Company

theCompany

Company «private»
getInstance

if (theCompany==null)
 theCompany= new Company();

return theCompany;

«Singleton»

theInstance

getInstance

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 33

6.6 The Observer Pattern
• Context:

—When an association is created between two classes,
the code for the classes becomes inseparable.

—If you want to reuse one class, then you also have to
reuse the other.

• Problem:

—How do you reduce the interconnection between
classes, especially between classes that belong to
different modules or subsystems?

• Forces:

—You want to maximize the flexibility of the system
to the greatest extent possible

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 34

Observer

• Solution:

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 35

Observer

• Solution:

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 36

Observer

Antipatterns:

• Connect an observer directly to an observable so that

they both have references to each other.

• Make the observers subclasses of the observable.

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 37

6.7 The Delegation Pattern
• Context:

—You are designing a method in a class

—You realize that another class has a method which
provides the required service

—Inheritance is not appropriate
- E.g. because the isa rule does not apply

• Problem:

—How can you most effectively make use of a method
that already exists in the other class?

• Forces:

—You want to minimize development cost by reusing
methods

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 38

Delegation

• Solution:

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 39

Delegation

• Solution:

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 40

Delegation

Example:

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 41

Delegation
Antipatterns

• Overuse generalization and inherit the method that is to

be reused

• Instead of creating a single method in the «Delegator»

that does nothing other than call a method in the

«Delegate»

—having many different methods in the «Delegator»

call the delegate’s method

• Access non-neighboring classes
return specificFlight.regularFlight.flightNumber();

return getRegularFlight().flightNumber();

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 42

6.8 The Adapter Pattern
• Context:

—You are building an inheritance hierarchy and want to
incorporate it into an existing class.

—The reused class is also often already part of its own inheritance
hierarchy.

• Problem:

—How to obtain the power of polymorphism when reusing a
class whose methods

- have the same function

- but not the same signature

as the other methods in the hierarchy?

• Forces:

—You do not have access to multiple inheritance or you do not
want to use it.

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 43

Adapter

● Solution:

<<Superclass>>

polymorphicMethod

<<Adaptee>>

adaptedMethod

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 44

Adapter

• Solution:

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 45

Adapter

Example:

Shape3D

volume

Sphere Torus TimsTorus

calcVolume

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 46

Adapter

Example:

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 47

6.9 The Façade Pattern
• Context:

—Often, an application contains several complex packages.

—A programmer working with such packages has to manipulate

many different classes

• Problem:

—How do you simplify the view that programmers have of a

complex package?

• Forces:

—It is hard for a programmer to understand and use an entire

subsystem

—If several different application classes call methods of the

complex package, then any modifications made to the package

will necessitate a complete review of all these classes.

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 48

Façade

• Solution:

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 49

Façade

• Solution:

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 50

6.10 The Immutable Pattern
• Context:

—An immutable object is an object that has a state that never
changes after creation

• Problem:

—How do you create a class whose instances are immutable?

• Forces:

—There must be no loopholes that would allow ‘illegal’
modification of an immutable object

• Solution:

—Ensure that the constructor of the immutable class is the only
place where the values of instance variables are set or modified.

—Methods which access properties must not have side effects.

—If a method that would otherwise modify an instance variable is
required, then it has to return a new instance of the class.

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 51

6.11 The Read-only Interface Pattern

• Context:

—You sometimes want certain privileged classes to be able to

modify attributes of objects that are otherwise immutable

• Problem:

—How do you create a situation where some classes see a class as

read-only whereas others are able to make modifications?

• Forces:

—Restricting access by using the public, protected and

private keywords is not adequately selective.

—Making access public makes it public for both reading and

writing

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 52

Read-only Interface

● Solution:

«UnprivilegedClass»

****** «Mutator»

«Mutable»

attribute «private»

getAttribute
setAttribute

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 53

Read-only Interface

● Solution:

«UnprivilegedClass»

****** «Mutator»

«Mutable»

attribute «private»

getAttribute
setAttribute

«interface»
«ReadOnlyInterface»

getAttribute

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 54

Read-only Interface

Example:

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 55

Read-only Interface

Antipatterns:

• Make the read-only class a subclass of the «Mutable» class

• Override all methods that modify properties

—such that they throw an exception

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 56

6.12 The Proxy Pattern

• Context:

—Often, it is time-consuming and complicated to create instances

of a class (heavyweight classes).

—There is a time delay and a complex mechanism involved in

creating the object in memory

• Problem:

—How to reduce creating instances of a heavyweight class?

• Forces:

—We want all the objects in a domain model to be available for

programs to use when they execute a system’s various

responsibilities.

—It is also important for many objects to persist from run to run

of the same program

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 57

Proxy

● Solution:

«Client» «HeavyWeight»

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 58

Proxy

● Solution:

«interface»
«ClassIF»

* ******«Client» «HeavyWeight»«Proxy»

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 59

Proxy

Example:

«interface»
ListIF

The list elements will
be loaded into local
memory only when
needed.

ListProxy PersistentList

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 60

Proxy

Example:

«interface»
Student

PersistentStudentStudentProxy

Exercise

Find the most appropriate design pattern for the

following problems:

a) You are building an inheritance hierarchy of products

that your company sells; however, you want to reuse

several classes from one of your suppliers. You cannot

modify your suppliers' classes. How do you ensure that

the facilities of the suppliers' classes can still be used

polymorphically?

Exercise

Find the most appropriate design pattern for the

following problems:

a) You are building an inheritance hierarchy of products

that your company sells; however, you want to reuse

several classes from one of your suppliers. You cannot

modify your suppliers' classes. How do you ensure that

the facilities of the suppliers' classes can still be used

polymorphically?

b)

a)Adapter

Exercise (cont'd)

a)You want to reuse a method in one of the classes from

one of your suppliers. You cannot subclass your

supplier's class. How do you most effectively make use

of the already existing method?

Exercise (cont'd)

a)You want to reuse a method in one of the classes from

one of your suppliers. You cannot subclass your

supplier's class. How do you most effectively make use

of the already existing method?

b)

a)Delegation

Exercise (cont'd)

 You want to allow operations on instances of

RegularPolygon that will distort them such that they are

no longer regular polygons. How do you allow the

operations without raising exceptions?

Exercise (cont'd)

 You want to allow operations on instances of

RegularPolygon that will distort them such that they are

no longer regular polygons. How do you allow the

operations without raising exceptions?

 Immutable

Exercise (cont'd)

a)Your program manipulates images that take a lot of space

in memory. How can you design your program so that

images are only in memory when needed, and otherwise

can only be found in files?

Exercise (cont'd)

a)Your program manipulates images that take a lot of space

in memory. How can you design your program so that

images are only in memory when needed, and otherwise

can only be found in files?

b)

a)Proxy

Exercise (cont'd)

a)You have created a subsystem with 25 classes. You know

that most other subsystems will only access about 5

methods in this subsystem; how can you simplify the view

that the other subsystems have of your subsystem?

Exercise (cont'd)

a)You have created a subsystem with 25 classes. You know

that most other subsystems will only access about 5

methods in this subsystem; how can you simplify the view

that the other subsystems have of your subsystem?

b)

a)Facade

Exercise (cont'd)

a)You need to represent insects and insect specimens that

are collected in a state forest. For every kind of insect in

the forest, many specimens of that type will be collected

for analysis. How do you represent specimens without

duplicating common information like scientific name, or

the name of the forest in which they are collected?

Exercise (cont'd)

a)You need to represent insects and insect specimens that

are collected in a state forest. For every kind of insect in

the forest, many specimens of that type will be collected

for analysis. How do you represent specimens without

duplicating common information like scientific name, or

the name of the forest in which they are collected?

b)

a)Abstraction-Occurrence

Exercise (cont'd)

a)You are developing a stock quote framework. Some

applications using this framework will want stock quotes

to be displayed on a screen when they become available;

other applications will want new quotes to trigger certain

financial applications; yet other applications might want

both of the above, plus having quotes transmitted

wirelessly to a network of pagers. How can you design

the framework so that various different pieces of

application code can react in their own way to the arrival

of new quotes?

Exercise (cont'd)

a)You are developing a stock quote framework. Some

applications using this framework will want stock quotes

to be displayed on a screen when they become available;

other applications will want new quotes to trigger certain

financial applications; yet other applications might want

both of the above, plus having quotes transmitted

wirelessly to a network of pagers. How can you design

the framework so that various different pieces of

application code can react in their own way to the arrival

of new quotes?

b)

a)Observer

Exercise (cont'd)

a)You would like users in an airline reservation system to

be treated as employees in one setting but as customers in

another. You want to represent users as objects but you

don't want any objects to change class.

Exercise (cont'd)

a)You would like users in an airline reservation system to

be treated as employees in one setting but as customers in

another. You want to represent users as objects but you

don't want any objects to change class.

b)

a)Player-Role

Exercise (cont'd)

a)You want to represent genealogical information in a

family tree. You need to represent that some bloodlines

end without any descendants. You don't want your class

diagram to have to change every time a new family is

added as a node to the family tree.

Exercise (cont'd)

a)You want to represent genealogical information in a

family tree. You need to represent that some bloodlines

end without any descendants. You don't want your class

diagram to have to change every time a new family is

added as a node to the family tree.

b)

a)General Hierarchy

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 79

6.15 Difficulties and Risks When Creating
Class Diagrams

• Patterns are not a panacea:

—Whenever you see an indication that a pattern should

be applied, you might be tempted to blindly apply the

pattern. However this can lead to unwise design

decisions .

• Resolution:

— Always understand in depth the forces that need to

be balanced, and when other patterns better balance

the forces.

—Make sure you justify each design decision carefully.

© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 80

Difficulties and Risks When Creating Class
Diagrams

• Developing patterns is hard

—Writing a good pattern takes considerable work.

—A poor pattern can be hard to apply correctly

• Resolution:

—Do not write patterns for others to use until you

have considerable experience both in software

design and in the use of patterns.

—Take an in-depth course on patterns.

—Iteratively refine your patterns, and have them peer

reviewed at each iteration.

	PowerPoint Presentation
	6.1 Introduction to Patterns
	Pattern description
	6.2 The Abstraction-Occurrence Pattern
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	 Abstraction-Occurrence
	Slide 13
	Slide 14
	Slide 15
	6.3 The General Hierarchy Pattern
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Aggregation hierarchy
	6.4 The Player-Role Pattern
	Player-Role
	Handling multiple discriminators
	Slide 27
	Slide 28
	Slide 29
	6.5 The Singleton Pattern
	Slide 31
	Slide 32
	6.6 The Observer Pattern
	Observer
	Slide 35
	Slide 36
	6.7 The Delegation Pattern
	Delegation
	Slide 39
	Slide 40
	Slide 41
	6.8 The Adapter Pattern
	Slide 43
	Adapter
	Slide 45
	Slide 46
	6.9 The Façade Pattern
	Façade
	Slide 49
	6.10 The Immutable Pattern
	6.11 The Read-only Interface Pattern
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	6.12 The Proxy Pattern
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	6.15 Difficulties and Risks When Creating Class Diagrams
	Difficulties and Risks When Creating Class Diagrams

