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6.1 Introduction to Patterns 

The recurring aspects of designs are called design patterns. 

• A pattern is the outline of a reusable solution to a general problem 

encountered in a particular context 

• Many of them have been systematically documented for all 

software developers to use 

• A good pattern should

—Be as general as possible

—Contain a solution that has been proven to effectively solve the 

problem in the indicated context. 

Studying patterns is an effective way to learn from the experience of 

others 
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Pattern description
Context: 

• The general situation in which the pattern applies 

Problem: 

—A short sentence or two raising the main difficulty.

Forces: 

• The issues or concerns to consider when solving the problem

Solution: 

• The recommended way to solve the problem in the given context. 

—‘to balance the forces’

Antipatterns: (Optional)

•  Solutions that are inferior or do not work in this context. 

Related patterns: (Optional) 

• Patterns that are similar to this pattern. 

References:

•  Who developed or inspired the pattern. 
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6.2 The Abstraction-Occurrence Pattern

• Context: 

—Often in a domain model you find a set of related objects 

(occurrences).

—The members of such a set share common information

- but also differ from each other in important ways.

• Problem: 

—What is the best way to represent such sets of occurrences in a 

class diagram?

•  Forces: 

—You want to represent the members of each set of occurrences 

without duplicating the common information
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 Abstraction-Occurrence 

● Solution:

«Occurrence»«Abstraction» ******
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 Abstraction-Occurrence 

● Solution:

TVSeries

seriesName
producer

Episode

number
title
storySynopsis

******

«Occurrence»«Abstraction» ******
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 Abstraction-Occurrence 

● Solution:
«Occurrence»«Abstraction» ******

Title

name
author

LibraryItem

barCodeNumber
******

isbn
publicationDate
libOfCongress
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 Abstraction-Occurrence 

Antipatterns:
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 Abstraction-Occurrence

Square variant
ScheduledTrain

number

SpecificTrain

date
**
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 Abstraction-Occurrence

Square variant
ScheduledTrain

number

SpecificTrain

date
**

*

ScheduledLeg

scheduledDepTime
scheduledArrTime

Station

origin destination
* *
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 Abstraction-Occurrence

Square variant
ScheduledTrain

number

SpecificTrain

date
**

* *

ScheduledLeg SpecificLeg

actualDepTime
*

actualArrTime
scheduledDepTime
scheduledArrTime

Station

origin destination
* *
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 Abstraction-Occurrence

Square variant



Exercise E6.1

Apply the Abstraction-Occurrence pattern in the 

following situations.  For each situation, show the two 

linked classes, and the attributes in each class.

a)  The issues of a periodical
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Exercise E6.1

Apply the Abstraction-Occurrence pattern in the 

following situations.  For each situation, show the two 

linked classes, and the attributes in each class.

a)  The issues of a periodical

b)  The copies of the issues of a periodical

c)  The repeats and re-runs of the same television program
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6.3 The General Hierarchy Pattern
• Context: 

—Objects in a hierarchy can have one or more objects above 

them (superiors), 

- and one or more objects below them (subordinates). 

—Some objects cannot have any subordinates 

• Problem: 

—How do you represent  a hierarchy of objects, in which some 

objects cannot have subordinates? 

• Forces: 

—You want a flexible way of representing the hierarchy 

- that prevents certain objects from having subordinates

—All the objects have many common properties and operations 
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 General Hierarchy

● Solution:

«subordinate»
*«Node»

«SuperiorNode»«NonSuperiorNode»

0..1
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 General Hierarchy

● Solution: «subordinate»
*«Node»

«SuperiorNode»«NonSuperiorNode»

* supervises

Manager

Employee

TechnicianSecretary

0..1

0..1



© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 19

 General Hierarchy

● Solution:
«subordinate»
*«Node»

«SuperiorNode»«NonSuperiorNode»

0..1

* contains

Directory

FileSystemItem

File

0..1
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 General Hierarchy

Antipattern:
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 General Hierarchy

Antipattern:

RockRecordingBluesRecordingClassicalRecordingJazzRecordingMusicVideo

VideoRecoding AudioRecording

Recording

RecordingCategory
*
subcategorydescription

Recording *
hasCategory

title
artist

Better:



Exercise E6.2

Figure 5.20 (see next slide) shows a hierarchy of vehicle 

parts.  Show how this hierarchy might be better 

represented using the General Hierarchy pattern (or 

more precisely, by the Composite pattern).
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Fig. 5.20 Aggregation hierarchy 

* *

*
WheelTransmissionEngineFrame

DoorBodyPanelChassis

Vehicle
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6.4 The Player-Role Pattern

• Context: 

—A role  is a particular set of properties associated with an 

object in a particular context. 

—An object may play different roles in different contexts. 

• Problem: 

—How do you best model players and roles so that a player 

can change roles or possess multiple roles?

• Forces: 

—It is desirable to improve encapsulation by capturing the 

information associated with each separate role in a class.

—You want to avoid multiple inheritance. 

—You cannot allow an instance to change class 
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Player-Role

• Solution:
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Player-Role

• Example of redundant hierarchy
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Player-Role

Example 1:
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Player-Role

Example 2:
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Player-Role

Antipatterns:

• Merge all the properties and behaviours into a single 

«Player» class and not have «Role» classes at all. 

• Create roles as subclasses of the «Player» class. 
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6.5 The Singleton Pattern

• Context: 

—It is very common to find classes for which only one 
instance should exist (singleton) 

• Problem: 

—How do you ensure that it is never possible to create 

more than one instance of a singleton class? 

• Forces: 

—The use of a public constructor cannot guarantee that 

no more than one instance will be created. 

—The singleton instance must also be accessible to all 

classes that require it 
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Singleton

● Solution:

«Singleton»

theInstance

getInstance
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Singleton

● Solution:

Company

theCompany

Company «private»
getInstance

if (theCompany==null) 
  theCompany= new Company(); 
 
return theCompany;

«Singleton»

theInstance

getInstance



© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 33

6.6 The Observer Pattern
• Context: 

—When an association is created between two classes, 
the code for the classes becomes inseparable. 

—If you want to reuse one class, then you also have to 
reuse the other.

• Problem: 

—How do you reduce the interconnection between 
classes, especially between classes that belong to 
different modules or subsystems?

• Forces: 

—You want to maximize the flexibility of the system 
to the greatest extent possible 



© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 34

Observer

• Solution:
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Observer

• Solution:
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Observer

Antipatterns:

• Connect an observer directly to an observable so that 

they both have references to each other. 

• Make the observers subclasses of the observable. 
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6.7 The Delegation Pattern
• Context: 

—You are designing a method in a class

—You realize that another class has a method which 
provides the required service 

—Inheritance is not appropriate 
- E.g. because the isa rule does not apply 

• Problem: 

—How can you most effectively make use of a method 
that already exists in the other class? 

• Forces: 

—You want to minimize development cost by reusing 
methods 
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Delegation

• Solution:
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Delegation

• Solution:
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Delegation

Example:
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Delegation
Antipatterns

• Overuse generalization and inherit the method that is to 

be reused 

• Instead of creating a single method in the «Delegator» 

that does nothing other than call a method in the 

«Delegate»

—having many different methods in the «Delegator» 

call the delegate’s method 

• Access non-neighboring classes
return specificFlight.regularFlight.flightNumber();

return getRegularFlight().flightNumber();
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6.8 The Adapter Pattern
• Context: 

—You are building an inheritance hierarchy and want to 
incorporate it into an existing class. 

—The reused class is also often already part of its own inheritance 
hierarchy.

• Problem: 

—How to  obtain the power of polymorphism when reusing a 
class whose methods

- have the same function

- but not the same signature

as the other methods in the hierarchy?

• Forces: 

—You do not have access to multiple inheritance or you do not 
want to use it.
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Adapter

● Solution:

<<Superclass>>

polymorphicMethod

<<Adaptee>>

adaptedMethod
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Adapter

• Solution:
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Adapter

Example:

Shape3D

volume

Sphere Torus TimsTorus

calcVolume
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Adapter

Example:
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6.9 The Façade Pattern
• Context: 

—Often, an application contains several complex packages. 

—A programmer working with such packages has to manipulate 

many different classes 

• Problem: 

—How do you simplify the view that programmers have of a 

complex package? 

• Forces: 

—It is hard for a programmer to understand and use an entire 

subsystem 

—If several different application classes call methods of the 

complex package, then any modifications made to the package 

will necessitate a complete review of all these classes.
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Façade

• Solution:
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Façade

• Solution:
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6.10 The Immutable Pattern
• Context: 

—An immutable object is an object that has a state that never 
changes after creation 

• Problem: 

—How do you create a class whose instances are immutable? 

• Forces: 

—There must be no loopholes that would allow ‘illegal’ 
modification of an immutable object 

• Solution: 

—Ensure that the constructor of the immutable class is the only 
place where the values of instance variables are set or modified. 

—Methods which access properties must not have side effects. 

—If a method that would otherwise modify an instance variable is 
required, then it has to return a new instance of the class. 
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6.11 The Read-only Interface Pattern

• Context: 

—You sometimes want certain privileged classes to be able to 

modify attributes of objects that are otherwise immutable 

• Problem: 

—How do you create a situation where some classes see a class as 

read-only whereas others are able to make modifications?

• Forces: 

—Restricting access by using the public, protected and 

private keywords is not adequately selective. 

—Making access public makes it public for both reading and 

writing 
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Read-only Interface

● Solution:

«UnprivilegedClass»

****** «Mutator»

«Mutable»

attribute «private»

getAttribute
setAttribute
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Read-only Interface

● Solution:

«UnprivilegedClass»

****** «Mutator»

«Mutable»

attribute «private»

getAttribute
setAttribute

«interface»
«ReadOnlyInterface»

getAttribute

*****



© Lethbridge/Laganière 2005 Chapter 6: Using design patterns 54

Read-only Interface

Example:
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Read-only Interface

Antipatterns:

• Make the read-only class a subclass of the «Mutable» class

• Override all methods that modify properties

—such that they throw an exception 
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6.12 The Proxy Pattern

• Context: 

—Often, it is time-consuming and complicated to create instances 

of a class (heavyweight classes). 

—There is a time delay and a complex mechanism involved in 

creating the object in memory 

• Problem: 

—How to reduce creating instances of a heavyweight class? 

• Forces: 

—We want all the objects in a domain model to be available for 

programs to use when they execute a system’s various 

responsibilities. 

—It is also important for many objects to persist from run to run 

of the same program 



© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 57

Proxy

● Solution:

«Client» «HeavyWeight»
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Proxy

● Solution:

«interface»
«ClassIF»

* ******«Client» «HeavyWeight»«Proxy»
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Proxy

Example:

«interface»
ListIF

The list elements will 
be loaded into local 
memory only when 
needed.

ListProxy PersistentList
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Proxy

Example:

«interface»
Student

PersistentStudentStudentProxy



Exercise 

Find the most appropriate design pattern for the 

following problems:

a) You are building an inheritance hierarchy of products 

that your company sells; however, you want to reuse 

several classes from one of your suppliers.  You cannot 

modify your suppliers' classes.  How do you ensure that 

the facilities of the suppliers' classes can still be used 

polymorphically?



Exercise 

Find the most appropriate design pattern for the 

following problems:

a) You are building an inheritance hierarchy of products 

that your company sells; however, you want to reuse 

several classes from one of your suppliers.  You cannot 

modify your suppliers' classes.  How do you ensure that 

the facilities of the suppliers' classes can still be used 

polymorphically?

b)

a)Adapter



Exercise (cont'd) 

a)You want to reuse a method in one of the classes from 

one of your suppliers.  You cannot subclass your 

supplier's class.  How do you most effectively make use 

of the already existing method?



Exercise (cont'd) 

a)You want to reuse a method in one of the classes from 

one of your suppliers.  You cannot subclass your 

supplier's class.  How do you most effectively make use 

of the already existing method?

b)

a)Delegation



Exercise (cont'd) 

 You want to allow operations on instances of 

RegularPolygon that will distort them such that they are 

no longer regular polygons.  How do you allow the 

operations without raising exceptions?



Exercise (cont'd) 

 You want to allow operations on instances of 

RegularPolygon that will distort them such that they are 

no longer regular polygons.  How do you allow the 

operations without raising exceptions?

 

  Immutable



Exercise (cont'd)

a)Your program manipulates images that take a lot of space 

in memory. How can you design your program so that 

images are only in memory when needed, and otherwise 

can only be found in files?



Exercise (cont'd)

a)Your program manipulates images that take a lot of space 

in memory. How can you design your program so that 

images are only in memory when needed, and otherwise 

can only be found in files?

b)

a)Proxy



Exercise (cont'd)

a)You have created a subsystem with 25 classes. You know 

that most other subsystems will only access about 5 

methods in this subsystem; how can you simplify the view 

that the other subsystems have of your subsystem?



Exercise (cont'd)

a)You have created a subsystem with 25 classes. You know 

that most other subsystems will only access about 5 

methods in this subsystem; how can you simplify the view 

that the other subsystems have of your subsystem?

b)

a)Facade



Exercise (cont'd)

a)You need to represent insects and insect specimens that 

are collected in a state forest.  For every kind of insect in 

the forest, many specimens of that type will be collected 

for analysis.  How do you represent specimens without 

duplicating common information like scientific name, or 

the name of the forest in which they are collected?



Exercise (cont'd)

a)You need to represent insects and insect specimens that 

are collected in a state forest.  For every kind of insect in 

the forest, many specimens of that type will be collected 

for analysis.  How do you represent specimens without 

duplicating common information like scientific name, or 

the name of the forest in which they are collected?

b)

a)Abstraction-Occurrence



Exercise (cont'd)

a)You are developing a stock quote framework.  Some 

applications using this framework will want stock quotes 

to be displayed on a screen when they become available; 

other applications will want new quotes to trigger certain 

financial applications; yet other applications might want 

both of the above, plus having quotes transmitted 

wirelessly to a network of pagers.  How can you design 

the framework so that various different pieces of 

application code can react in their own way to the arrival 

of new quotes?



Exercise (cont'd)

a)You are developing a stock quote framework.  Some 

applications using this framework will want stock quotes 

to be displayed on a screen when they become available; 

other applications will want new quotes to trigger certain 

financial applications; yet other applications might want 

both of the above, plus having quotes transmitted 

wirelessly to a network of pagers.  How can you design 

the framework so that various different pieces of 

application code can react in their own way to the arrival 

of new quotes?

b)

a)Observer



Exercise (cont'd)

a)You would like users in an airline reservation system to 

be treated as employees in one setting but as customers in 

another.  You want to represent users as objects but you 

don't want any objects to change class.



Exercise (cont'd)

a)You would like users in an airline reservation system to 

be treated as employees in one setting but as customers in 

another.  You want to represent users as objects but you 

don't want any objects to change class.

b)

a)Player-Role



Exercise (cont'd)

a)You want to represent genealogical information in a 

family tree.  You need to represent that some bloodlines 

end without any descendants.  You don't want your class 

diagram to have to change every time a new family is 

added as a node to the family tree.



Exercise (cont'd)

a)You want to represent genealogical information in a 

family tree.  You need to represent that some bloodlines 

end without any descendants.  You don't want your class 

diagram to have to change every time a new family is 

added as a node to the family tree.

b)

a)General Hierarchy
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6.15 Difficulties and Risks When Creating 
Class Diagrams 

• Patterns are not a panacea: 

—Whenever you see an indication that a pattern should 

be applied, you might be tempted to blindly apply the 

pattern. However this can lead to unwise design 

decisions . 

• Resolution:

— Always understand in depth the forces that need to 

be balanced, and when other patterns better balance 

the forces. 

—Make sure you justify each design decision carefully.
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Difficulties and Risks When Creating Class 
Diagrams

• Developing patterns is hard

—Writing a good pattern takes considerable work. 

—A poor pattern can be hard to apply correctly

• Resolution: 

—Do not write patterns for others to use until you 

have considerable experience both in software 

design and in the use of patterns. 

—Take an in-depth course on patterns.

—Iteratively refine your patterns, and have them peer 

reviewed at each iteration.    
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