53

\4

\

Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 6:
Using Design Patterns

www.lloseng.com

6.1 Introduction to Patterns

Therecurring aspects of designs are called design patterns.

» A pattern is the outline of a reusable solution to a general problem
encountered in a particular context

« Many of them have been systematically documented for all
software developers to use

A good pattern should
—Be as general as possible

—Contain a solution that has been proven to effectively solve the
problem in the indicated context.

Sudying patterns is an effective way to learn from the experience of
others

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 2

Pattern description

Context:
* The general situation in which the pattern applies
Problem:
—A short sentence or two raising the main difficulty.
For ces:
e Theissues or concerns to consider when solving the problem
Solution:
* The recommended way to solve the problem in the given context.
—‘to balance the forces’
Antipatterns. (Optional)
e Solutionsthat are inferior or do not work in this context.
Related patterns: (Optional)
» Patternsthat are similar to this pattern.
References:
* Who developed or inspired the pattern.

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns

0.2 The Abstraction-Occurrence Pattern

e Context:

—Often in a domain model you find a set of related objects
(occurrences).

—The members of such a set share common information

- but also differ from each other in important ways.
* Problem:

—What is the best way to represent such sets of occurrences in a
classdiagram?

e Forces.

—Y ou want to represent the members of each set of occurrences
without duplicating the common information

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 4

Abstraction-Occurrence

e Solution:

«Abstraction» «Occurrence»

’
L3
s’ w www . lloseng.com
/ © Lethbridge/L aganiére 2001

Chapter 6: Using design patterns

Abstraction-Occurrence

e Solution:
«Abstraction» " | «Occurrence»
TVSeries . Episode
seriesName number
producer title
storySynopsis

WAWW. [|0SENG.COM e

\ 5
"/ © Lethbridge/Laganiére 2001 Chapter 6: Using design patterns 6

Abstraction-Occurrence

e Solution:

«Abstraction» «Occurrence»

Title Libraryltem

name barCodeNumber
author

isbn
publicationDate
libOfCongress

WAWW. [|0SENG.COM e

\ s
Q‘/ © Lethbridge/L aganiére 2001 Chapter 6: Using design patterns 7

Abstraction-Occurrence

Antipatterns:

Libraryltem

name
author

iskin
publicationDate
libOtCongress
barCodetumber

Libraryltem

name
author

iskn
publicationDate
libOtCongress
barCodetumber

Title

name
author

isbin
publicationDate
ibOtCongrass

AN

AN

GulliversTravels

Libraryltem

MobyDick

barCodeMNumber

www.lloseng.com

Chapter 6: Using design patterns

Abstraction-Occurrence

Square variant
ScheduledTrain

SpecificTrain

number date

’
L3
s’ w WWW IOSENG.COM e
’ / © Lethbridge/L aganiére 2001

Chapter 6: Using design patterns 9

Abstraction-Occurrence

Square variant

ScheduledTrain SpecificTrain

number date

Y

ScheduledLeg

scheduledDepTime
scheduledArrTime

* *

origin destination

Station

Y ;’; W w.110SeN(.COM

© Lethbridge/L aganiére 2001 Chapter 6: Using design patterns 10

Abstraction-Occurrence

Square variant

ScheduledTrain

number

. | SpecificTrain

?

date

¢

ScheduledLeg

. | SpecificLeg

scheduledDepTime
scheduledArrTime

actualDepTime
actualArrTime

* *

origin destination

Station

© Lethbridge/L aganiére 2001

Chapter 6: Using design patterns

11

Abstraction-Occurrence

Square variant

.
«AggregateAbstractiony

[

«PartAbstractiony

— «AggregateOccurrencey

«PartOccurrencey

ScheduledTrain 1 | SpecificTram
number date
1?
ScheduledLeg SpecificLeg
1
scheduledDepTime actualDepTime
scheduledArrTime actual Ar'Time
origin 1 1 destination
Station

Chapter 6: Using design patterns

www.lloseng.com

12

Exercise E6.1

Apply the Abstraction-Occurrence pattern in the
following situations. For each situation, show the two
linked classes, and the attributesin each class.

a) Theissues of aperiodical

www.lloseng.com

Exercise E6.1

Apply the Abstraction-Occurrence pattern in the
following situations. For each situation, show the two
linked classes, and the attributesin each class.

a) Theissues of aperiodical

b) The copies of the issues of a periodical

Exercise E6.1

Apply the Abstraction-Occurrence pattern in the
following situations. For each situation, show the two
linked classes, and the attributesin each class.

a) Theissues of aperiodical
b) The copies of the issues of a periodical

c) The repeats and re-runs of the same television program

6.3 The General Hierarchy Pattern

e Context:

—Objects in a hierarchy can have one or more objects above
them (superiors),
- and one or more objects below them (subordinates).
—S0ome objects cannot have any subordinates
* Problem:

—How do you represent a hierarchy of objects, in which some
objects cannot have subordinates?

e Forces:

—Y ou want aflexible way of representing the hierarchy

- that prevents certain objects from having subordinates

—AlI the objects have many common properties and operations

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 16

General Hierarchy

e Solution:

*

«Node»

JAN

| 1 0.1

«subordinate»

«NonSuperiorNode»| | «SuperiorNode»

WAWW. [|0SENG.COM e

) 78
" / © Lethbridge/L aganiére 2001 Chapter 6: Using design patterns 17

General Hierarchy

e Solution: «Node»

*

«subordinate»

| A

1 0.1

«NonSuperiorNode»

«SuperiorNode»

Employee

supervises

AN

| 0.1

Secretary Technician Manager

© Lethbridge/L aganiére 2001 Chapter 6: Using design patterns

18

General Hierarchy

e Solution: «Node» |

«subordinate»

| 1 0.1

«NonSuperiorNode»| |«SuperiorNode»

FileSystemltem |” contains

| o L 01O

File Directory

WAWW. [|0SENG.COM e

U/
’0 / © Lethbridge/L aganiére 2001 Chapter 6: Using design patterns 19

General Hierarchy

Antipattern:

Recording

A

| |
VideoRecording AudioRecording

/\ /\

MusicVideo JazzRecording || ClassicalRecording| | BluesRecording RockRecording

/a»
.

” www.lloseng.com

\ s
0/ © Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 20

General Hierarchy

Antipattern:

Recording

JAN

VideoRecoding

/\

AudioRecording

JAN

artist

subcategory

*
P9
’0/ © Lethbridge/L aganiére 2001

Chapter 6: Using design patterns

MusicVideo JazzRecording| [ClassicalRecording| | BluesRecording| | RockRecording
B et ter . Recording - hasCategory RecordingCategory*
] title description

WAWW. [|0SENG.COM e

21

Exercise E6.2

Figure 5.20 (see next dide) shows a hierar chy of vehicle
parts. Show how this hierarchy might be better
represented using the General Hierarchy pattern (or
mor e precisely, by the Composite pattern).

Fig. 5.20 Aggregation hierarchy

Vehicle
Chassis BodyPanel Door
Frame Engine Transmission Wheel

© Lethbridge/L aganiére 2001

Chapter 5: Modelling with classes

23

6.4 The Player-Role Pattern

e Context:

—A role is a particular set of properties associated with an
object in aparticular context.

—An object may play different roles in different contexts.
* Problem:

—How do you best model players and roles so that a player
can change roles or possess multiple roles?

e Forces:

—It is desirable to improve encapsulation by capturing the
Information associated with each separate role in aclass.

—Y.ou-want-to-avoid-multiple aheritance.
oLapgd-eafTitt allow an inStAREE O CRaMGR e 88 24

Player-Role

e Solution:

«Player»

«AbstractRole»

«Rolel»

«Role2»

www.lloseng.com

Chapter 6: Using design patterns

25

Player-Role

« Example of redundant hierarchy

Animal

habitat 43

AquaticAnimal

typeOfF oad Q

LandAnimal

Aype@ﬂzood

AquaticCarnivore

AquaticHerbivore

LandCarnivore

LandHerbivore

© Lethbridge/L aganiére 2001

Chapter 5: Modelling with classes

26

Player-Role

Example 1.
. 1 0.2 .
Amimal HabitatRole
/\ typeOfFood habi’ra‘ri \
| | | |
Carnivore Herbivore Omnivore AquaticAnimal LandAnimal

www.lloseng.com

Chapter 6: Using design patterns 27

Player-Role

Example 2
AttendanceRole | Y Student |- ! LevelRole
attendance ZF $ level
| | | |
FullTimeStudent PartTimeStudent GraduateStudent | | UndergraduateStudent

www.lloseng.com

Chapter 6: Using design patterns 28

Player-Role

Antipatterns:

 Merge all the properties and behaviours into a single
«Player» class and not have «Role» classes at all.

* Create roles as subclasses of the «Player» class.

/&

” www.lloseng.com

*’ s
Q’/ © Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 29

6.5 The Singleton Pattern

e Context:

—It is very common to find classes for which only one
Instance should exist (singleton)

e Problem:

—How do you ensure that it is never possible to create
more than one instance of a singleton class?

e Forces:

—The use of a public constructor cannot guarantee that
no more than one instance will be created.

—The singleton instance must also be accessible to all
classes that require it

© Lethbridge/Laganiére 2005 Chapter 6: Using design patterns 30

Singleton

e Solution:

«Singleton»

thelnstance

getinstance

www.lloseng.com

Chapter 6: Using design patterns

31

Singleton

e Solution:

«Singleton»

thelnstance

getinstance

Company

theCompany

Company «private»
getinstance

if (theCompany==null) e
theCompany= new Company();

return theCompany;

Chapter 6: Using design patterns

WAWW. [|0SENG.COM e

32

6.6 The Observer Pattern

e Context:

—When an association is created between two classes,
the code for the classes becomes inseparable.

—If you want to reuse one class, then you also have to
reuse the other.

e Problem:

—How do you reduce the interconnection between
classes, especially between classes that belong to
different modules or subsystems?

e Forces.

—Y ou want to maximize the flexibility of the system
to the greatest extent possible

© Lethbridge/Laganiére 2005 Chapter 6: Using design patterns 33

Observer

e Solution:

«Observable»

«interface»
#[«Observery

addObserver()
notifyObservers()

/\

«ConcreteObservabley

update()

/N

«ConcreteObserver

www.lloseng.com

3
' © Lethbridge/L aganiére 2005

Chapter 6: Using design patterns

34

Observer

e Solution:

«Observable»

addObserver()
notifyObservers()

«interface»
#[«Observery

/\

«ConcreteObservabley

update()

/N

Observable

«ConcreteObserver

*| «interface»

/N

Forecaster

Observers are
notified when a new
forecast is ready

Observer

/\

WeatherViewer

Chapter 6: Usin

g design patterns

www.lloseng.com

Observer

Antipatterns:

e Connect an observer directly to an observable so that
they both have references to each other.

» Make the observers subclasses of the observable.

/&

” www.lloseng.com

*/)
Q‘/ © Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 36

6.7 The Delegation Pattern

e Context:
—Y ou are designing a method in aclass

—Y ou realize that another class has a method which
provides the required service

—Inheritance is not appropriate
- E.g. because the isa rule does not apply

e Problem:

—How can you most effectively make use of a method
that already exists in the other class?

e Forces:

—Y ou want to minimize development cost by reusing
methods

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 37

Delegation

e Solution:

delegatingMethod()

delegate. method():;
j

-\.
Lo
L]
e

«Delegator»

«Delegate»

L delegatingMethod()

/ © Lethbridge/L aganiére 2005

method()

www.lloseng.com

Chapter 6: Using design patterns

38

Delegation

e Solution:

delegatingMethod()

delegate. method():;
j

push()

list.addFirst();
}

«Delegator»

L delegatingMethod()

«Delegate»

Stack
<>

method()

- push()
pop()
1sEmpty()

Linked[ist

addFirst()
addLast()
addAfter()
removeFirst()

removelLast()
delete()

1sEmpty()

www.lloseng.com

3
0 © Lethbridge/L aganiére 2005

Chapter 6: Using design patterns

39

Delegation

Example:
Booking SpecificFlight | RegularFlight
flightNumber() flightNumber() tlightNumber()

flightNumber() E flightNumber() m

{ {

refurn return
| specificFlight flightNumber(): } regularFlight flightNumber();
/
'J‘

¢

3
0 © Lethbridge/L aganiére 2005

www.lloseng.com

Chapter 6: Using design patterns

40

Delegation
Antipatterns

» Overuse generalization and inherit the method that isto
be reused

e Instead of creating a single method in the «Delegator»
that does nothing other than call a method in the
«Delegate»

—having many different methods in the «Delegator»
call the delegate’ s method

 Access non-neighboring classes
return specificFlight.regularFlight.flightNunber();

return getRegul arFlight().flightNunber();

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 41

6.8 The Adapter Pattern

o Context:

—Y ou are building an inheritance hierarchy and want to
Incorporate it into an existing class.

—Thereused classis aso often already part of its own inheritance
hierarchy.

e Problem:

—How to obtain the power of polymorphism when reusing a
class whose methods

- have the same function
- but not the same signature

as the other methods in the hierarchy?
e Forces.

—You do not have access to multiple inheritance or you do not
want to useit.

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 42

Adapter

e Solution:
<<Superclass>>
polymorphicM ethod
<<Adaptee>>
adaptedM ethod

#
” k www . lloseng.com
’ / © Lethbridge/L aganiére 2001

Chapter 6: Using design patterns

Adapter

e Solution:
«Superclass» {POlymOTPhiCM’SThOdO JAN
polymorphicMethod()l return
,ﬁ } adaptee.adaptedMethod();
«Adapter» [Ll «Adaptee»
adaptedMethod

’
L3
s’ w www . lloseng.com
/ © Lethbridge/L aganiére 2005

Chapter 6: Using design patterns

Adapter

Example:

Shape3D

volume

Sphere Torus

TimsTorus

cacVolume

www.lloseng.com

Chapter 6: Using design patterns

45

Adapter

Example:
volume()
Shape3D {
ol return
volume() \ adaptee.calcVolume();
Sphere Torus L | TimsTorus
calcVolume()

’
L3
s’ w www . lloseng.com
/ © Lethbridge/L aganiére 2005

" Chapter 6: Using design patterns

6.9 The Facade Pattern

e Context:
—Often, an application contains several complex packages.

—A programmer working with such packages has to manipulate
many different classes

* Problem:
—How do you simplify the view that programmers have of a
complex package?
e Forces.

—It is hard for a programmer to understand and use an entire
subsystem

—If severa different application classes call methods of the
complex package, then any modifications made to the package
will necessitate a complete review of all these classes.

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns a7

Facade

e Solution:

«Facade»

«PackageClass1»

e

ULACRKAECULASSL)

b

LLACRAECTULASS)

www.lloseng.com

Chapter 6: Using design patterns

48

Facade

« Solution:
«Facade» | «PackageClass1»
LLACRKAECTUIASSL»
LLACRAECTULASSI »
Atrline : ! RegularFlight
findFlight()
makeBooking() |1 %
/ d.eleteBooking()l Person

www.lloseng.com

Chapter 6: Using design patterns

49

6.10 The Immutable Pattern

e Context:

—An immutable object is an object that has a state that never
changes after creation

e Problem:
—How do you create a class whose instances are immutable?
e Forces.

—There must be no loopholes that would allow ‘illegal’
modification of an immutable object

e Solution:

—Ensure that the constructor of the immutable class is the only
place where the values of instance variables are set or modified.

—M ethods which access properties must not have side effects.
—If amethod that would otherwise modify an instance variable is
required, then it has to return a new instance of the class.

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 50

6.11 The Read-only Interface Pattern

e Context:

—Y ou sometimes want certain privileged classes to be able to
modify attributes of objects that are otherwise immutable

e Problem:

—How do you create a situation where some classes see a class as
read-only whereas others are able to make modifications?

e Forces:

—Restricting access by using the publ | ¢, pr ot ect ed and
pri vat e keywordsis not adequately selective.

—Making access publ i ¢ makesit public for both reading and
writing

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 51

Read-only Interface

e Solution:

«UnprivilegedClass»

«Mutable»

attribute «private» «Mutator»

getAttribute
setAttribute

WAWW. [|0SENG.COM e

3/
‘0 / © Lethbridge/L aganiére 2001 Chapter 6: Using design patterns 52

Read-only Interface

e Solution:

«interface»
«ReadOnlyInterface»

«UnprivilegedClass»

getAttribute

N\

«Mutable»

«Mutator»

attribute «private»

getAttribute
setAttribute

© Lethbridge/L aganiére 2001

Chapter 6: Using design patterns

53

Read-only Interface

Example: «interface»

Person

getName()

/\

Mutableperson

firstName
lastName

setFirstName()
setLastName()

/ getName()
+
+
W www.lloseng.com
/ © Lethbridge/L aganiére 2005

Chapter 6: Using design patterns

Read-only Interface

Antipatterns:
» Make the read-only class a subclass of the «Mutable» class
» QOverride all methods that modify properties
—such that they throw an exception

’
L3
s’ ‘V www . lloseng.com
/ © Lethbridge/L aganiére 2005

Chapter 6: Using design patterns 55

6.12 The Proxy Pattern

e Context:

—Often, it is time-consuming and complicated to create instances
of aclass (heavyweight classes).

—There is a time delay and a complex mechanism involved in
creating the object in memory

e Problem:
—How to reduce creating instances of a heavyweight class?
e Forces:

—We want all the objectsin adomain model to be available for
programs to use when they execute a system’ s various
responsibilities.

—It is also important for many objects to persist from run to run
of the same program

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 56

Proxy

e Solution:

«Client»

«HeavyWeight»

www.lloseng.com

Chapter 6: Using design patterns

57

Proxy

e Solution:
«interface»
«ClasslIF»
«Client» |__ ; «Proxy» | «<HeavyWeight»

” WAWW. [|0SENG.COM e

) 78
" / © Lethbridge/L aganiére 2001 Chapter 6: Using design patterns S8

Proxy

Example:

«interface» : m=
h The list elements will
ListIF

be loaded into local
memory only when
needed.

ListProxy [- | PersistentList

« WAWW. [|0SENG.COM e
’ " / © Lethbridge/L aganiére 2001

Chapter 6: Using design patterns 59

Proxy

Example:

«interface»
Student

VANIIRWAN

StudentProxy| - | PersistentStudent

Chapter 6: Using design patterns 60

’
L3
s’ w WWW IOSENG.COM e
’ / © Lethbridge/L aganiére 2001

Exercise

Find the most appropriate design pattern for the
following problems:

Y ou are building an inheritance hierarchy of products
that your company sells, however, you want to reuse
several classes from one of your suppliers. Y ou cannot
modify your suppliers classes. How do you ensure that
the facilities of the suppliers classes can still be used
polymorphically?

Exercise

Find the most appropriate design pattern for the
following problems:

Y ou are building an inheritance hierarchy of products
that your company sells, however, you want to reuse
several classes from one of your suppliers. Y ou cannot
modify your suppliers classes. How do you ensure that
the facilities of the suppliers classes can still be used
polymorphically?

Adapter

Exercise (cont'd)

Y ou want to reuse a method in one of the classes from
one of your suppliers. Y ou cannot subclass your
supplier's class. How do you most effectively make use
of the already existing method?

Exercise (cont'd)

Y ou want to reuse a method in one of the classes from
one of your suppliers. Y ou cannot subclass your
supplier's class. How do you most effectively make use
of the already existing method?

Delegation

www.lloseng.com

Exercise (cont'd)

Y ou want to allow operations on instances of
Regular Polygon that will distort them such that they are

no longer regular polygons. How do you allow the
operations without raising exceptions?

Exercise (cont'd)

Y ou want to allow operations on instances of
Regular Polygon that will distort them such that they are

no longer regular polygons. How do you allow the
operations without raising exceptions?

|mmutable

www.lloseng.com

' 4
N\

Exercise (cont'd)

Y our program manipulates images that take alot of space
INn memory. How can you design your program so that
Images are only in memory when needed, and otherwise
can only be found in files?

Exercise (cont'd)

Y our program manipulates images that take alot of space
INn memory. How can you design your program so that
Images are only in memory when needed, and otherwise
can only be found in files?

Proxy

. ;‘; www.lloseng.com

Exercise (cont'd)

Y ou have created a subsystem with 25 classes. Y ou know
that most other subsystems will only access about 5
methods in this subsystem; how can you simplify the view
that the other subsystems have of your subsystem?

Exercise (cont'd)

Y ou have created a subsystem with 25 classes. Y ou know
that most other subsystems will only access about 5
methods in this subsystem; how can you simplify the view
that the other subsystems have of your subsystem?

Facade

Exercise (cont'd)

Y ou need to represent insects and insect specimens that
are collected in a state forest. For every kind of insect in
the forest, many specimens of that type will be collected
for analysis. How do you represent specimens without
duplicating common information like scientific name, or
the name of the forest in which they are collected?

Exercise (cont'd)

Y ou need to represent insects and insect specimens that
are collected in a state forest. For every kind of insect in
the forest, many specimens of that type will be collected
for analysis. How do you represent specimens without
duplicating common information like scientific name, or
the name of the forest in which they are collected?

Abstraction-Occurrence

Exercise (cont'd)

Y ou are developing a stock quote framework. Some
applications using this framework will want stock quotes
to be displayed on a screen when they become available;
other applications will want new quotes to trigger certain
financial applications; yet other applications might want
both of the above, plus having quotes transmitted
wirelessy to a network of pagers. How can you design
the framework so that various different pieces of
application code can react in their own way to the arrival
of new quotes?

Exercise (cont'd)

Y ou are developing a stock quote framework. Some
applications using this framework will want stock quotes
to be displayed on a screen when they become available;
other applications will want new quotes to trigger certain
financial applications; yet other applications might want
both of the above, plus having quotes transmitted
wirelessy to a network of pagers. How can you design
the framework so that various different pieces of
application code can react in their own way to the arrival
of new quotes?

Observer

Exercise (cont'd)

Y ou would like users in an airline reservation system to
be treated as employees in one setting but as customersin
another. Y ou want to represent users as objects but you
don't want any objects to change class.

Exercise (cont'd)

Y ou would like users in an airline reservation system to
be treated as employees in one setting but as customersin
another. Y ou want to represent users as objects but you
don't want any objects to change class.

Player-Role

" ;’; www.lloseng.com

Exercise (cont'd)

Y ou want to represent genealogical information in a
family tree. Y ou need to represent that some bloodlines
end without any descendants. Y ou don't want your class
diagram to have to change every time a new family is
added as a node to the family tree.

Exercise (cont'd)

Y ou want to represent genealogical information in a
family tree. Y ou need to represent that some bloodlines
end without any descendants. Y ou don't want your class
diagram to have to change every time a new family is
added as a node to the family tree.

General Hierarchy

" ;’% www.lloseng.com

6.15 Difficulties and Risks When Creating
Class Diagrams

e Patterns are not a panacea:

—Whenever you see an indication that a pattern should
be applied, you might be tempted to blindly apply the
pattern. However this can lead to unwise design
decisions.

e Resolution:

— Always understand in depth the forces that need to
be balanced, and when other patterns better balance
the forces.

—Make sure you justify each design decision carefully.

© Lethbridge/L aganiére 2005 Chapter 6: Using design patterns 79

Difficulties and Risks When Creating Class
Diagrams

e Developing patternsishard
—WTriting a good pattern takes considerable work.
—A poor pattern can be hard to apply correctly
 Resolution:

—Do not write patterns for othersto use until you
have considerable experience both in software
design and in the use of patterns.

—Take an in-depth course on patterns.

—Iteratively refine your patterns, and have them peer
reviewed at each iteration.

© Lethbridge/Laganiére 2005 Chapter 6: Using design patterns 80

	PowerPoint Presentation
	6.1 Introduction to Patterns
	Pattern description
	6.2 The Abstraction-Occurrence Pattern
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	 Abstraction-Occurrence
	Slide 13
	Slide 14
	Slide 15
	6.3 The General Hierarchy Pattern
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Aggregation hierarchy
	6.4 The Player-Role Pattern
	Player-Role
	Handling multiple discriminators
	Slide 27
	Slide 28
	Slide 29
	6.5 The Singleton Pattern
	Slide 31
	Slide 32
	6.6 The Observer Pattern
	Observer
	Slide 35
	Slide 36
	6.7 The Delegation Pattern
	Delegation
	Slide 39
	Slide 40
	Slide 41
	6.8 The Adapter Pattern
	Slide 43
	Adapter
	Slide 45
	Slide 46
	6.9 The Façade Pattern
	Façade
	Slide 49
	6.10 The Immutable Pattern
	6.11 The Read-only Interface Pattern
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	6.12 The Proxy Pattern
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	6.15 Difficulties and Risks When Creating Class Diagrams
	Difficulties and Risks When Creating Class Diagrams

